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Abstract: Deep Learning is a sub-field of Machine Learning, in which a set of training algorithms and optimization 

techniques work together to perform a particular task. Various Deep Learning Networks are available to perform 

different kinds of tasks. The state-of-art Neural Network in Deep Learning that addresses Computer Vision tasks is the 

Convolutional Neural Network (CNN). The Convolutional Neural Network is usually trained with Backpropagation 

algorithm. With the availability of large scale image datasets and the limitation on computational memory, the existing 

optimization techniques are not able to perform efficiently. The Gradient Descent being the recurrently used 

optimization technique for Backpropagation algorithm, several variants have been developed to improvise its 

performance. In addition, fine tuning the hyperparameters of the training algorithm, further gives the flexibility to 

enhance the training process as per the requirements of the model. This paper provides an insight about the various 

optimization techniques and methods to modify hyperparameters to get better results on any image datasets.  
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I. INTRODUCTION 

A Neural Network is an artificial representation of human 

nervous system, hence the name Artificial Neural Network 

(ANN) [1]. The nervous system consists of millions of 

nerve cells called the Neurons. The Neurons are distributed 

in hierarchical layers. Each neuron takes inputs from 

numerous other neurons in the preceding layer and performs 

the required processing on the input. The output, thus 

obtained, is passed on to numerous other neurons in the 

following layer. Deep Learning Networks are the trending 

network architectures that outperform the existing 

architectures in different tasks like, Speech Recognition, 

Object Detection, Pattern Recognition, Image Retrieval, etc. 

There are different Deep Neural Networks available for 

different tasks like, Convolutional Neural Nework(CNN)[2] 

for Computer Vision, Recurrent Neural Network(RNN)[3] 

for Time Series Analysis, Self-Organizing Maps(SOM)[4] 

for Feature Detection, Deep-Boltzmann Machines(DBM)[5] 

and Auto-Encoders(AE)[6] for Recommendation Systems. 

The goal of any Machine Learning task is to reduce the 

difference between the expected output and the actual 

output. This is called as the Loss function or the Cost 

Function.  

II. BACKPROPAGATION 

Backpropagation is the commonly used training algorithm 

for Deep Neural Networks. Though this algorithm was 

introduced in 1970’s, it gained its importance in late 1980’s 

after being implemented by David Rumelhart et al [7] which 

proves to work much faster than the existing algorithms to 

train neural networks. The role of Backpropagation is to 

compute the partial derivative of the cost function with 

respect to weights and biases of each neuron. The 

Backpropagation algorithm [8] works in two phases.  

 Forward Propagation: The algorithm propagates from 

the input layer to the output layer, and computes the 

output by feeding the input weights and biases into an 

activation function at every layer. The value obtained at 

the output layer is compared with the expect values, and 

the difference is calculated (Total Error, E).  
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 Backward Propagation: This Total Error Value is 

subtracted from the current weights of every neuron and 

propagated backward from the output layer to the input 

layer. The network again trains with the updated 

weights. 

The role of an Optimizer is to update the weights of the 

neurons in such a way so that it minimizes the loss function. 

The Loss function acts as a guide to direct the optimizer in 

the right direction towards to the global minimum. 

III. CLASSIFICATION OF OPTIMIZATION 

ALGORITHMS 

Optimization algorithms [9] are utilized to minimize or 

maximize the objective function (cost function), f(x), which 

is dependent on the model's internal learnable parameters, 

used in computing the target values(Y) from the set of 

predictors (X). The internal learnable parameters in a neural 

network are Weights (W) and Biases (b). These parameters 

are learned and updated in the direction of optimal solution. 

The optimization algorithms are classified into two 

categories, 
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A. First-Order Optimization Algorithms 

First-Order Optimization algorithms [10] minimize or 

maximize the objective function using its Gradient values 

with respect to its parameters. The first-order derivative 

tells us whether the function is increasing or decreasing at a 

particular point. The most widely used first-order 

optimization algorithm is the Gradient Descent. A Gradient 

is a multi-variable generalization of a derivative (dy=dx), 

i.e., rate of change of y with respect to x. The Gradient 

points towards the steepest descending direction of the 

optimal solution. The difference between a regular 

derivative and a Gradient is that, the derivative is calculated 

for a function dependent on one variable, where as a 

Gradient is the partial-derivative calculated for a function 

dependant on multiple variables. The output of a Gradient is 

a vector. The Gradient is represented by a Jacobian Matrix, 

which consists of first-order partial derivatives. 

B. Second-Order Optimization Algorithms 

Second-Order Optimization algorithms [11] use second-

order derivatives also known as Hessian Matrix to minimize 

or maximize the objective function [12]. Hessian is a matrix 

of second-order partial derivatives. The second-order 

derivatives tell us whether the first derivative is increasing 

or decreasing, which in turn helps to find the function's 

curvature. Since the computation of Second-order 

derivatives is expensive, it is not widely used. Though it's 

expensive, it has its own advantages. Second-order 

derivatives provide better performances in step-wise terms, 

and this algorithm does not neglect the curvature of the 

surface, which plays a major role in optimization. 

IV. GRADIENT DESCENT 

A. Batch-Gradient Descent 

It is the most important technique used to train and optimize 

intelligent systems. It is majorly used to update the weights 

of neurons in a neural network. The network thus trained, is 

further optimized using Backpropagation techniques. The 

input fed into the network, first propagates forward 

calculating the dot product of input signals and their 

corresponding weights. Then apply activation function to 

those sum products, which transforms the input signal to an 

output signal. This process introduces non-linearities to the 

model which enables the model to learn non-arbitrary 

functional mappings. The model then propagates backwards 

through the networks carrying the error terms, while 

updating the weights using Gradient Descent in the opposite 

direction of the curvature.  

                         )( J                (2) 

is the formula for parameter updates, where  is the 

learning rate, )(J  is the gradient of the loss function 

)(J with respect to the parameter . The parameter, 

learning rate decides the value of the weight updates. The 

Learning rate converges to a global minimum for convex 

surfaces and to a local minimum for non-convex surfaces. 

The Batch-Gradient Descent[13] also known as the Vanilla 

Gradient-Descent, calculates gradient of the cost function 

with respect to the parameters weights and biases for the 

entire training dataset. This makes it complicated to handle 

very huge datasets, slower computations and cannot fit in 

allocated memory. It also calculates redundant updates for 

large datasets. 

B. Stochastic Gradient Decent. 

Stochastic-Gradient Descent (SGD) [14] in contrast 

performs a parameter update for each training example. To 

overcome the drawbacks in Batch-Gradient Descent, 

Stochastic-Gradient Descent has evolved. The challenge in 

using Stochastic-Gradient Descent is choosing a proper 

learning rate, to avoid fluctuations while converging to the 

optimum point.  
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where )(ix  and )(iy  are training examples. This 

algorithm does not perform well when the curve has saddle 

points i.e., points where one dimension slopes up and the 

other dimension slopes down. 

V. OPTIMIZING THE GRADIENT DESCENT 

There are several optimization techniques [15] that are 

incorporated to overcome the challenges in implementing 

the Gradient-Descent, such as 

 

A. Momentum 

Ravines are areas in a slope, where the surface curvature is 

steeper in one dimension than another. These ravines are 

common around local optima. While oscillating in these 

ravines, SGD makes very slow progress to obtain the local 

optimum position. To handle this slow progress, SGD adds 

up a parameter called Momentum (usually = 0:9), which 

accelerates the convergence in the relevant direction.  

                 )()1()(  JtVtV               (4) 

where  is momentum, )1( tV is the previous step update 

vector, )( J is the current step update vector. Then 

finally the parameter is updated by, 

                                    )(tV                           (5) 

The Momentum value increases for the dimensions whose 

gradients are in same direction and decreases for gradients 

in different directions. 

B. Nesterov Accelerated Gradient (NAG) 

In Nesterov Accelerated Gradient [16], first the gradient 

with momentum is calculated for the current position, and 

then makes a leap in the direction of the accumulated 

gradient, and calculates the value for the new position. 

Gradient is calculated for smaller steps either beyond the 

current position, or reduced to lesser values than the current 

position. This anticipatory updates prevents SGD from 

converging too fast, and results in better and results. 

  ))1(()1()(  tVJtVtV      (6) 

and then update the parameters using  

                                   )(tV                             (7) 

C. Adagrad 

The Adagrad optimization technique [17] adapts smaller 

learning rates for features occurring frequently and adapts 

higher learning rates for infrequent features. This unique 

capacity of this technique makes it suitable to handle sparse 

data.  
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where 
itg ,
is the gradient of the loss function with respect to 

the parameter )(i at time step t . The main advantage of 

using Adagrad is the learning rate need not be manually 

changed, setting the initial learning rate to 0.01 makes the 

algorithm adapt on its own. The disadvantage in Adagrad is 

the accumulation of the squared gradients in the 

denominator, which in turn makes the learning rate 

infinitesimally small. 

D. Adadelta 

Adadelta[18] is an extension of Adagrad, that seeks to 

rectify the weakness in Adagrad. Instead accumulating all 

the past squared gradients, Adadelta restricts window of 

accumulating the gradients to a fixed value, w. The sum of 

gradients is recursively defined as a decaying average of all 

past squared gradients.  

 )()1()1]([)]([ 222 tgtgEtgE           (9) 

where )]([ 2 tgE is the running average at time step t that 

depends only on the previous average and the current 

gradient. The parameter is updated as 

                             ),()( itgt                       (10) 

                          )()()1( ttt                     (11) 

With Adadelta it is not necessary to set the learning rate. 

E. RMSProp 

RMSprop[19] is adaptive learning rate method, proposed in 

the similar time of Adadelta. This was also developed to 

overcome the radically diminishing problem of Adagrad. 

F. Adam 

Adaptive Moment Estimation (ADAM)[20], computes 

adaptive learning rates for each parameter. Adam stores the 

decaying average of past squared gradients, like Adadelta 

and RMSprop, and also stores the decaying average of past 

gradients, like Momentum. 
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tm , is the value of the first momentum i.e., the Mean 

and tv , is the value of the second momentum i.e., the 

Variance. Then the parameter is updated by 
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The preferable values for 1 is 0.9, 2 is 0.999 

and =
810

. 

G. Nadam 

Adam is combination of RMSprop and Momentum. 

Nesterov-Accelerated Gradient (NAG) is superior to 

Momentum. Nesterov-Accelerated Adaptive Momentum 

Estimation (NADAM) [21] combines the capabilities of 

both Adam and NAG. 

VI. CONCLUSION 

The rapidly growing data in the present, leads to the need 

for the rise of efficient algorithms to handle it. Existing 

algorithms are enhanced to cope up with these voluminous 

data with various optimization techniques. A brief 

introduction about the most used Gradient Descent 

algorithm and how the algorithm is enhanced with the 

addition of new parameters is discussed in Section IV and 

Section V. This survey intends to motivate several 

researches by providing knowledge on the details about 

neural networks, its architecture, training algorithms and the 

optimization techniques. 
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