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Abstract - The aim of this paper is to evaluate  generalized Leguerre polynomial with Wright's generalized 

hypergeometric function defined by Dotsenko [1, 2]. The author has given two applications of generalized Leguerre 

polynomial with Wright's generalized hypergeometric function by connecting this, first with the Weyl integral and 

second is with Riemann-Liouville type of fractional derivative.The results obtained are basic in nature and are likely to 

find useful applications. 
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I. INTRODUCTION  

Generalized Wright’s function  2 1 , ; , ; ;R a b c w z

defined by Dotsenko [1, 2] hs been denoted as 
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Provided Re( ) 0, Re( ) 0, Re 0
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Virchenko et. al. [6] defined the Wright type 

hypergeometric function by taking 0
w

k
  in (1.1) as 
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                                                                          (1.2) 

If 1  , then (1.2) reduces to a Gauss’s hypergeometric 

function. 

The generalized Leguerre function is defined in the form: 
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II. GENERALIZED LEGUERRE TRANSFORM OF 

WRIGHT’S GENERALIZED HYPERGEOMETRIC 

FUNCTION 

If , , , , ;Re( ) 0,Re( ) 0,a b c p C a b   
 

      Re( ) 0,Re( ) 0c   and 
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N
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 , then 

 
2 1

0

( ) ( , ; , ; ; )x

nx e L x R a b c w px dx  





 

     =
 1 ( ,1), , , ,1

3 1
,

(1 )( )2

( ) ( ) !

w
a b

n

w
c

c
p

a b n

  







   
 

 
 
 

 
 

   
 

  

     2 1[ , 1;1 ;1]R n k                 (2.1) 

Proof: 
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By using definition of generalized hypergeometric 

function 2 1( , ; ; )F a b c x and Wright’s generalized 

hypergeometric function 2 1( , ; , ; ; )R a b c w x , we arrive 

at the desired result. 

III. APPLICATIONS 

The Weyl integral ([3], p.91) of ( )f x of order  , 

denoted by xW


 , is defined by 

     ( ) ( ) ( )x xW f x I f x I f x  
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Where ,Re( ) 0C   . 

The Weyl Integral of Generalized Leguerre Transform 

in Association with Wright’s Generalized 

Hypergeometric Function 

The main integral (2.1) can be rewritten as the following 

Weyl integral formula: 
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(3.2) 

Provided , , , , ;Re( ) 0,Re( ) 0,a b c p C a b   
    

Re( ) 0,Re( ) 0c   and 
w

N
k
 , 

 

Fractional Derivatives 

Following Miller ([4],p.82), let g A (Where A is a 

class of good functions). Then 
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r being a positive integer such that r q . 

Fractional Derivatives of Generalized Leguerre 

Transform in Association with Wright’s Generalized 

Hypergeometric Function 

The main integral (2.1) can be rewritten as the following 

Riemann-Liouville fractional derivative formula: 
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(3.5) 

It is being assumed that the conditions given in (2.1) and 

(3.3) are satisfied. 
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