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Abstract:  The present study deals with the effects of heat transfer in the boundary layer unsteady flow of a viscous 

incompressible fluid through a permeable (porous) medium adjacent to a stretching sheet. In addition, the investigation 

of the heat effects in the consideration of radiations has been concluded. The governing time dependent boundary layer 

flow and thermal energy equations are reduced to a set of ordinary differential equations using similarity 

transformations. In order to obtain the results, these equations are elucidated numerically under the velocity slip and 

temperature jump conditions at the surface of the sheet. Effects of various pertinent parameters on the unsteady fluid 

flow and temperature fields are examined and analyzed graphically. 
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I. INTRODUCTION 

The effort to study the transfer of heat and its flow over a 

stretching surface has significant importance because of its 

wide applications in various engineering and industrial 

manufacturing processes, like, in polymer industries, 

extrusion of plastic sheets, metal spinning, drawing films 

and fibers, glass blowing and paper production. In such 

processes, the quality of final products depends on the rate 

of cooling and skin-friction at the stretching sheet. Since 

the pioneering work by [13] of presenting an absolute 

solution analytically for the steady 2-dimensional flow of a 

viscous fluid over a stretching sheet, many researchers 

have considered various other aspects of this problem and 

obtained analytical and numerical solutions, e.g. [20], [4], 

[21], [11], [17], [2], [3], [23], [19], and [6]. 

The above researchers examined steady flow and heat 

transfer in a semi-infinite fluid layer over a stretching 

surface, however, in many cases of practical interest the 

flow and temperature field can be unsteady.  For example, 

a sudden stretching or impulsively stretching of the sheet 

leads to time dependent flow field. Such unsteady flow and 

heat transfer over a stretching sheet have been investigated 

by a number of authors, e.g. [27], [18], [34], [24],[33] 

,[35], [1], [23]. 

 In high temperature processes, the effect of radiation is 

also important. These radiative effects have significant 

applications in physics and space Technology. Many 

research works have been reported concerning radiation 

impacts on the boundary layer fluid flow over a stretching 

sheet. See for example,[28] , [31], [25], [16],[30] ,[26] , 

and [12]. 

 In view of industrial applications, it is required to 

analysed the steady and unsteady flow and transfer of heat 

of the fluids through permeable (porous) medium adjacent 

to stretching surfaces. [14] investigated flow and heat 

transfer through a porous medium adjacent to a stretching 

sheet with internal heat generation/absorption. [15] also 

studied such flow of an electrically conducting second-

grade fluid with chemically reactive species. [8] presented 

numerical and approximate solution of flow in the 

presence of a magnetic field through the permeable 

(porous) medium adjacent to a stretching sheet. [9] 

analyzed heat transfer and entropy generation in such flow 

through porous medium. [10] examined slip effects on 

flow and heat transfer of a second-grade fluid through 

permeable (porous) medium adjacent to a stretching sheet 

with power- law surface temperature/heat flux. [7] 

analyzed stagnation-point flow of a polar fluid adjacent to 

a stretching sheet embedded in a porous medium.  

In the present investigation, a viscous incompressible fluid 

unsteady flow through a permeable (porous) medium over 

a stretching sheet is considered. Heat transfer effects on 

such unsteady flow are investigated in the presence of 

radiation. Using similarity transformations and slip 

conditions at the surface of the sheet, the governing 

equations for velocity and temperature fields are solved 

numerically, and effects of various physical parameters on 

the velocity profiles, temperature profiles coefficient of 

skin-friction and rate of heat transfer are examined and 

discussed. 
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II. PROBLEM FORMULATION  

A viscous fluid unsteady flow in a permeable (porous) 

medium over a stretching sheet is considered. The sheet 

coincides with the plane 0y , and the flow in permeable 

(porous) medium is considered above the sheet  0y  . 

The axis of x  is taken along the stretching sheet and the 

axis of y  is taken normal to it in the outward direction 

into the fluid. The sheet moves in its own plane, with a 

velocity, 
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where b   and   , are positive constants and measures 

stretching rate and unsteadiness  respectively.  

The temperature distribution is defined as: 
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where, 0T  , a reference temperature; T , the ambient 

temperature; and   , the kinematic viscosity. Here,  

 TtxT ),(  . 

The governing equations, for unsteady flow through a 

permeable (porous) medium and temperature distribution, 

under the boundary layer approximations, are given by: 
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The boundary conditions for the present problem are given 

by: 

at  
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where, u  and v  are the velocity components in x and y  

direction respectively; T ,the temperature ; 0k , the 

permeability of the porous medium;  ,the density; pC , 

the specific heat at the constant pressure; k ,the thermal 

conductivity ; 1L   and 2L ,  the velocity and temperature 

slip constants;   /  , the viscosity ratio;
 
 ,  the 

viscosity of the clear fluid;
 
  the effective viscosity of 

the fluid in porous medium; and  /  , the kinematic 

viscosity. 

In this research, an optically thick fluid is considered, 

which is absorbing , emitting, gray but not scattering , in a 

highly porous medium domain . In particular, the 

Rosseland radiation flux model is employed in the analysis 

following [5] which gives excellent results for optically 

thick fluids. As suggest in this model, the radiative heat 

transfer takes the following form: 
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where, 
* ,the Stefan–Boltzman constant; 

*k , the mean 

absorption coefficient for thermal radiation ;and the 

temperature function  
4T  in (2.5.7) , following [30], can 

be expressed as a linear function of T , by expanding  

4T   in a Taylor Series about T   and neglecting higher 

order term as, 

434 34   TTTT
 

Let us introduce the following similarity transformations: 
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where,   ytb 2/12/1
)1(/     

Using above similarity transformations (8), the partial 

differential equations (3) to (5) are reduced to, the 

following dimensionless system of ordinary differential 

equations: 

0)(
2

2 












K

f
fffffSf


   (9)       

0
2

1

2

3
2Pr

3

43

























 
  Sff

R

R
   (10)           



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-05,  Issue-04, July 2019 

146 | IJREAMV05I0452048                          DOI : 10.35291/2454-9150.2019.0309                     © 2019, IJREAM All Rights Reserved. 

 

The corresponding boundary conditions are reduced to 

At 
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The skin friction coefficient at the stretching sheet is given 

by  
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where 


 xU
Rex  , is the local Reynolds number. 

The non-dimensional rate of heat transfer at the stretching 

sheet is given by 
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III. NUMERICAL SOLUTION 

For the numerical solution for this problem, governed by 

the set of non-linear ordinary differential equations (9) and 

(10) subjected to the boundary conditions (11) and (12), 

new variables are defined as follows: 
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Using above variables (15), the equations (9) and (10) are 

reduced into an equivalent system of five first order 

differential equations as follows: 
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The corresponding boundary conditions for this problem 

are reduced to the following: 

at  0  ,0)0(1 x ),0(1)0( 32 xx     

      ),0(1)0( 54 xx   
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As explained by [32], it is convenient in solving an ODE 

system numerically, by describing the problem in terms of 

a system of first-order differential equations. The 

numerical solution of the problem governed by the system 

of equations (16) - (17) is obtained by using MATLAB 

BVP solver bvp4c. For numerical solution the asymptotic 

boundary conditions of the problem described in (12) at 

  are replaced by those conditions at a large but 

finite value of where no considerable variation in 

velocity, temperature etc. occur, as is usually the standard 

practice, in the boundary layer analysis. The computational 

procedure is repeated until; we get the results up to the 

desired degree of accuracy, 10
−6

.    

IV.  DISCUSSIONS 

Radiation effects on the unsteady flow via a permeable 

(porous) medium next to a stretching sheet have been 

investigated with, slip-velocity and temperature, boundary 

conditions. 

The variations of velocity profiles )(' f  with  are 

plotted in figures 1-3, for various different values of the 

parameters such as, the unsteadiness parameter )(S , the 

permeability parameter )(K , and the velocity slip 

parameter )(  . It is found that the velocity component 

)(' f   for any fixed      decreases with the increase in 

the value of the parameter )(S  . It is seen that increasing 

permeability )(K of the permeable (porous) medium, 

causes flow faster in the boundary layer adjacent to the 

stretching sheet, while, the velocity slip parameter   causes 

flow slower for all values of  , in the boundary layer .In 

fact, with the increase in  value )( , the magnitude of slip 

at the sheet increases, because as )(  increases  the 

resistance between the fluid and the stretching surface 
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decreases. Figure 4, shows the variations of skin -friction 

in terms of  )0(f   at   the stretching sheet for various 

values of the physical parameters. It is noticed that the 

unsteadiness parameter causes an increase in the 

magnitude of skin-friction )0(f  , while the 

permeability )(K of the permeable (porous) medium 

reduces it. It is observed that the scale of the skin-

friction )0(f   decreases as the value of slip parameter 

)( increases, because larger velocity slip lowers the 

friction at the sheet.     

 Figure 5 to 8 show the variations of temperature 

distribution for various different values of the pertinent 

parameters. Figure 5 illustrates the effect of the 

unsteadiness parameter )(S  and it is seen that its effect is 

to decrease temperature in the boundary layer. Figure 6, 

depicts the effect of Prandtl number (Pr)   on the 

temperature in the boundary layer. As expected, the 

temperature in the boundary layer decreases with the 

increase in (Pr) value because the thermal conduction in 

the boundary layer is lowered by the increase in (Pr)  

value, which results in lowering the molecular movement 

of the fluid elements and thus causing a temperature fall. 

Figure 7, illustrates that as we increase the value of the 

radiation parameter )(R or the temperature slip parameter 

)( , the temperature in the boundary layer decreases at 

all points, while the velocity slip )( causes an increase in 

temperature in the flow domain. Figure 8 depicts the 

effects of the permeability parameter )(K on the 

temperature in the flow domain. It is observed that 

temperature decreases in the flow domain by increasing 

the value of )(K . 

 Table 1 illustrates the variations of the non-dimensional 

rate of heat transfer )0('  at the stretching sheet. It is 

observed that the effect of unsteadiness parameter )(S , or 

the Prandtl number (Pr), or the viscosity ratio 

parameter )( , or the radiation parameter )(R , or the 

permeability parameter )(K , is to increase the rate of heat 

transfer at the stretching sheet. However, it is seen that the 

effect of the velocity slip parameter )( , or the 

temperature slip parameter )( , is to reduce the rate of 

heat transfer at the sheet. 

V. CONCLUSIONS 

In conclusion, this study presents numerical solutions of 

the unsteady boundary layer flow and heat transfer through 

a porous medium adjacent to a stretching sheet in the 

presence of the radiation. The numerical solutions depict 

the following main results of the study: 

It is found that the permeability )(K  of the porous matrix 

enhances the flow and the rate of the heat transfer at the 

sheet, while it reduces the skin-friction at the sheet and the 

temperature in the boundary layer.  

The effect of the unsteadiness parameter )(S is to decrease 

the flow and the temperature in the boundary layer, while 

it enhances the skin-friction and the rate of the heat 

transfer at the sheet.   

It is seen that the effect of the velocity slip )(  is to 

decrease the flow, the skin-friction and the rate of the heat 

transfer at the sheet, while it enhances the temperature in 

the boundary layer.  

The heat transfer rate at the stretching sheet enhances with 

increasing Pr , causing therefore suppress in the thermal 

boundary layer thickness.  

It is seen that the temperature slip )( , or the radiation 

parameter )(R ,  decreases the temperature in the boundary 

layer, however R increases the rate of the heat transfer at 

the sheet, while   decreases it.   

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



f' 
( 

)

S=0,0.5,1,1.5

 

Figure.1 Velocity profiles )(' f versus   for 

1.0,1,1   K    

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



f'
 (


)

K=.01,0.1,1,10

 Figure2.  Velocity profiles )(' f versus   

fo 1.0,5.0,1   S  

 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-05,  Issue-04, July 2019 

148 | IJREAMV05I0452048                          DOI : 10.35291/2454-9150.2019.0309                     © 2019, IJREAM All Rights Reserved. 

 

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



f'
 (


)

=0,0.1,0.3,0.5,1

  

Figure. 3    Velocity profiles )(' f versus   for 

1,5.0,1  KS    

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

S

-f
''
(0

)

K=0.1,=0

K=0.1,=0.1

K=0.1,=0.2

K=0.1,=0.3

K=1,=0.1

K=10,=0.1

K=100,=0.1

 

                Figure. 4    Variations of  )0(f   versus  S                

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1




( 

)

S=0,0.5,1,1.5
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Table 1 Variations of )0(   with different values of the 

parameters  
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