Outer Sum Labeling Of Middle Graph Of Path And Cycle

Vishu Kumar M, Professor, School of Applied Science, REVA University, Bangalore, Karnataka, India, vishukumarm@reva.edu.in

Shravani Y, Student, REVA University, Bangalore, Karnataka, India, yshravani4@gmail.com

Abstract - Outer Sum labeling of a graph G is a labeling of a graph G is an injective function f from vertex set of G to Z^{+}with the property that for every vertex $v \in V(G)$, there exist a vertex $w \in V(G)$ such that $f(w)=\sum_{u \in N(v)} f(u)$, where $N(v)=\{x: v x \in E(G)\}$. A graph G which admits an outer sum labeling is called an outer sum graph. If the graph G is not an outer sum graph then the minimum of isolated vertices required to make a graph G an outer sum graph is called outer sum number of G, and is denoted by $o n(G)$. In this paper we obtain outer sum number of a middle graph of path and cycle.

AMS Subject classification : 05C78, 05C12, 05C15
Keywords: Sum labeling, Outer sum labeling, Outer sum number, Middle graph

I. Introduction

The graph $G(V, E)$ considered here be a simple connected, finite graph. For any $u, v \in V(G), d(u, v)$ represents the shortest path between $u \& v$. A Sum labeling λ of a graph is a mapping of the vertices of G into distinct positive integers such that for any $u, v \in V(G), u v \in E(G)$ if and only if the sum of the labels assigned to $u \& v$ equals the label of a vertex w of G. In such case w is called a working vertex. A graph which admits sum labeling is called a sum graph.

Sum graphs are originally introduced by Harary[2] and later extended to include al integer in [3]. Sum graphs cannot be connected graphs. Graphs which are not sum graphs can made a sum labeling by introducing number of isolated vertices which can bare the labels required by the graph. The minimum number of isolated vertices required by the graph G to support a sum labeling is called sum number of a graph G and is denoted by $\sigma(G)$.

A labeling of a graph G is an injective mapping $f: V(G) \rightarrow Z^{+}$. An outer sum labeling of a graph G with an added property that for every vertex $v \in V(G)$, there exists a $w \in V(G)$ such that $f(w)=\sum_{u \in N(v)} f(u)$, where $N(v)=\{x: v x \in E(G)\}$, A graph G which admits outer sum labeling is called an
outer sum graph. If G is not outer sum graph then by adding isolated vertices to G we can make a resultant an outer sum graph is called the outer sum number of G and is denoted by on (G).

II. DEFINITIONS.

1.1 Middle graph

The middle graph of a connected graph G denoted by $M(G)$ is the graph whose vertex set is
$V(G) \cup E(G)$ where two vertices are adjacent if
i. They are adjacent edges of G or
ii. One is a vertex of G and the other is an edge incident with it.

III. Some known results

Theorem 3.1. [4]
A Connected graph G is an outer sum graph if and only if $G \cong K_{1, n}$.

Theorem 3.2. [4]
For any $n \geq 3$, on $\left(C_{n}\right)=\left\{\begin{array}{lrr}1 & \text { if } \quad n=4 \\ 2 & & \text { otherwise }\end{array}\right.$

Theorem 3.3. [4]

For any tree T on n vertices,
$o n(T)=\left\{\begin{array}{lll}0 & \text { if } & T \text { is star } \\ 1 & & \text { otherwise }\end{array}\right.$

Theorem 3.4. [4]
For any positive integer n,
on $\left(K_{n}\right)= \begin{cases}0 & \text { if } n \leq 2 \\ n-1 & \text { otherwise }\end{cases}$
Theorem 3.5. [4]

$$
\text { on }\left(P_{n}+K\right)=\left\{\begin{array}{lcc}
& & \\
0 & \text { if } & n=1 \\
1 & \text { if } & n=3 \\
2 & \text { otherwise }
\end{array}\right.
$$

IV. MAIN RESULTS

Theorem 4.1 For any integer on $\left[M\left(P_{n}\right)\right]=1$,
Proof: By Theorem 3.1,
A connected graph G is an outer sum graph if and only if $G \cong K_{1, n}$

$$
\begin{equation*}
M\left(P_{n}\right) \neq K_{1, n} \text { and } \operatorname{on}\left(M\left(P_{n}\right)\right) \geq 1 \tag{1}
\end{equation*}
$$

To prove the reverse inequality, we define a following labeling procedure
$f\left(u_{1}\right)=1, f\left(v_{1}\right)=2, f\left(v_{2}\right)=3$.
$f\left(u_{i}\right)=f\left(v_{i-1}\right)+f\left(v_{i}\right), \quad 2 \leq i \leq n-1$
$f\left(u_{n}\right)=\sum N\left(v_{n-2}\right)$
$f\left(v_{i}\right)=\sum N\left(v_{i-2}\right), \quad 3 \leq i \leq n-1$
Also, we define a neighbourhood sum as follows
$N\left(u_{1}\right)=f\left(v_{1}\right)$
$N\left(u_{i}\right)=f\left(v_{i-1}\right)+f\left(v_{i}\right)=f\left(u_{i}\right), \quad 2 \leq i \leq n-1$
$N\left(u_{n}\right)=f\left(v_{n}\right)$
$N\left(v_{1}\right)=f\left(u_{1}\right)+f\left(u_{2}\right)+f\left(v_{2}\right)=f\left(v_{3}\right)$
$N\left(v_{i}\right)=f\left(v_{i-1}\right)+f\left(v_{i+1}\right)+f\left(u_{i}\right)+f\left(u_{i+1}\right)$
$=f\left(v_{i+2}\right), 2 \leq i \leq n-3$
$N\left(v_{n-1}\right)=f\left(u_{n}\right)+f\left(u_{n-1}\right)+f\left(v_{n-2}\right)=f(u)$
$N\left(v_{n-2}\right)=f\left(v_{n-3}\right)+f\left(v_{n-1}\right)+f\left(u_{n-2}\right)+f\left(u_{n-1}\right)$
$N\left(v_{n}\right)=f\left(v_{n-1}\right)$
From the above labeling procedure, we require one isolated vertex to make $M\left(P_{n}\right)$, an outer sum graph and hence

$$
\begin{equation*}
\text { on }\left(M\left(P_{n}\right)\right) \leq 1 \tag{2}
\end{equation*}
$$

Theorem 4.1 For positive integer n , on $\left[M\left(C_{n}\right)\right] \leq 3$.
Proof: We define a following labeling procedure
$f\left(v_{1}\right)=1, f\left(v_{2}\right)=2, f\left(v_{3}\right)=4$
$f\left(u_{i}\right)=f\left(v_{i-1}\right)+f\left(v_{i}\right), 2 \leq i \leq n$
$f\left(u_{1}\right)=f\left(v_{n}\right)+f\left(v_{1}\right)$
$f\left(v_{i}\right)=f\left(v_{i-3}\right)+f\left(u_{i-2}\right)+f\left(u_{i-1}\right)+f\left(v_{i-1}\right)$,
$4 \leq i \leq n$

Also, we define a neighbourhood sum as follows
$N\left(u_{i}\right)=f\left(v_{i-1}\right)+f\left(v_{i}\right)=f\left(u_{i}\right), \quad 2 \leq i \leq n$
$N\left(u_{1}\right)=f\left(v_{n}\right)+f\left(v_{1}\right)=f\left(u_{1}\right)$
$N\left(v_{i}\right)=f\left(v_{i-1}\right)+f\left(u_{i}\right)+f\left(u_{i+1}\right)+f\left(v_{i+1}\right)$
$=f\left(v_{i+2}\right), \quad 2 \leq i \leq n-2$
From the above it is clear that neighbourhood sum of three vertices has been not assigned to any vertices of $M\left(C_{n}\right)$, therefore at least three isolated vertices required to label them as follows.
$N\left(v_{n-1}\right)=f\left(v_{n-2}\right)+f\left(u_{n-1}\right)+f\left(u_{n}\right)+f\left(v_{n}\right)$
$=f(u)$
$N\left(v_{n}\right)=f\left(v_{n-1}\right)+f\left(v_{1}\right)+f\left(u_{n}\right)+f\left(u_{1}\right)=f(v)$
$N\left(v_{1}\right)=f\left(u_{1}\right)+f\left(u_{2}\right)+f\left(v_{n}\right)+f\left(v_{2}\right)=f(w)$ and hence $\operatorname{on}\left(M\left(C_{n}\right)\right) \leq 3$.

References

[1] Buckely F and Harary F., Distance in Graphs, Addison-wesley. (1990).
[2] Frank Harary, Sum Graph and Difference Graphs, Congr. Numer., 72, (1990), 101-108
[3] Frank Harary, Some Graph over all the integers, Disc. Math., 124, (1994), 99-105
[4] B Sooryanarayana, Manjula K and Vishu Kumar M, Outer Sum Labeling og a Graph, International Journal of Combinatorial Graph Theory and Applications, Vol 4, No. I, pp. 37-60.
[5] Z Chen, Harary's Conjectures on the Integral Sum Graphs, Disc, Math., 160, (1996), 241-244.
[6] Martin Sutton, Anna Draganova and Mirka Miller, Mod Sum Number of Wheels, Ars Combinatoria, 63, (2002), 273-287.
[7] W. He, Y. Shen, L. Wang, Y. Chang, Q. Kang and X. Yu, The integral sum number of complete bipartite graphs Kr, s, Discrete Math., 239 (2001), 137-146.
[8] Y. Wang and B. Liu, The sum number and integral sum number of complete bipartite graph, Discrete Math., 239 (2001), 69-82.

Thus \quad on $\left(M\left(P_{n}\right)\right)=1$

