

Nδĝ Closed Sets in Nano Topological Spaces

B. Meera Devi, Assistant Professor, Department of Mathematics, Sri S.R.N.M College Sattur,

Tamilnadu & India, abmeeradevi@gmail.com.

T. Nithya, Research Scholar, PG and Research Department of Mathematics, Sri S.R.N.M College Sattur, Tamilnadu & India, neelathangamsuresh@gmail.com

Abstract: In this paper a new class of sets, namely $N\delta \hat{g}$ -closed sets is introduced in nano topological spaces. We prove that this class lies between the class of N δ -closed sets and the class of N δg -closed sets. Also we find some basic properties and characterisation of N $\delta \hat{g}$ - closed sets. Applying this sets to introduce an new space namely N $T_{3/4}$ -space and N $\hat{T}_{3/4}$ -space.

Keywords: $N\delta g$ -closed sets, $N\delta$ - closure, $N\hat{g}$ -open sets, $N\delta\hat{g}$ -closed sets, $NT_{3/4}$ -space and $N\hat{T}_{3/4}$ -space.

I. INTRODUCTION

M. Lellis Thivagar and Carmel Richard [6] introduced nano topological space (or simply NTS) with respect to a subset X of a universe which is defined in terms of lower and upper approximation of X. He has also defined nano closed sets (briefly N-CS), nano interior and nano closure of a set. In 2013, M. Lellis Thivagar and Carmel Richard [6] introduced nano semi-open, nano regular-open, nano pre open, nano α -open. R. Lalitha and Dr. A. Francina shalini [5] introduced N \hat{g} -closed set in nano topological spaces. The purpose of this present paper is to define a new class of nano closed sets called N $\delta \hat{g}$ -closed sets and also we obtain some basic properties of N $\delta \hat{g}$ -closed sets in nano topological space. Applying these sets, we obtain a new space which is called NT_{3/4}-space, N $\hat{T}_{3/4}$ -space.

II. PRELIMINARIES

Throughout this paper, (U, $\tau_R(X)$) (or simply U) represent noise Nano Topological Spaces on which no separation axioms are assumed unless otherwise mentioned. For a set A in a NTS (U, $\tau_R(X)$), Ncl(A), Nint(A) and A^c denote the nano closure of A, the nano interior of A and the nano complement of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. [8] Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on U named as the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with in another. The pair (U, R) is called the approximation space.

Remark 2.2. [8] Let (U, R) be an approximation space and $X \subseteq U$. Then

(i)The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with respect to R and it is denoted by $L_R(X)$. That is, $L_R(X) = \bigcup \{R(x) : R(x) \subseteq X , x \in U\}$, where R(x) denotes the equivalence class determined by x.

(ii) The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X with respect to R and it is denoted by $U_R(X)$. That is, $U_R(X) = \bigcup \{R(x) : R(x) \cap X \neq \varphi, x \in U\}.$

(iii) The boundary region of X with respect to R is the set of all objects, which can be classified neither as X nor as not X with respect to R and it is denoted by $B_R(X)$. That is, $B_R(X) = U_R(X) - L_R(X)$.

Definition 2.3. [6] Let U be the universe, R be an equivalence relation on U and $\tau_R(X) = \{\phi, U, L_R(X), U_R(X), B_R(X)\}$ where $X \subseteq U$. Then $\tau_R(X)$ satisfies the following axioms.

(i) U and
$$\phi \in \tau_{R}(X)$$
.

(ii) The union of the elements of any subcollection of $\tau_R(X)$ is in $\tau_R(X)$.

(iii) The intersection of the elements of any finite subcollection of $\tau_R(X)$ is in $\tau_R(X)$.

That is, $\tau_R(X)$ forms a topology on U called as the Nano topology on U with respect to X. We call (U, $\tau_R(X)$) as the Nano topological space. The elements of $\tau_R(X)$ are called as Nano open sets (briefly N -OS).

Definition 2.4. [6] A subset A of a NTS (U, $\tau_R(X)$) is called a

(i) nano semi-open set (briefly Ns -OS) if A \subseteq Ncl(Nint(A)). (ii) nano pre-open set (briefly Np -OS) if A \subseteq Nint(Ncl(A)). (iii) nano α - open set (briefly N α -OS) if A \subseteq Nint(Ncl(Nint(A))).

(iv) nano regular open set (briefly Nr -OS) if A = Nint(Ncl(A)).

The complement of a nano semi-open (resp. nano preopen, nano α -open, nano regular open) set is called nano semi-closed (resp. nano semi-closed, nano α - closed, nanoregular closed).

Definition 2.5. [1] The N δ -interior of a subset A of U is the union of all nano regular open set of U contained in A and is denoted by $NInt_{\delta}(A)$. The subset A is called N δ -open if A = $NInt_{\delta}(A)$, i.e. a set is N δ -open if it is the union of nano regular open sets. The complement of a N δ -open is called N δ -closed. Alternatively, a set A \subseteq (U, $\tau_{R}(X)$) is called N δ -closed if $A=Ncl_{\delta}(A)$, where $NInt_{\delta}(A)= \{x \in U: NInt(Ncl(M)) \cap A \neq \phi, M \in \tau_{R}(X) \text{ and } x \in M \}$.

Definition 2.6. A subset A of a NTS (U, $\tau_R(X)$) is called

(i) nano generalized closed set (briefly Ng – CS) [3] if Ncl(A) \subseteq M and M is a N – OS in (U, $\tau_R(X))$.

(ii) nano sg – closed set (briefly Nsg -CS) [2] if Nscl(A) \subseteq M whenever A \subseteq M and M is a Ns -OS in (U, $\tau_R(X)$).

(iii) nano gs – closed set (briefly Ngs -CS) [2] if Nscl(A) \subseteq M whenever A \subseteq M and M is a N –OS in (U, $\tau_R(X)$).

(iv) nano αg – closed set (briefly N αg -CS) [10] if N $\alpha cl(A)$ \subseteq M whenever A \subseteq M and M is a N – OS in (U, $\tau_R(X)$).

(v) nano $g\alpha$ – closed set (briefly Ng α -CS) [10] if N α cl(A) \subseteq M whenever A \subseteq M and M is a N α –OS in (U, $\tau_R(X)$).

(vi) nano \hat{g} -closed set (briefly N \hat{g} -CS) [5] if Ncl(A) \subseteq M whenever A \subseteq M and M is a nano semi open set in

 $(U,\ \tau_R(X)).$

(vii) nano δg – closed set (briefly N δg -CS) [1] if Ncl_{δ}(A) \subseteq M whenever A \subseteq M and M is a nano open set in (U, $\tau_R(X)$).

The complement of a Ng-closed (resp. Nsg-closed, Ngsclosed, N α g-closed, N $g\alpha$ -closed, N \hat{g} -closed and N δ g-closed) set is called Ng- open (resp. Nsg-open, Ngs-open, N α g-open, Ng α -open, N \hat{g} - open and N δ g-open).

Theorem 2.7. [5] Every nano open set is Nĝ – open

Proof. Let A be an nano open set in U. Then A^c is nano closed. Therefore, Ncl $(A^c) = A^c \subseteq U$ whenever $A^c \subseteq U$ and U is nano semi-open. This implies A^c is N \hat{g} – closed. Hence A is N \hat{g} – open.

Definition 2.8. [7] A subset A of a space (X, τ) is called $\delta \hat{g}$ – closed if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is a \hat{g} -open set in (X, τ) .

Definition 2.9. A space (X, τ) is called a

(i) $T_{3/4}$ – space [4] if every δg - closed set in it is δ -closed.

(ii) $\hat{T}_{3/4}$ - space [7] if every $\delta \hat{g}$ -closed set in it is δ -closed.

Definition 2.10. A NTS (U, $\tau_R(X)$) is called a N $T_{1/2}$ - space [9] if every Ng - closed set in it is N-closed.

III. $N\delta \hat{g}$ - closed sets

In this section we define the following definition.

Definition 3.1. A subset A of a space $(U, \tau_R(X))$ is called N δ \hat{g} -closed if Ncl $_{\delta}(A) \subseteq V$ whenever $A \subseteq V$ and V is a N \hat{g} - open set in $(U, \tau_R(X))$.

Proposition 3.2. Every N δ -closed set is N δ \hat{g} -closed set.

Proof. Let A be an N δ -closed set and V be any N \hat{g} -open set containing A. Since A is N δ -closed, Ncl $_{\delta}(A) = A$ for every subset A of U. Therefore Ncl $_{\delta}(A) \subseteq V$ and hence A is N $\delta\hat{g}$ -closed set.

Remark 3.3. The converse of the above theorem is not true in general as shown in the following example.

Example 3.4. Let $U = \{a, b, c\}$ with $U/R = \{a, b\}$ and $X = \{a\}$ with nano topology $\tau_R(X) = \{U, \phi, \{a, b\}\}$, N δ - closed = $\{U, \phi, \{c\}, \{a, c\}, \{b, c\}\}$. Here $\{a, c\}$ is N δ g-closed but not N δ -closed in $(U, \tau_R(X))$.

Proposition 3.5. Every Nδĝ -closed set is Ng –closed.

Proof. Let A be an N δ ĝ-closed set and V be an any nano open set containing A in (U, $\tau_R(X)$). Since every nano open set is N \hat{g} - open and A is N δ \hat{g} -closed, Ncl $_{\delta}(A) \subseteq V$ for every subset A of U. Since Ncl(A) \subseteq Ncl $_{\delta}(A) \subseteq V$, Ncl(A) \subseteq V and hence A is Ng -closed.

Remark 3.6. An Ng–closed set is not Nôĝ-closed set in general as shown in the following example.

Example 3.7. Let $U = \{a, b, c\}$ with $U/R = \{\{a\}, \{c\}, \{a, b\}\}$ and $X = \{a, c\}$ with nano topology $\tau_R(X) = \{U, \phi, \{a, c\}, \{b\}, Ng$ -closed= $\{U, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. Nog – closed = $\{U, \phi, \{b\}, \{a, c\}\}$. Then the set $\{a\}$ is Ng–closed but not Nog-closed in (U, $\tau_R(X)$).

Proposition 3.8. Every Nδĝ closed set is Ngs -closed.

Proof. Let A be an N $\delta \hat{g}$ -closed and V be any nano open set containing A in (U, $\tau_R(X)$). Since every nano open set is N \hat{g} -open, Ncl $_{\delta}(A) \subseteq V$ for every subset A of U. Since Nscl(A) \subseteq Ncl $_{\delta}(A) \subseteq V$, Nscl(A) \subseteq V and hence A is Ngs- closed.

Remark 3.9. A Ngs -closed set is not Nôĝ-closed in general as shown in the following example.

Example 3.10. Let $U = \{a, b, c\}$ with $U/R = \{\{c\}, \{a, b\}\}$ and $X = \{a, c\}$ with nano topology $\tau_R(X) = \{U, \phi, \{c\}, \{a, b\}\}$. Then the set $\{b\}$ is Ngs-closed but not N δ \hat{g} -closed in $(U, \tau_R(X))$.

Proposition 3.11. Every Nδĝ -closed set is Nαg -closed.

Proof. It is true that $N\alpha cl(A) \subseteq Ncl_{\delta}(A)$ for every subset A of U .

Remark 3.12. A N α g-closed set is not N δ ĝ-closed in general as shown in the following example.

Example 3.13. Let $U = \{a, b, c\}$ with $U/R = \{\{a\}, \{b, c\}, \{b\}\}$ and $X = \{a, b\}$ with nano topology $\tau_R(X) = \{U, \varphi, \{b\}\}$

a, b}, {c}}. Then the set {a, c} is Nag -closed but not Nôg-closed in (U, $\tau_R(X)$).

Proposition 3.14. Every Nδĝ-closed set is Nδg -closed.

Proof. Let A be an N δ g-closed set and V be any nano open set containing A. Since every nano open set is Ng-open, Ncl_{δ}(A) \subseteq V, whenever A \subseteq V and V is Ng-open. Therefore Ncl_{δ}(A) \subseteq V and V is nano open. Hence A is N δ g -closed.

Remark 3.15. A N δ g-closed set is not N δ g-closed in general as shown in the following example.

Example 3.16. Let $U = \{a, b, c\}$ with $U/R = \{\{a\}, \{b, c\}\}$ and $X = \{a, c\}$ with nano topology $\tau_R(X) = \{U, \varphi, \{a\}, \{b, c\}\}$. Then the set $\{c\}$ is N\deltag-closed but not N δ g-closed in (U, $\tau_R(X)$).

Remark 3.17. The class of N δ g-closed sets is properly placed between the classes of N δ -closed and N δ g -closed sets.

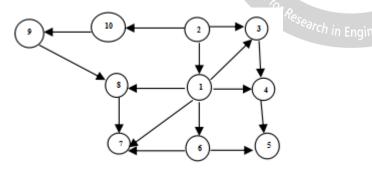
Remark 3.18. The following examples show that $N\delta \hat{g}$ - closeness is independent from N \hat{g} -closeness, Nsg-closeness and Ng α -closeness.

Example 3.19. Let $U = \{a, b, c\}$ with $U/R = \{\{a\}, \{b, c\}\}$ and $X = \{a\}$, with nano topology $\tau_R(X) = \{U, \phi, \{a\}\}$. Then the set $\{a, b\}$ is Nôĝ-closed but neither Nĝ-closed nor Nsg-closed and the set $\{a, c\}$ is Nôĝ-closed but not Ng α -closed.

Also the another example, Let $U = \{a, b, c\}$ with $U/R = \{\{a, b\}, \{a\}, \{c\}\}$ and $X = \{a, c\}$ with nano topology

 $\tau_R(X) = \{U, \phi, \{a, c\}, \{b\}\}.$ Then the set $\{c\}$ is Ng-closed, Nsg-closed, Nga-closed but not N $\delta \hat{g}$ -closed.

Remark 3.20. The following diagram shows the relationships of N δ ĝ –closed sets with other known existing sets. A \rightarrow B represents A implies B but not conversely.



1. N $\delta \hat{g}$ -closed, 2. N δ -closed, 3. N δg -closed, 4. Nsg-closed,

5. Ngs -closed, 6. N \hat{g} -closed, 7. N α g-closed, 8. Ng α -closed, 9. N α -closed, 10. N-closed.

IV. CHARACTERISATION

Theorem 4.1. The finite union of Nôĝ-closed sets is Nôĝ-closed.

Proof. Let {Ai/i =1, 2, ...n} be a finite class of N δ ĝ-closed subsets of a space (U, $\tau_R(X)$). Then for each N \hat{g} -open set Vi in U containing Ai. Ncl $_{\delta}(Ai) \subseteq Vi$, i \in {1, 2, ..., n}. Hence \cup iAi $\subseteq \cup$ iVi = W. Since arbitrary union of N \hat{g} -open sets in (U,

 $\begin{array}{l} \tau_R(X)) \text{ is also N}\hat{g}\text{-open set in } (U, \ \tau R(X)) \ , \ W \text{ is N}\hat{g}\text{-open } \\ \text{in } (U, \ \ \tau_R(X)). \quad Also \quad \cup iNcl_{\delta}(Ai) = Ncl_{\delta}(\cup iAi) \subseteq W. \\ \text{Therefore } \cup iAi \text{ is N}\delta\hat{g}\text{-closed in } (U, \ \tau_R(X)) \ . \Box \end{array}$

Theorem 4.2. The arbitrary intersection of $N\delta \hat{g}$ -closed sets is $N\delta \hat{g}$ - closed.

Proof. Let {Ai/i =1, 2,....} be a arbitrary class of Nôgclosed subsets of a space (U, $\tau_R(X)$). Then for each Ng open set Vi in U containing Ai, Ncl_{δ}(Ai) \subseteq Vi, i \in {1, 2, ...,}. Hence \cap iAi $\subseteq \cap$ iVi = W. Since arbitrary intersection of Ng- open sets in (U, $\tau_R(X)$) is also Ngopen set in (U, $\tau_R(X)$), W is Ng-open in(U, $\tau_R(X)$). Also \cap iNcl_{δ}(Ai) =Ncl_{δ} (\cap iAi) \subseteq W. Therefore \cap iAi is Nôgclosed in (U, $\tau_R(X)$). \Box

 $\begin{array}{l} \mbox{Proposition 4.3. Let } A \mbox{ be a } N\delta \hat{g} \mbox{ -closed set of } (U, \tau_R(X)). \\ Then \ Ncl_{\delta}(A) \mbox{-} A \mbox{ does not contain a non-empty } N \hat{g} \mbox{ closed set.} \end{array}$

Proof. Suppose that A is $N\delta\hat{g}$ -closed, let F be a $N\hat{g}$ -closed set contained in $Ncl_{\delta}(A)$ -A. Now F^c is $N\hat{g}$ -open set of $(U, \tau_R(X))$ such that $A \subseteq F^c$. Since A is $N\delta\hat{g}$ -closed set of $(U, \tau_R(X))$, then $Ncl_{\delta}(A) \subseteq F^c$. Thus $F \subseteq (Ncl_{\delta}(A))^c$. Also $F \subseteq Ncl_{\delta}(A)$ -A. Therefore $F \subseteq (Ncl_{\delta}(A))^c \cap (Ncl_{\delta}(A)) = \phi$. Hence $F = \phi$.

Proposition 4.4. If A is N \hat{g} -open and N $\delta\hat{g}$ -closed subsets of (U, $\tau_R(X)$), then A is an N δ -closed subset of (U, $\tau_R(X)$).

Proof. Since A is N \hat{g} -open and N $\hat{\delta}\hat{g}$ -closed, Ncl $_{\delta}(A) \subseteq A$. Hence A is N $\hat{\delta}$ -closed. \Box

Proposition 4.5. If A is a Nôĝ-closed set in a space (U, $\tau_R(X)$) and $A \subseteq B \subseteq Ncl_{\delta}(A)$, then B is also a Nôĝ-closed set.

Proof. Let V be a N \hat{g} – open set of $(U, \tau_R(X))$ such that $B \subseteq V$. Then $A \subseteq V$. Since A is $N\delta \hat{g}$ – closed set, $Ncl_{\delta}(A) \subseteq V$. Also since $B \subseteq Ncl_{\delta}(A)$, $Ncl_{\delta}(B) \subseteq Ncl_{\delta}(A)$ ($Ncl_{\delta}(A)$) = $Ncl_{\delta}(A)$. Hence $Ncl_{\delta}(B) \subseteq V$. Therefore B is also a $N\delta \hat{g}$ -closed set.

Theorem 4.6.Let A be N δ g-closed of (U, $\tau_R(X)$). Then A is N δ -closed iff Ncl $_{\delta}(A)$ –A is N \hat{g} -closed.

Proof. Necessity: Let A be a N δ -closed subset of U. Then Ncl $_{\delta}(A)=A$ and so Ncl $_{\delta}(A)-A=\varphi$ which is N \hat{g} -closed.

Sufficiency: Since A is N δ g-closed, by proposition 4.3, Ncl_{δ}(A)-A does not contain a non-empty Ng-closed set. But Ncl_{δ}(A)-A= ϕ . That is Ncl_{δ}(A)=A. Hence A is N δ -closed. \Box

V. APPLICATIONS

In this section we define the following definition.

Definition 5.1.A space (U, $\tau_R(X)$) is called a

(i) $NT_{3/4}$ -space if every N\deltag-closed set in it is N δ -closed.

(ii) $N\hat{T}_{3/4}$ -space if every Nôĝ-closed set in it is an Nô - closed.

Theorem 5.2. For a nano topological space (U, $\tau_R(X)$), the following conditions are equivalent.

(i) (U, τ_R (X)) is a NT_{3/4}-space.

(ii) Every singleton $\{x\}$ is either Ng-closed or N δ –open.

Proof. (i)=>(ii) Let $x \in U$. Suppose $\{x\}$ is not a N \hat{g} -closed set of (U, $\tau_R(X)$). Then U- $\{x\}$ is not a N \hat{g} -open set. Thus U- $\{x\}$ is an N $\hat{\delta}g$ -closed set of (U, $\tau_R(X)$). Since (U, $\tau_R(X)$) is N $\hat{T}_{3/4}$ -space, U- $\{x\}$ is an N δ -closed set of (U, $\tau_R(X)$), i.e . $\{x\}$ is N δ -open set of (U, $\tau_R(X)$).

(ii) \Rightarrow (i) Let A be an Nôg-closed set of $(U, \tau_R(X))$. Let $x \in Ncl_{\delta}(A)$. By (ii), $\{x\}$ is either Nĝ -closed or Nô -open.

Case(i): Let $\{x\}$ be Ng-closed. If we assume that $x \notin A$, then

we would have $x \in Ncl_{\delta}(A)$ -A, which cannot happen according to proposition 4.3. Hence $x \in A$.

case(ii): Let $\{x\}$ be N δ -open. Since $x \in Ncl_{\delta}(A)$, then $\{x\} \cap A \neq \phi$. This shows that $x \in A$.

So in both cases we have $Ncl_{\delta}(A) \subseteq A$. Trivially $A \subseteq Ncl_{\delta}(A)$. Therefore $A = Ncl_{\delta}(A)$ or equivalently A is $N\delta$ -closed. Hence $(U, \tau_R(X))$ is a $N\hat{T}_{3/4}$ - space.

Theorem 5.3. Every NT_{3/4} -space is a $N\hat{T}_{3/4}$ -space.

Proof. The proof is straight forward since every $N\delta \hat{g}$ -closed set is $N\delta g$ -closed set. \Box

Remark 5.4. The converse of the above theorem is not true in general as it can be seen from the following example.

Example 5.5. Let U={a, b, c} with U/R={{a}, {b, c}} and X = {a, c} with nano topology $\tau_R(X) = \{U, \phi, \{a\}, \{b, c\}\}$

 $\{b,c\}\}.~(U,\tau_R(X))$ is a NT3/4 -space but not a NT3/4 -space.

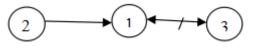
Remark 5.6. $N\hat{T}_{3/4}$ -space and $NT_{1/2}$ -space are independent of one another as the following example show.

Example 5.7. Let U={a, b, c} with U/R = {{a}, {b, c}} and X={a, c} with nano topology $\tau_R(X) = \{U, \phi, \{a\}, \{b, c\}\}$. (U, $\tau_R(X)$) is a N $\hat{T}_{3/4}$ -space but is not a NT_{1/2}-space.

Example 5.8. Let U={a, b, c} with U/R={{a, c}, {b}, {a}} and X = {a} with nano topology $\tau_R(X) = \{U, \phi, \{a\}, \{a, c\}, \{c\}\}$. (U, $\tau_R(X)$) is $NT_{1/2}$ -space but not a $N\hat{T}_{3/4}$ -space.

Remark 5.9. The following diagram shows the relationships

 $N\widehat{T}_{3/4}$ -space with other known existing spaces. A \rightarrow B and A \leftrightarrow B represent A implies B but not conversely and A & B are independent respectively.



1. $N\hat{T}_{3/4}$ -space, 2. $NT_{3/4}$ -space, 3. $NT_{1/2}$ -space.

VI. CONCLUSION

In this paper we introduced $N\delta \hat{g}$ - closed sets, properties and characterisation. Applying this sets to introduce an new space namely $NT_{3/4}$ -space and $N\hat{T}_{3/4}$ -space. Further using this sets we introduce $N\delta \hat{g}$ -continuous functions and $N\delta \hat{g}$ - homeomorphism. Also this type of $N\delta \hat{g}$ -continuous functions has a wide variety of applications in real life.

References

[1] M. Y. Bakeir, "Nano delta generalized closed sets via nano topology", 17th International Conference on Differential Geometry and Application: 1CDGA 2015, 2016.

[2] K. Bhuvaneswari. and A. Ezhilarsi, "On nano semigeneralized and nano generalized, semi closed sets in nano topological spaces", International Journal of Mathematics and Computer Applications Research, 4(3), pp: 117-124, 2014.

[3] K. Bhuvaneswari. and K. Mythili Gnanapriya, "Nano generalized closed sets in nano topological spaces", International Journal of Scientific and Research Publication, 4(5), pp: 1-3, 2014.

[4] J. Dontchey and M. Ganster, "On δ -generalized closed sets and T_{3/4} -spaces", Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17, pp: 15-31, 1996.

[5] R. Lalitha and Dr. A. Francina shalini, "On nano \hat{g} - closed and open in nano topological spaces", International Journal of Applied research. 3(5): 368-371, 2017.

[6] M. Lellis Thivagar and Carmel Richard, "On nano forms of weakly open sets", International Journal of Mathematics and Statistics Invention, 1(1), pp: 31-37, 2013.

[7] M. Lellis Thivagar and B. Meera Devi., " $\delta \hat{g}$ - closed sets in Topological spaces", Gen. Math. Notes, vol. 1, No. 2, pp: 17-25, 2010.

[8] Z. Pawlak, "Rough Sets", International Journal of Information and Computer Science, 11, pp: 341-356, 1982.

[9] Qays Hatem Imran, "On Nano Generalized Semi Generalized Closed Sets", Iraqi Journal of Science, Vol. 57, No. 2C, pp: 1521-1527, 2016.

[10] R. Thanga Nachiyar and K. Bhuvaneswari., "On nano generalized α - closed sets and nano α -generalized closed sets in nano topological spaces", International Journal of Engineering Trends and Technology, 13(6), pp: 257-260, 2014.