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Abstract: Chest computed tomography (CT) images and their quantitative analyses have become increasingly 

important for a variety of purposes including lung parenchyma density analysis, airway analysis, diaphragm mechanics 

analysis, and nodule detection for cancer screening. Lung segmentation is an important prerequisite step for automatic 

image analysis. A novel lung segmentation method to minimize the juxta-pleural nodule is presented in this work, which 

is a notorious challenge in the applications. 

Index Terms— Active Contour, Lung Segmentation, Chest CT images, Computer aided diagnosis, Juxta-pleural Nodule 

I. INTRODUCTION 

Pulmonary or chest computed tomography (CT) images 

have been used for a variety of purposes, such as lung 

parenchyma density analysis [1, 2], airway analysis [3, 4], 

diaphragm mechanics analysis [5, 6] and nodule detection 

for cancer screening [7]. Recently, with the aid of 

computing technology, it has become feasible to conduct 

automatic quantitative analyses. In addition, collaboration 

among engineers, clinicians, and data scientists has led to 

the development of accurate automated screening programs 

for clinical use. Lung segmentation, a step required prior to 

chest CT imaging analysis, is a crucial starting point for all 

lung-related quantitative analysis. 

II. PROPOSED WORK 

The main contributions of this study are: We proposed a 

Bayesian approach for automatic juxta-pleural nodule 

identification in the lung segmentation stage from chest CT 

scans.  We presented a concave point detection and 

circle/ellipse Hough transform to minimize false positives.  

We tested our proposed method from 16,873 images (84 

subjects). Among the images, 314 images included juxta-

plerual nodules.  

We further validated the method from different databases, 

which included 1,766 images in total. Among the images, 

125 included juxta-pleural nodules.  We presented the 

extension capability that accurate lung contour 

segmentation results can be provided from any global 

contour results by applying to our proposed method 

framework.  

 

A. Collection of input data: 

For the clinical data, we collected chest CT digital imaging 

and communications in medicine (DICOM) images of 84 

anonymous subjects, including 42 subjects with juxta-

pleural nodules. Each scan included 150 to 215 image 

frames, and there were 16,873 images in total. Among the 

images, 314 included juxta-pleural nodules. 

B. Global Lung Contour Extraction with the Chan-

Vese model: 

To segment the lung contour, we first applied the CV model 

to chest CT images. After applying with the CV model on 

the chest CT image, the nodules or vessels inside the lung 

parenchyma are also segmented. To separate them from the 

lung contour, we selected the two longest contours, which 

correspond to left and right lungs. Fig. 1 shows the CV 

model-based lung segmentation results from four chest CT 

images. For the CV model-based lung segmentation, we 

chose the generally used parameters of 𝜈=0 and 𝜆1= 𝜆2=1. 

The parameter of 𝜇=0.01 was chosen by providing the 

highest accuracy. As 𝜇 increases, the results tend to be 

roughly segmented. All of the parameters were applied to 

the entire images in this paper.  

 The CV model method provided mostly accurate lung 

wall segmentation results, as shown in Figs. 1(a) and (b). In 

particular, in Fig. 1(b), the juxta-pleural nodule is included 

within the segmented lung contour. On the other hand, in 

Fig. 1(c), the juxta-pleural nodule is outside the segmented 

lung contour. This is because the pixel intensities of the 

juxta-pleural nodule and the adjacent surrounding tissue 

nearly overlap. The juxta-pleural nodule outside the lung 

contour ultimately results in missed nodules and incorrect 
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quantitative analyses. In the following subsections, we 

adopted a Bayesian approach to minimize this juxta-pleural 

nodule issue. 

   
     (a)                                 (b) 

  

                    (c) 

Fig 1. Lung segmentation results using Chan–Vese (CV) 

model. (a) Most lung contours can be accurately segmented. 

(b) A correct segmentation results in the presence of a 

juxta-pleural nodule. (c) An incorrect segmentation results 

in the presence of a juxta-pleural nodule; the incorrect part 

is pointed by an arrow.  

C. A Bayesian approach to juxta-pleural nodule 

candidate detection: 

Given the N successive chest CT image frames, we denote 

the lung contour state vector of the n-th image by 𝐶𝐹𝑛 (i.e. 

𝐶𝐹1, 𝐶𝐹2, … 𝐶𝐹𝑁). Note again that the frame represents 

the spatially sliced image from top to bottom. The state 

vector 𝐶𝐹𝑛 is assumed to evolve according to the following 

system model as 

                                          (1) 

D. Elimination of false positives: 

For classifying the nodule candidates as true nodules or 

false positives, we first investigated whether each candidate 

contour included any concave point from the center point of 

𝐶𝐺𝑛. Let us denote the set of contour points of each nodule 

candidate by  

(2) 

E. Feature Extraction: 

Features are extracted and passed to the selected classifier 

to help in raising the accuracy of classification. Different 

features are used including shape features, texture features, 

statistical features and intensity features. 

III. PERFORMANCE MEASURES 

The performance of our proposed method was evaluated 

using five metrics: the disc similarity coefficient (DSC), 

modified Hausdorff distance (MHD), sensitivity, specificity, 

and accuracy. To compute the five metrics, we first 

calculated the true positive (TP), false positive (FP), true 

negative (TN), and false negative (FN) values. TP (FP) is 

the number of positive pixels labelled correctly 

(incorrectly). TN (FN) is the number of negative pixels 

labeled correctly (incorrectly). We used an example to 

quantize the parameters in Fig. 2. In Fig. 2 (a), the gold 

standard contour (purple) and the estimated contour (blue) 

are shown, and the corresponding TP, FP, TN, and FN are 

shown in Fig 2(b). Each estimated contour was evaluated 

with each gold standard contour for all images. 

  

(a)    (b) 

Fig 2. (a) Example of the gold standard contour (purple) and 

estimated contour (blue), and (b) the corresponding true positive 

(TP), true negative (TN), false positive (FP), and false negative 

(FN). 

Based on the four parameters, the DSC can be calculated as  

𝐷𝑆𝐶= 2𝑇𝑃/ 2𝑇𝑃+𝐹𝑃+𝐹𝑁           (3)  

 

Fig 3. Receiver operating curve (ROC) curve with 1 minus 

specificity versus sensitivity in 0.01 increments from 0 to 1. 

 

The other metrics of sensitivity, specificity, and accuracy  

were calculated as 

 

 

Specificity= 𝑇𝑁/𝑇𝑁+𝐹𝑃                                                      (4) 

 

Accuracy= 𝑇𝑃+𝑇𝑁/𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁                             (5) 

 

Sensitivity= 𝑇𝑃/𝑇𝑃+𝐹𝑁                                                 (6) 

 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-05,  Issue-04, July 2019 

457 | IJREAMV05I0452051                          DOI : 10.35291/2454-9150.2019.0364                     © 2019, IJREAM All Rights Reserved. 

 

 

TABLE I. Results of the comparison of K = 1 and 2 on all chest 

CT images (N=16,873). The DSC, MHD, sensitivity, specificity, 

and accuracy were evaluated and compared. Mean and standard 

deviation are summarized. 

IV. CONCLUSION 

We have proposed a novel lung contour extraction 

algorithm capable of detecting juxta-pleural nodules. The 

algorithm is based on the CV model followed by a Bayesian 

approach to detect juxta-pleural nodule candidates and 

eliminate false positives through concave points detection 

and circle/ellipse Hough transform. In the images that 

included juxta-pleural nodules, our method exhibited a DSC 

of 0.9712, MHD of 0.4504, sensitivity of 0.9711, specificity 

of 0.9637, accuracy of 0.9667, and juxta-pleural nodule 

detection rate of 96.8%. 

REFERENCES 

[1] L. Hedlund, R. F. Anderson, P. Goulding, J. Beck, E. 

Effmann, and C. Putman, “Two methods for isolating the lung 

area of a CT scan for density information,” Radiology, vol. 144, 

no. 2, pp. 353-357, 1982.  

[2] R. Uppaluri, T. Mitsa, M. Sonka, E. Hoffman, and G. 

Mclemman, “Quatification of pulmonary emphysema from lung 

CT images using texture analysis,” Amer. J. Resp. Crit. Care Med, 

vol. 156, no. 1, pp. 248-254, 1997.  

[3] I. Amirav, S. S. Kramer, M. M. Grunstein, and E. A. Hoffman, 

“Assessment of methacholine-induced airway constriction by 

ultrafast high-resolution computed tomography,” Journal of 

Applied Physiology, vol. 75, no. 5, pp. 2239-2250, 1993.  

[4] R. H. Brown, C. J. Herold, and C. A. Hirshman, “In Vivo 

Measurements of Airway Reactivity Using High-Resolution 

Computed Tomography1, 2,” Am Rev Respir Dis, vol. 144, pp. 

208-212, 1991.  

[5] E. A. Hoffman, T. Behrenbeck, P. A. Chevalier, and E. H. 

Wood, “Estimation of regional pleural surface expansile forces in 

intact dogs,” Journal of Applied Physiology, vol. 55, no. 3, pp. 

935-948, 1983.  

[6] A. M. Boriek, S. Liu, and J. R. Rodarte, “Costal diaphragm 

curvature in the dog,” Journal of Applied Physiology, vol. 75, no. 

2, pp. 527-533, 1993.  

[7] H. A. Gietema, Y. Wang, D. Xu, R. J. van Klaveren, H. de 

Koning, E. Scholten, J. Verschakelen, G. Kohl, M. Oudkerk, and 

M. Prokop, “Pulmonary nodules detected at lung cancer 

screening: interobserver variability of semiautomated volume 

measurements,” Radiology, vol. 241, no. 1, pp. 251-257, 2006. 

[8] L. Wang and G. Zhang, “Cluster ensemble based image 

segmentation algorithm,” in 2015 Eighth International 

Conference on Internet Computing for Science and Engineering 

(ICICSE), vol. 00, Nov. 2015, pp. 68–73. 

[9] L. Bonanno, S. Marino, A. Bramanti, P. Bramanti, and P. 

Lanzafame, “Cluster analysis boosted watershed segmentation of 

neurological image,” in 2011 4th International Congress on 

Image and Signal Processing, vol. 3, Oct 2011, pp. 1223–1226. 

[10] W. Ju, D. Xiang, B. Zhang, L. Wang, I. Kopriva, and X. 

Chen, “Random walk and graph cut for co-segmentation of lung 

tumor on pet-ct images,” IEEE Transactions on Image 

Processing, vol. 24, no. 12, pp. 5854–5867, Dec 2015. 

[11] A. S. Korsager, V. Fortunati, F. van der Lijn, J. Carl, W. 

Niessen, L. R. stergaard, and T. van Walsum, “The use of atlas 

registration and graph cuts for prostate segmentation in magnetic 

resonance images,” Medical physics, vol. 42, no. 4, p. 16141624, 

April 2015. 

[12] Y. Guo, Y. Gao, and D. Shen, “Deformable mr prostate 

segmentation via deep feature learning and sparse patch 

matching,” IEEE Transactions on Medical Imaging, vol. 35, no. 

4, pp. 1077–1089, April 2016. 

[13] M. Kallenberg, K. Petersen, M. Nielsen, A. Y. Ng, P. Diao, 

C. Igel, C. M. Vachon, K. Holland, R. R. Winkel, N. 

Karssemeijer, and M. Lillholm, “Unsupervised deep learning 

applied to breast density segmentation and mammographic risk 

scoring,” IEEE Transactions on Medical Imaging, vol. 35, no. 5, 

pp. 1322–1331, May 2016. 

[14] J. C. M. Than, N. M. Noor, O. M. Rijal, A. Yunus, and R. M. 

Kassim, “Lung segmentation for hrct thorax images using radon 

transform and accumulating pixel width,” in 2014 IEEE REGION 

10 SYMPOSIUM, April 2014, pp. 157–161. 

[15] A. Mansoor, U. Bagci, Z. Xu, B. Foster, K. N. Olivier, J. M. 

Elinoff, A. F. Suffredini, J. K. Udupa, and D. J. Mollura, “A 

generic approach to pathological lung segmentation,” IEEE 

Transactions on Medical Imaging, vol. 33, no. 12, pp. 2293–

2310, Dec 2014. 

[16] Hyoungseop Kim, Seiji Mori, Yoshinori Itai, Seiji Ishikawa, 

Akiyoshi Yamamoto and Katsumi Nakamura, 2007, Automatic 

Detection of Ground-Glass Opacity Shadows by Three 

Characteristics on MDCT Images, World congress on medical 

physics and biomedical engineering 2006, IFMBE Pro2. 

[17] Breiman, L. (2001) Random forests. Machine Learning 

Journal Paper,45, 5-32. 

[18] Wu, X.D. and Kumar, V. (2009) The top ten algorithm in 

data mining. Chapman & Hall/CRC, London. 

[19] Biau, G., Devroye, L. and Lugosi, G. (2008) Consistency of 

random forests and other averaging classifiers. Journal of Machine 

Learning Research, 9, 2015-2033. 

[20] Jeng-Shyang Pan, Shyi-Ming Chen, Ngoc Thanh 

Nguyen;Nevember 2010;Computational Collective Intelligence. 

Technologies and Applications; Taiwan;Springer. 

[21] S. G. Armato, G.McLennan, L. Bidautb,et.al“The lung image 

database consortium(LIDC) and image database resource initiative 

(IDRI): A completereference database of lung nodules on CT 

scans,” Med. Phys., vol.38,pp.915–931,2011. 

Method                             K = 1               K = 2 

DSC mean  

std 

0.9709 

0.0511 

0.7323 

0.1152 

MHD mean  

std 

0.5006 

0.5771 

1.4270 

0.5586 

Sensitivity mean  

std 

0.9585 

0.0722 

0.7755 

0.0697 

Specificity mean  

std 

0.9981 

0.0012 

0.7322 
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Accuracy mean  

std 
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0.0129 

0.7321 
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