
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-03, June 2019

466 | IJREAMV05I0351159 DOI : 10.35291/2454-9150.2019.0247 © 2019, IJREAM All Rights Reserved.

Hardware and Software Co-simulation Environment

with Integrated Graphical User Interface
1
Ojaswi Zope,

2
Charudatta Kulkarni

1
Student,

2
Associate Professor, Dr. Vishwanath Karad MIT World Peace University, Pune, India,

1
ojaswizope22@gmail.com,

2
cvk1971@gmail.com

Abstract : - Co-simulation of hardware and software together provides a methodology for ASIC verification. ASIC

based devices will have a part of software running on hardware to manipulate it. So, co-simulation plays important role

in good design tradeoffs. Therefore, this methodology can be used to verify hardware and software functionality

precisely after prototype of hardware is on tap. In this paper, a flow is described to add a graphical user interface in co-

simulation environment. A graphical user interface is a display in which user can see the different parameters of device

under test, depending upon how it is integrated and can either manipulate it. Graphical user interface provides easy

view to the registers of hardware while software is running on hardware.

Keywords — Co-simulation, DUT, GUI, Interface, models, Verification, VPI.

I. INTRODUCTION

The Complexity of designing hardware and software is

increasing due to recent demands in ASIC [1]. Debugging

the product after implementation becomes difficult.

Therefore, these types of complexity demands some new

ways of simulation and early stages of debugging before

actual product implementation [3]. Co-simulation plays

crucial role in development and debugging ASIC. Co-

simulation environment includes a hardware running on an

emulator and a simulator for software simulation.

Nowadays, it is generally accepted that hardware

verification languages should be assembled with new

software techniques [5]. The inference taken out is that, the

verification of system is of utmost complexity and time-

exhausting exercise for the overall design process.

Approach for verification in which another language is used

as a verification method requires co-simulation. This

graphical user interface should contain parameters

necessary to monitor at the runtime or to manipulate it. It

provides an efficient and an accelerated way for

verification. In this paper, a flow is described as to how to

add graphical user interface in the running environment and

about how it gets compiled in environment.

II. PREVIOUS WORK

The proposed techniques, for hardware and software co-

simulation has been tradeoff between number of factors and

emerging requirement for the development of ASIC. Many

environments are designed for improving the speed of co-

simulation. In Paper by Rowson [3], he referred to the

techniques available for co-simulation with an importance

towards the strengths and weaknesses of each hardware and

software. He mentioned about different techniques available

with and without using models.

The techniques with software models are nano-second

accurate timing model, cycle accurate and instruction set

accurate. The fastest software model emulates the

instruction set accurately, which verifies all the register

values correctly and at correct time stamp. Though the

emulation speed of instruction level model is fast,

debugging using these models is difficult.

The techniques requiring no software models as

mentioned by Rowson are synchronized handshake

technique, virtual hardware technique, bus functional

technique, hardware modeler technique and emulation. The

bus functional models technique creates a test-bench in

which it verifies weather the interfaces are correct.

Hardware modelers use an absolute model and most specific

models from the functionality perspective. Emulation

provides the nearest possible hardware prototype to be

available and gives the clarity of internals similar to the

actual hardware.

In paper by Vojin [2], they presented methodology for

compiled co-simulation. This technique is the fastest and

precise instruction set simulation. Simulator attends to give

support of standard debugger (C level debugger which is

gdb) in environment. Using standard debugger in for

debugging of hardware and software gives the biggest

advantage. The simulator translates every instruction

exactly to one or more host instruction.

III. HARDWARE AND SOFTWARE COMPONENTS

The components of hardware and software are developed

simultaneously. System includes hardware emulator and

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-03, June 2019

467 | IJREAMV05I0351159 DOI : 10.35291/2454-9150.2019.0247 © 2019, IJREAM All Rights Reserved.

software simulator, only synthesizable part runs on emulator

and non- synthesizable part runs on software simulator.

Device under test behaves as an exact hardware. It would

contain exact register values setup from software running on

it. While elaboration of the design, hardware and software

components are separated proper connections between

device under test and test-bench are to be made.

GUI (Graphical User Interface) gets compiled and runs in

software simulator. GUI is always specific and to be

designed according to the verification model to be used as

required for device under test. It contains parameters which

are to be observed from the device under test. GUI is

designed by using GTK toolkit which is open source

platform.

During co-simulation, at run-time a GUI is invoked. GUI

can be responsible for monitoring output values from

hardware or setting values in hardware. Interface between

GUI and hardware is through socket channel. Socket is a

way of connecting two nodes on a channel to communicate

with each other. One socket (node) listens on a particular

port at an IP, while other socket reaches out to the other to

form a connection. Synthesizable part which will go in

hardware is pure VHDL/Verilog code [6]. Non-

synthesizable part which includes test-bench, GUI

executable, Verilog Procedural Interface (VPI) functions

and socket nodes will go in software simulator. Verilog

procedural interface is the method in which one can add

functionality to the HDL using C-language. These functions

are linked to the simulator so that they can be identified

during the compilation and elaboration. VPI function

definition and GUI executable forms a dynamic library (.so)

file.

Fig. 1 Communication between hardware and software

IV. METHODOLOGY

Approach is based on co-simulating hardware and software

with GUI. Where, GUI plays a part for monitoring and

setting values of hardware. VPI functions which are linked

to the simulator and are invoked as C functions to which

inter-process communication utilities are linked. Fig. 2

shows the components of co-simulation environment.

Hardware may not be on host system, it runs on emulator.

Simulation runs on host system. As soon as software is

dumped on hardware, it tends to change the hardware

register parameters and registers manipulates the required

functionality. As per changes in registers of hardware,

required VPI functions are invoked and those values are

manipulated on GUI.

There are two socket nodes at two different processes

communicating with each other. One socket node is at GUI

side forming one process and other socket node is at

simulation side (Simulator Process) forming second process

to form a socket channel that is inter-process

communication. Information between hardware and GUI is

exchanged via socket channel. The read and recv functions

are used to send and receive data through socket channel.

Fig. 2. Components of Co-simulation Environment

A. Input to the hardware from GUI.

Any input logic value entered in input box is a key press

event for GUI. Data can be entered through the GUI at any

human speed, data forms a queue. Then, data is send

through the socket channel to the VPI function. According

to the models, VPI function writes values in hardware. VPI

function using its utility access routines can write logic

values on ports of hardware.

B. Output to the hardware from GUI.

Any output logic values coming up on hardware port is

monitored. As soon as the change is occurred, VPI function

retrieves that logic value using access routine and sends

through the socket channel on GUI. While sending data on

GUI it is necessary to encode data in a format so that it gets

identified by the GUI on where to put. Monitoring hardware

values at simulation time would decrease verification time.

V. CONCLUSION

This Methodology with included GUI will help to decrease

the verification time and various design trade-offs. GUI

allows one to monitor port values or register values at run

time on GUI and also to set value on ports at run time.

Communication between two processes through socket

channel happens at no-time. Co-simulation will turn out to

be a fast process altogether when device under test

parameter values are monitored using GUI.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-03, June 2019

468 | IJREAMV05I0351159 DOI : 10.35291/2454-9150.2019.0247 © 2019, IJREAM All Rights Reserved.

REFERENCES

[1] K. K. Y. S. T. A. W. S. K. C. S. H. Yongjoo Kim, "An

Integrated Hardware-Software Cosimulation

Environment for Heterogeneous Systems Prototyping,"

in Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with

EDA Technofair, Chiba, Japan, 1995.

[2] H. M. V. Zivojnovic, "Compiled HW/SW co-

simulation," in 33rd Design Automation Conference

Proceedings, Las Vegas, NV, USA, 2002.

[3] J. Rowson, "Hardware/Software Co-Simulation," San

Diego, CA, USA, 2006.

[4] M. S. G DeMicheli, Hardware/software Co-design,

2013.

[5] R. K. S. S. G. T. David Becker, " An Engineering

Environment for Hardware/Software Co-Simulation," in

design automation conference, 1992.

[6] E. F. L. L. Bassam Tabbara, "Fast Hardware-Software

Co-simulation Using VHDL Models," in Design,

Automation and Test in Europe Conference and

Exhibition Research gate, 1999.

[7] M. B. R. C. C. C. A. J. M. L. D. T. O. Y. A. Ghosh, "A

Hardware-Software Co-simulator for Embedded System

Design and Debugging," in Design Automation

Conference, 1995.

