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Abstract - The aim of this paper is to evaluate generalized Leguerre polynomial with Wright's generalized
hypergeometric function defined by Dotsenko [1, 2]. The author has given two applications of generalized Leguerre
polynomial with Wright's generalized hypergeometric function by connecting this, first with the Weyl integral and
second is with Riemann-Liouville type of fractional derivative.The results obtained are basic in nature and are likely to

find useful applications.
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.  INTRODUCTION (1.2)

Generalized Wright’s function R1 (a’ b;c, W, 1 Z) If =1, then (1.2) reduces to a Gauss’s hypergeometric

) function.
defined by Dotsenko [1, 2] hs been denoted as
The generalized Leguerre function is defined in the form:
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Virchenko et. al. [6] defined the Wright type _ r(c)2’™* (1+ a), w,| p (a'l)'[b'%]’(”&'l)
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hypergeometric function by taking ? =7>0in(1.1) as
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By using definition of generalized hypergeometric

function  ,F (a,b;c;X)and  Wright's  generalized

hypergeometric function , R, (a,b;c, w; z; X), we arrive
at the desired result.

1. APPLICATIONS

The Weyl integral ([3], p.91) of f (X) of order & ,
denoted by W.”, is defined by

(W) =(,12F) 0 =(17F) (%)

"I )j(x £)“ L f (t)dt, —o0, X <00 (3.1)

Where ¢ € C,Re(a) >0.

The Weyl Integral of Generalized Leguerre Transform
in Association with Wright’s Generalized
Hypergeometric Function

The main integral (2.1) can be rewritten as the following
Weyl integral formula:
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(3.2)
Provided a,b,c, p,y € C;Re(a) > 0,Re(b) >0,

Re(c) > 0,Re(5) > Oand % eN.

Fractional Derivatives

Following Miller ([4],p.82), let g € A (Where Aisa
class of good functions). Then
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szig(z)— (u—z)"*g(u)du, forq<0
F( )I
(3.3)
Forq=0

q dr q-r
.D19(2)=—(.DI"9(2) (34)

I being a positive integer such that r > (.

Fractional Derivatives of Generalized Leguerre
Transform in Association with Wright’s Generalized
Hypergeometric Function

The main integral (2.1) can be rewritten as the following
Riemann-Liouville fractional derivative formula:

007 (67L5 (%), R (& bc, w; 41; px°))
((1 ”;)Txy e L% (x), R, (a,b;c, w; 1; px”)dx
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u

,R[-N,y+k+2;1+ ;1]

(3.5)

It is being assumed that the conditions given in (2.1) and
(3.3) are satisfied.
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