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Abstract—Motor Imagery (MI) signals play a fundamental role in designing brain computer interfacing (BCI) 

systems. Acquisition of MI electroencephalogram (EEG) signals is based on the visual instructions given to the subjects, 

that result in electrooculogram (EOG) based artifacts which degrade the quality of EEG signals. Automatic removal of 

EOG artifacts with preservation of relevant neural activity will help in effective feature extraction and classification for 

BCI applications. In this paper, we present the design of an automatic EOG artifact removing algorithm based on 

discrete wavelet transform (DWT) and singular spectrum analysis (SSA). Canonical correlation analysis (CCA) is used 

as blind source separation technique on wavelet coefficients. The uncorrelated coefficients thus obtained are used for 

elimination of noisy components using SSA. The results in terms of signal-to-noise ratio (3.61), correlation coefficient 

(0.9223) and classifier’s output substantiate the efficacy of the algorithm in comparison to other state-of-the-art 

methods. 

Keywords—Discrete Wavelet Transform, Canonical Correlation Analysis, Singular Spectrum Analysis, 

Electroculogram, Denoising. 

I. INTRODUCTION  

 Motor Imagery EEG signals are the induced electrical 

activities on the scalp or motor cortex in response to 

imagined movements [1]. Standard methods of designing 

BCI systems are based on MI signals. BCI connects brain to 

the external devices for communication and control [2]. 

Acquisition of MI signals is done by instructing the subjects 

to imagine the movement of specified body parts as per the 

visual cues being run on the computer screen. In this process, 

the prominent eyeballs‟ movements are involved which lead 

to interference of EOG components in motor imagery EEG 

signals [3]. So, to develop an effective BCI system, it is quite 

important to remove the EOG components from EEG 

signals. 

 As per literature, time-frequency decomposition of EEG 

signals aid in dimensionality reduction, obtaining relevant 

frequency bands and noise reduction as well. The commonly 

used time-frequency decomposition techniques are DWT, 

empirical mode decomposition and variational mode 

decomposition [4]. The empirical mode decomposition 

techniques suffer from mode mixing while variational mode 

decomposition (VMD) is a computationally taxing technique 

[5] [6]. DWT is a method that provides different frequency 

bands; hence, it has been used by researchers to identify the 

ocular artifact (OA) region. Further, DWT doesn‟t rely upon 

the reference OAs or visual inspection and thus, it is the 

preferred frequency decomposition technique for EEG 

signals [7]. For the purpose of signal denoising, signal source 

separation is an important task, as without unmixing of 

sources, noise separation and removal is very difficult. For 

that, blind source separation (BSS) techniques have widely 

been used for EEG denoising [8]. Principal component 

analysis (PCA), independent component analysis (ICA) and 

CCA are the major BSS techniques. PCA takes into account 

the orthogonality assumption that sometimes is inconsistent 

with the EEG data practically, and ICA being dependent on 

higher order statistics, proves computationally complex [9], 

while CCA, a method based on second order statistics, is fast 

and computationally simpler [10].  

 A host of other EEG denoising techniques have been 

proposed by researchers based on DWT with adaptive noise 

cancellor [7], ICA with DWT [11], minimum noise 

estimation filter [12], Hankel matrix based denoising [13], 

CCA and ensemble empirical mode decomposition (EEMD) 

based method [9], wavelet neural network based approach 

[14], non-negative matrix factorization for artifact rejection 

[15] etc. These methods either rely upon removal or rejection 

of intrinsic mode functions (IMFs) and independent 

components (ICs) or thresholding of decomposed 

components. Rejection of components may lead to loss of 

relevant underlying neural information and thresholding 

doesn‟t suffice for complete removal of noisy component. 

Thus, there is a need of such an algorithm that not only 

preserves the relevant neural information but also removes 

the noisy component sufficiently enough to extract good 

features. 

 Considering these issues, we propose a novel algorithm 

that makes use of DWT for multiresolution analysis, CCA 

for BSS and SSA for identification and rejection of identified 

noisy components. The paper is organized as follows: 

„Materials and Method‟ section provides details about data 

used and the techniques implemented. „Results and 
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Discussion‟ section presents the results obtained using this 

algorithm and finally, the paper is concluded in „Conclusion‟ 

section.    

II. MATERIALS AND METHODS 

A. EEG Data used 

 In this paper, the BCI data 1 from the publicly available 

datasets of BCI Competition IV consisting of datasets for 

seven healthy subjects is used. The motor imagery data of 

two classes is selected for each subject, containing 100 trials 

each. The sampling rate chosen by data providers is 100 Hz. 

The most relevant 15 motor imagery channels were chosen 

to conduct this study: F3, F1, FZ, F2, F4, C5, C3, C1, CZ, 

C2, C4, C6, P1, PZ and P2. For more details, please refer 

[16]. 

B. Discrete Wavelet Transform 

DWT is a multiresolution method that decomposes the signal 

into different frequency bands. Using DWT, OAs can be 

found concentrated in the low-frequency band, so, it 

contributes in identification of noisy frequency band. It 

provides a time-frequency representation of the signal and 

hence, quite effective in analysis of non-stationary signals. 

Wavelet transform uses a variety of wavelet functions 

possessing different properties. Wavelet transform makes use 

of different basis functions with different properties which 

are not available in fourier transform. The mother wavelet 

functions expand, contract and shift over the length of the 

signal based on the frequency content of the signal and 

provide wavelet coefficients [14]. The signal is decomposed 

in lower and higher frequency bands at each level using low 

pass and high pass filter banks. The coefficients generated 

from high pass filter are called detailed coefficients and that 

from low pass filter are called approximate coefficients [17]. 

For the present work, we decompose the EEG signals using 

daubechies wavelet upto level 4. The decomposition scheme 

is presented as follows in Fig. 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Decomposition scheme of EEG signals. 

C. CCA as BSS technique 

 The decomposed EEG signals (wavelet coefficients) with 

Nt ,...2,1  samples (number of samples are different for 

each coefficient) and k number of channels are represented 

as: 

        Tk txtxtxtX ,...,, 21        (1) 

 tX  consists of uncorrelated unknown source signals 

        tstststS k,...,, 21  which are related to  tX  

using unknown mixing matrix, W , as: 

   tWStX             (2) 

Now, CCA as a blind source separation (BSS) technique 

aims to obtain  tS  by finding out W by using: 

   tXWtS 1           (3) 

where, 1W  is called demixing matrix. The decomposed 

source signals computed using CCA are highly 

autocorrelated but mutually uncorrelated [9].  

Consider  tY as the delayed version of  tX : 

   1 tXtY            (4) 

Remove the mean of each row from the data matrices  tX  

and  tY  for data centralization. The linear combination in 

 tX  and  tY  leads to following equations: 

XAxaxaxaU T

kk  ...2211
     (5) 

YBybybybV T

kk  ...2211  

CCA intends to find the weighting vectors A and B  that 

lead to maximization of correlation  between the variates 

U and V [10]: 

  BCBACA

BCA

yy

T

xx

T

xy

T

         (6) 

where, xyC is the cross covariance of  tX  and  tY  and 

xxC and yyC are the auto covariances of  tX  and  tY .   

maximization can be obtained by setting the derivatives of 

above equation to zero with respect to A and B. As X and 

Y contain almost same data, likewise, A and B too have 

same data. So, we only need to calculate A which is used to 

separate the observed signal into maximally autocorrelated 

and mutually uncorrelated source signals. Further, it is an 

estimation of 1W which is used to get  tS using equation 

(3). Now, these uncorrelated source components are analysed 

for artifactual components by calculating their kurtosis 

values which signify the peaks of the signal [9]. To calculate 

the kurtosis values, following formula is used: 
2

24 3mmki 
           (7) 

where, 
4m and 

2m are the 4th and 2nd central moments. There 

are m  number of blink artifactual components having high 

kurtosis values which are used for singular spectrum 

analysis. 

D. Singular Spectrum Analysis 

 Singular spectrum analysis (SSA) method is quite helpful 

in identifying and extracting of desired components 

automatically from the noisy signal. The SSA approach 

includes two complementary stages; decomposition and 

reconstruction. These stages further encompass two more 

stages. The decomposition stage involves embedding 

followed by singular value decomposition (SVD). Second 
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stage consists of grouping and diagonal averaging to 

reconstruct the signal  [18]. 

1) Decomposition 

 In univariate SSA, each of the time-series (uncorrelated 

wavelet coefficients) of  kuuuU ,,, 21  is first mapped in 

the form of trajectory matrix  nxxxX ,..,, 21  such that 

 Tliiii UUUx 12 ,...,,  where l is the window length. This 

trajectory matrix is called Hankel matrix whose diagonal 

elements are equal. This trajectory matrix or phase space 

reconstruction matrix is decomposed using singular value 

decomposition (SVD) into eigen subspaces. For that, 

compute the covariance matrix T

x XXC  and find the 

eigenvalues. Projecting the time-series onto each eigenvector 

gives the respective temporal principal component. 

2) Reconstruction 

 Before reconstruction, reject the eigenvectors 

corresponding to the higher principal component due to the 

consideration that it carries a noisy fraction of the signal. For 

reconstruction, the elementary matrix X is split into many 

groups and then the matrices within each group are summed 

[19] as: 

     



tg

g

gXX
1

        (8) 

where, 
gX is the sum of elementary matrices within the 

group g , and tg is the total number of groups. 

 sUUUU ...21  represents the reconstructed matrix of 

time-series with length s. 

E. Proposed Methodology 

 Considering the pitfalls of various approaches proposed 

earlier for EEG denoising, we propose a new method that 

gives superior performance and is based on DWT and SSA 

which is made explicit in the form of flow chart of Fig. 2: 

 
Fig. 2 Flowchart of proposed methodology 

III. RESULTS AND DISCUSSION 

BCI data set selected for this work has prominent EOG 

components. Using EEGLAB software, we plotted the EEG 

data by random selection and the same representing EOG 

activities is presented in Fig. 3. After wavelet decomposition, 

coefficients obtained are plotted and shown in Fig. 4 which 

represents the distribution of EOG components among the 

coefficients. 
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Fig. 3 Plot of original EEG contaminated with EOG 
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Fig. 4 Plot of wavelet coefficients of original EEG 

The coefficients of fifteen channels are then uncorrelated 

using CCA. Observed that 4
th
 detail coefficient and 

approximate coefficient have a higher range of amplitude 

(beyond the values of normal EEG), hence, are the main 

repository of EOG components. It can also be visualized in 

the plot of 4
th
 detail coefficient after blind source separation 

presented in Fig. 5. 
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Fig. 5 Plot of 4th detail coefficients after BSS 

Observe in Fig. 5 that the 4
th
 detailed coefficients are 

effectively contaminated by EOG components. Further, the 

same is verified by computing the kurtosis values (as EOG 

activities have peaky distribution with high positive kurtosis). 

The components with kurtosis values more than the threshold 

are assumed to have noisy components and thus, the same are 

used for application of SSA for noise rejection. Every 

artifactual component is decomposed using SSA. After 

rejecting the principal components corresponding to highest 
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Source separation using CCA of each wavelet coefficient 
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DWT reconstruction 
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eigen values, SSA reconstruction is performed. Thereafter, 

CCA reconstruction is done to get the clean wavelet 

coefficients. To get the clean EEG signals, wavelet 

reconstruction is done and the so obtained denoised EEG 

signals are shown in Fig. 6 in comparison with the original 

EEG signals. 
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Fig.6. Comparative plot of noisy and denoised EEG signals 

Further, mathematical analysis of denoising is also done 

by computing signal to noise ratio (SNR) and values of 

correlation coefficients. In the selected BCI dataset, the 

datasets of seven subjects possess both calibration and 

evaluation datasets both of which are used for denoising. 

Results in terms of SNR and correlation coefficient values are 

presented in Table I: 

TABLE I.  SNR and Correlation Coefficient values 
Subjects 

SNR Values 
Correlation Coefficient 

Values 

A-calibration 3.09 0.7680 

B-calibration 3.36 0.8875 

C-calibration 3.90 0.9345 

D-calibration 3.78 0.9021 

E-calibration 3.08 0.7548 

F-calibration 3.88 0.9865 

G-calibration 4.18 0.9808 

A-evaluation 3.27 0.9265 

B-evaluation 3.43 0.9345 

C-evaluation 4.07 0.9887 

D-evaluation 3.55 0.9567 

E-evaluation 3.32 0.9475 

F-evaluation 3.76 0.9674 

G-evaluation 3.90 0.9772 

Average 3.61 0.9223 

 

The denoised EEG so obtained is used for feature extraction. 

Features computed are sample entropy and energy of the 

signals. Sample entropy is a measure of the extent and size of 

change of new information in signal sequence. Thus acts as 

an important feature. Likewise, energy of the signal is also 

representative of extent of information composed in the 

signal. Further details about sample entropy can be had from 

[20]. Using feature values, the signals are classified to find 

out the extent of preservation of neural information after 

denoising using linear discriminant analysis (LDA). LDA is 

a commonly used classifier and easy to use. It discriminates 

the data on the basis of inter- and intra-class variances 

(further information may be had from [21]). Results (in terms 

of resubstitution error, i.e., misclassification error) are 

compared with recently proposed CCA-EEMD method [9] 

and presented in Table II which shows that the proposed 

method outperformed the CCA-EEMD method in terms of 

SNR and classification results. 

 

TABLE II.  Comparison of results obtained with proposed method 

with CCA-EEMD method [9] 

Methods SNR Values Classification results 

CCA-EEMD 3.59 
88% (classification accuracy 

(CA)) 

Proposed Method 3.61 
89.06% (CA) &10.94% 

(resubstitution error) 

 

IV. CONCLUSION 

In this paper, a new method based on DWT and SSA for 

rejection of EOG activity from EEG is proposed. Here, DWT 

is observed as an effective multiresolution analysis tool and 

CCA performed well for separating the original EEG into 

source separated uncorrelated signal components that helped 

in identifying the noisy source. Then, SSA is used to reject 

the identified noisy components of EEG. The noise reduction 

is assessed by computing SNR values that are found to be 

fairly good as compared to recent methods. SSA reduced the 

noise with relevant data preservation, as supported by the 

classifier‟s output. The results also supported the aim of 

methodology. The algorithm may be incorporated in real time 

EEG analysis in future. 
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