
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

601 | IJREAMV05I0250193 DOI : 10.35291/2454-9150.2019.0100 © 2019, IJREAM All Rights Reserved.

A Survey of Optimization Techniques for Deep

Learning Networks
*
Agnes Lydia,

#
F. Sagayaraj Francis

*
Research Scholar,

#
Professor, Pondicherry Engineering College, Pondicherry-India,

*
agneslydia@pec.edu,

#
fsfrancis@pec.edu

Abstract: Deep Learning is a sub-field of Machine Learning, in which a set of training algorithms and optimization

techniques work together to perform a particular task. Various Deep Learning Networks are available to perform

different kinds of tasks. The state-of-art Neural Network in Deep Learning that addresses Computer Vision tasks is the

Convolutional Neural Network (CNN). The Convolutional Neural Network is usually trained with Backpropagation

algorithm. With the availability of large scale image datasets and the limitation on computational memory, the existing

optimization techniques are not able to perform efficiently. The Gradient Descent being the recurrently used

optimization technique for Backpropagation algorithm, several variants have been developed to improvise its

performance. In addition, fine tuning the hyperparameters of the training algorithm, further gives the flexibility to

enhance the training process as per the requirements of the model. This paper provides an insight about the various

optimization techniques and methods to modify hyperparameters to get better results on any image datasets.

Keywords — Neural Network, Deep Learning, Classification of Optimization Techniques, Hyperparameters, Loss

Function, Gradient Descent, Backpropagation

I. INTRODUCTION

A Neural Network is an artificial representation of human

nervous system, hence the name Artificial Neural Network

(ANN) [1]. The nervous system consists of millions of

nerve cells called the Neurons. The Neurons are distributed

in hierarchical layers. Each neuron takes inputs from

numerous other neurons in the preceding layer and performs

the required processing on the input. The output, thus

obtained, is passed on to numerous other neurons in the

following layer. Deep Learning Networks are the trending

network architectures that outperform the existing

architectures in different tasks like, Speech Recognition,

Object Detection, Pattern Recognition, Image Retrieval, etc.

There are different Deep Neural Networks available for

different tasks like, Convolutional Neural Nework(CNN)[2]

for Computer Vision, Recurrent Neural Network(RNN)[3]

for Time Series Analysis, Self-Organizing Maps(SOM)[4]

for Feature Detection, Deep-Boltzmann Machines(DBM)[5]

and Auto-Encoders(AE)[6] for Recommendation Systems.

The goal of any Machine Learning task is to reduce the

difference between the expected output and the actual

output. This is called as the Loss function or the Cost

Function.

II. BACKPROPAGATION

Backpropagation is the commonly used training algorithm

for Deep Neural Networks. Though this algorithm was

introduced in 1970’s, it gained its importance in late 1980’s

after being implemented by David Rumelhart et al [7] which

proves to work much faster than the existing algorithms to

train neural networks. The role of Backpropagation is to

compute the partial derivative of the cost function with

respect to weights and biases of each neuron. The

Backpropagation algorithm [8] works in two phases.

 Forward Propagation: The algorithm propagates from

the input layer to the output layer, and computes the

output by feeding the input weights and biases into an

activation function at every layer. The value obtained at

the output layer is compared with the expect values, and

the difference is calculated (Total Error, E).

2))((

2

1
ii xwfyE (1)

 Backward Propagation: This Total Error Value is

subtracted from the current weights of every neuron and

propagated backward from the output layer to the input

layer. The network again trains with the updated

weights.

The role of an Optimizer is to update the weights of the

neurons in such a way so that it minimizes the loss function.

The Loss function acts as a guide to direct the optimizer in

the right direction towards to the global minimum.

III. CLASSIFICATION OF OPTIMIZATION

ALGORITHMS

Optimization algorithms [9] are utilized to minimize or

maximize the objective function (cost function), f(x), which

is dependent on the model's internal learnable parameters,

used in computing the target values(Y) from the set of

predictors (X). The internal learnable parameters in a neural

network are Weights (W) and Biases (b). These parameters

are learned and updated in the direction of optimal solution.

The optimization algorithms are classified into two

categories,

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

602 | IJREAMV05I0250193 DOI : 10.35291/2454-9150.2019.0100 © 2019, IJREAM All Rights Reserved.

A. First-Order Optimization Algorithms

First-Order Optimization algorithms [10] minimize or

maximize the objective function using its Gradient values

with respect to its parameters. The first-order derivative

tells us whether the function is increasing or decreasing at a

particular point. The most widely used first-order

optimization algorithm is the Gradient Descent. A Gradient

is a multi-variable generalization of a derivative (dy=dx),

i.e., rate of change of y with respect to x. The Gradient

points towards the steepest descending direction of the

optimal solution. The difference between a regular

derivative and a Gradient is that, the derivative is calculated

for a function dependent on one variable, where as a

Gradient is the partial-derivative calculated for a function

dependant on multiple variables. The output of a Gradient is

a vector. The Gradient is represented by a Jacobian Matrix,

which consists of first-order partial derivatives.

B. Second-Order Optimization Algorithms

Second-Order Optimization algorithms [11] use second-

order derivatives also known as Hessian Matrix to minimize

or maximize the objective function [12]. Hessian is a matrix

of second-order partial derivatives. The second-order

derivatives tell us whether the first derivative is increasing

or decreasing, which in turn helps to find the function's

curvature. Since the computation of Second-order

derivatives is expensive, it is not widely used. Though it's

expensive, it has its own advantages. Second-order

derivatives provide better performances in step-wise terms,

and this algorithm does not neglect the curvature of the

surface, which plays a major role in optimization.

IV. GRADIENT DESCENT

A. Batch-Gradient Descent

It is the most important technique used to train and optimize

intelligent systems. It is majorly used to update the weights

of neurons in a neural network. The network thus trained, is

further optimized using Backpropagation techniques. The

input fed into the network, first propagates forward

calculating the dot product of input signals and their

corresponding weights. Then apply activation function to

those sum products, which transforms the input signal to an

output signal. This process introduces non-linearities to the

model which enables the model to learn non-arbitrary

functional mappings. The model then propagates backwards

through the networks carrying the error terms, while

updating the weights using Gradient Descent in the opposite

direction of the curvature.

)(J (2)

is the formula for parameter updates, where is the

learning rate,)(J is the gradient of the loss function

)(J with respect to the parameter . The parameter,

learning rate decides the value of the weight updates. The

Learning rate converges to a global minimum for convex

surfaces and to a local minimum for non-convex surfaces.

The Batch-Gradient Descent[13] also known as the Vanilla

Gradient-Descent, calculates gradient of the cost function

with respect to the parameters weights and biases for the

entire training dataset. This makes it complicated to handle

very huge datasets, slower computations and cannot fit in

allocated memory. It also calculates redundant updates for

large datasets.

B. Stochastic Gradient Decent.

Stochastic-Gradient Descent (SGD) [14] in contrast

performs a parameter update for each training example. To

overcome the drawbacks in Batch-Gradient Descent,

Stochastic-Gradient Descent has evolved. The challenge in

using Stochastic-Gradient Descent is choosing a proper

learning rate, to avoid fluctuations while converging to the

optimum point.

))();(;(iyixJ (3)

where)(ix and)(iy are training examples. This

algorithm does not perform well when the curve has saddle

points i.e., points where one dimension slopes up and the

other dimension slopes down.

V. OPTIMIZING THE GRADIENT DESCENT

There are several optimization techniques [15] that are

incorporated to overcome the challenges in implementing

the Gradient-Descent, such as

A. Momentum

Ravines are areas in a slope, where the surface curvature is

steeper in one dimension than another. These ravines are

common around local optima. While oscillating in these

ravines, SGD makes very slow progress to obtain the local

optimum position. To handle this slow progress, SGD adds

up a parameter called Momentum (usually = 0:9), which

accelerates the convergence in the relevant direction.

)()1()(JtVtV (4)

where is momentum,)1(tV is the previous step update

vector,)(J is the current step update vector. Then

finally the parameter is updated by,

)(tV (5)

The Momentum value increases for the dimensions whose

gradients are in same direction and decreases for gradients

in different directions.

B. Nesterov Accelerated Gradient (NAG)

In Nesterov Accelerated Gradient [16], first the gradient

with momentum is calculated for the current position, and

then makes a leap in the direction of the accumulated

gradient, and calculates the value for the new position.

Gradient is calculated for smaller steps either beyond the

current position, or reduced to lesser values than the current

position. This anticipatory updates prevents SGD from

converging too fast, and results in better and results.

))1(()1()(tVJtVtV (6)

and then update the parameters using

)(tV (7)

C. Adagrad

The Adagrad optimization technique [17] adapts smaller

learning rates for features occurring frequently and adapts

higher learning rates for infrequent features. This unique

capacity of this technique makes it suitable to handle sparse

data.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

603 | IJREAMV05I0250193 DOI : 10.35291/2454-9150.2019.0100 © 2019, IJREAM All Rights Reserved.

it

it

itit g
G

,

,

,,1

 (8)

where
itg ,
is the gradient of the loss function with respect to

the parameter)(i at time step t . The main advantage of

using Adagrad is the learning rate need not be manually

changed, setting the initial learning rate to 0.01 makes the

algorithm adapt on its own. The disadvantage in Adagrad is

the accumulation of the squared gradients in the

denominator, which in turn makes the learning rate

infinitesimally small.

D. Adadelta

Adadelta[18] is an extension of Adagrad, that seeks to

rectify the weakness in Adagrad. Instead accumulating all

the past squared gradients, Adadelta restricts window of

accumulating the gradients to a fixed value, w. The sum of

gradients is recursively defined as a decaying average of all

past squared gradients.

)()1()1]([)]([222 tgtgEtgE (9)

where)]([2 tgE is the running average at time step t that

depends only on the previous average and the current

gradient. The parameter is updated as

),()(itgt (10)

)()()1(ttt (11)

With Adadelta it is not necessary to set the learning rate.

E. RMSProp

RMSprop[19] is adaptive learning rate method, proposed in

the similar time of Adadelta. This was also developed to

overcome the radically diminishing problem of Adagrad.

F. Adam

Adaptive Moment Estimation (ADAM)[20], computes

adaptive learning rates for each parameter. Adam stores the

decaying average of past squared gradients, like Adadelta

and RMSprop, and also stores the decaying average of past

gradients, like Momentum.

t

t
t

m
m

11
 (12)

t

t
t

v
v

21
 (13)

tm , is the value of the first momentum i.e., the Mean

and tv , is the value of the second momentum i.e., the

Variance. Then the parameter is updated by

 t

t

tt m
v

1 (14)

The preferable values for 1 is 0.9, 2 is 0.999

and =
810

.

G. Nadam

Adam is combination of RMSprop and Momentum.

Nesterov-Accelerated Gradient (NAG) is superior to

Momentum. Nesterov-Accelerated Adaptive Momentum

Estimation (NADAM) [21] combines the capabilities of

both Adam and NAG.

VI. CONCLUSION

The rapidly growing data in the present, leads to the need

for the rise of efficient algorithms to handle it. Existing

algorithms are enhanced to cope up with these voluminous

data with various optimization techniques. A brief

introduction about the most used Gradient Descent

algorithm and how the algorithm is enhanced with the

addition of new parameters is discussed in Section IV and

Section V. This survey intends to motivate several

researches by providing knowledge on the details about

neural networks, its architecture, training algorithms and the

optimization techniques.

REFERENCES
[1] Mcculloch, Warren S., and Walter Pitts. "A Logical

Calculus of the Ideas Immanent In Nervous

Activity." The bulletin of mathematical biophysics 5.4

(1943): 115-133.

[2] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E.

Hinton. "Imagenet classification with deep

convolutional neural networks." Advances in neural

information processing systems. 2012.

[3] Connor, Jerome T., R. Douglas Martin, and Les E.

Atlas. "Recurrent neural networks and robust time

series prediction." IEEE transactions on neural

networks 5.2 (1994): 240-254.

[4] Ultsch, Alfred. "Self-organizing neural networks for

visualisation and classification." Information and

classification. Springer, Berlin, Heidelberg, 1993. 307-

313.

[5] Wang, Hao, Naiyan Wang, and Dit-Yan Yeung.

"Collaborative deep learning for recommender

systems." Proceedings of the 21th ACM SIGKDD

international conference on knowledge discovery and

data mining. ACM, 2015.

[6] Wu, Yao, et al. "Collaborative denoising auto-encoders

for top-n recommender systems." Proceedings of the

Ninth ACM International Conference on Web Search

and Data Mining. ACM, 2016.

[7] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J.

Williams. "Learning representations by back-

propagating errors." Cognitive modeling 5.3 (1988): 1.

[8] Leung, Henry, and Simon Haykin. "The complex

backpropagation algorithm." IEEE Transactions on

signal processing 39.9 (1991): 2101-2104.

[9] Cochocki, A., and Rolf Unbehauen. Neural networks for

optimization and signal processing. John Wiley &

Sons, Inc., 1993.

[10] Sra, Suvrit, Sebastian Nowozin, and Stephen J. Wright,

eds. Optimization for machine learning. Mit Press,

2012.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

604 | IJREAMV05I0250193 DOI : 10.35291/2454-9150.2019.0100 © 2019, IJREAM All Rights Reserved.

[11] Ruffio, E., et al. "Tutorial 2: Zero-order optimization

algorithms." Eurotherm School METTI (2011).

[12]Hagan, Martin T., and Mohammad B. Menhaj.

"Training feedforward networks with the Marquardt

algorithm." IEEE transactions on Neural Networks 5.6

(1994): 989-993.

[13] Cotter, Andrew, et al. "Better mini-batch algorithms

via accelerated gradient methods." Advances in neural

information processing systems. 2011.

[14] Bottou, Léon. "Large-scale machine learning with

stochastic gradient descent." Proceedings of

COMPSTAT' 2010. Physica-Verlag HD, 2010. 177-

186.

[15] Ruder, Sebastian. "An overview of gradient descent

optimization algorithms." arXiv preprint arXiv : 1609.

04747 (2016).

[16] Dozat, Timothy. "Incorporating nesterov momentum

into Adam." (2016).

[17] Ward, Rachel, Xiaoxia Wu, and Leon Bottou.

"Adagrad stepsizes: Sharp convergence over

nonconvex landscapes, from any initialization." arXiv

preprint arXiv:1806.01811 (2018).

[18] Zeiler, Matthew D. "ADADELTA: An Adaptive

learning rate method." arXiv preprint arXiv : 1212.

5701 (2012).

[19] Basu, Amitabh, et al. "Convergence guarantees for

RMSprop and Adam in non-convex optimization and

their comparison to Nesterov Acceleration on

Autoencoders." arXiv preprint

arXiv:1807.06766 (2018).

[20] Kingma, Diederik P., and Jimmy Ba. "Adam: A

method for stochastic optimization." arXiv preprint

arXiv:1412.6980(2014).

[21] Kim, Jihyun, and Howon Kim. "An effective intrusion

detection classifier using long short-term memory with

gradient descent optimization." 2017 International

Conference on Platform Technology and Service

(PlatCon). IEEE, 2017.

