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I. INTRODUCTION 

In Mathematics a fixed point theorem is a result saying 

that a function F will have at least one fixed point (a point 

x for F(x)=x)  under some conditions on F that can be 

stated in general terms. 

The concept of 2 banach space firsly introduced by Gahler 

1964. This space was subsequently been studied by Kir. 

M, Kiziltunc. H [6] and Malceski. R, Anevska. K [7]. 

Further Ramakant. B, Balaji .R.W, Basant .K. S[1] and 

Tiwari. S. K, Ranu. M [8] are prove the fixed point 

theorem  in generalized Banach Space. 

Kannan.R [3] and Chatterea [4] gave result in fixed point 

theorem in complete metric space and also proved fixed 

point theory for multivalued generalized contraction on a 

set with two b-matrices by monical.B [2] . Elkoch.V and 

Marhrani.E.M [9] solved result in fixed point theorem in 

generalized metric space. 

Malceski. R and Ibrahimi. A [5] are proved that (L,||.,.||) be 

a  2-Banach space  and S: L→L be mapping,so that  

||Sx-Sy,z|≤α(||x-Sx,z||+||y-Sy,z||)+ (||x-y,z||) (or) 

||Sx-Sy,z|≤α(||x-Sy,z||+||y-Sx,z||)+ (||x-y,z||) 

 for all  x,y,z ε L and α >0,      and 0 < 2       

thenS has a unique fixed point in L. They are proved 

results in 2- Banach Space for contraction mapping. 

Malceski,A, Malceski.S, Anevska. K and Malceski,R,  are 

proved result in New Extension of Kannan and Chatterjea 

Fixed point Theorems on Complete Metric Spaces [10], 

In this paper I discussed some basic definitions in vector 2 

normed space, generalized 2 nomed linear space and 

lemma. My aim of this paper is to show that fixed point 

theorems  in 2 Banach Space and in generalized 2- Banach 

Space for contraction mapping. This paper is divided into 

two parts  

Section I  A Fixed point theorem in 2 Banach Space for 

contraction mapping. 

Section II  A Fixed point theorem in Generalized 2 

Banach Space for contraction mapping. 

II. PRELIMINARIES 

Definition 2.1  

Let M be a real vector space with dim M ≥2. 2-norm is a 

real function ||.,.||:  MXM  → [0,∞) such that 

i)||x,y|| ≥ 0 , for all x,y ε M and ||x,y|| = 0 iff the set {x,y} is 

linearly dependent, 

ii) ||x,y|| = ||y,x||, for all x,y ε M 

iii) || x,y|| ≤ |α| ||y,x|| for all x,y ε M and α ε R 

iv) ||x+y , z|| ≤ ||x,z|| + ||y,z|| for all x,y,z ε M 

The ordered pair (M,||.,.||) is called a 2 normed space. 

Definition 2.2  

The sequence  
1nnx  into vector  2 normed space is called 

as convergent if there exist x ε M such that 

0,
lim




yxx
n

n

,for every y ε M. vector x ε M is called 

as bound of the sequence  
1nnx  and we note 




nxxorxx
n

nn ,
lim

 

Definition 2.3   

Let M be a 2- normed space. The mapping S:M→M  is 

said continuous mapping in x if for any sequence {xn} in 

M such that  nforxxn
 as the following holds true 

Sxn → Sx ,n→∞. 

Definition 2.4  

The sequence  
1nnx in a vector 2 normed space M is 

Cauchy sequence if 
 0,

lim



yxx

n
mn

,   
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for every y ε M. For 2 normed space M, we say that is  n-

Banach space if every Cauchy sequence is convergent. 

Definition 2.5  

Let (M, ||.,.||) be a real vector 2 normed space. The 

mapping S:M→M is contraction if it exists h ε [0,1) so that  

||Sx-Sy,z|| ≤ h||x-y,z||,for all x,y,z ε M holds true. 

Definition 2.6   

If M is a linear space having s(>=) ε R, let || .,. || denotes a 

function from linear space M that satisfies the following 

axioms such that for all x,y,z ε M 

i) ||x,y|| = 0 iff  x & y are linearly dependent 

ii)||x,y|| = ||y,x|| 

iii)||x, y||≤|β|||y,x|| 

iv)||x,y+z||≤s[ ||x,y|+||x,z|| 

||x|| is called norm of x and (M, ||.||) is called generalized 2 

- normed linear space.If for s=1, it reduced to standard         

 2 -normed linear space. 

Definition 2.7  

A linear generalized 2-normed space in which every 

sequence is convergent is called generalized         2-

Banach space. 

Definition 2.8   

Let (M, ||.||) be a generalized 2-normed linear space then 

the sequence {xn} in M is called 

i)cauchy sequence iff for all ε>0, there exist n( )εN such 

that   for each m,n ≥n( ) we have ||xn –xm ,y||<     

ii) convergent  sequence iff there exist x ε M such that for 

all ε>0 there exist n( )εN such that for every n ≥n( )  

we have ||xn –x , y||<     

Definition 2.9   

The generalized 2-Banach space is complete if every 

Cauchy sequence converges. 

Lemma 2.10:  

Suppose (M,||.||) be a generalized Banach space and {yn} 

be a sequence in M such that  

|| yn+1  - yn+2|| ≤  h ||yn-yn+1||, n=0,1,2….  

 Where 0 ≤ h < 1 then the sequence is Cauchy sequence in 

M provided sh < 1   

Now in Section I, I will find a fixed point theorem in     2 

Banach Space for contraction mapping.   

 

 

 

 

III. FIXED POINT THEOREM IN 2 

BANACH SPACE FOR CONTRACTION 

MAPPING 

 

Theorem 3.1 

Let (M,|| .,.||) be a 2 Banach Space and MMT : be 

mapping  so  that

zxTybzyTyazyTxT ),(),(),()( 

  yxc  …… (1) 

 for all x,y,z M where a,b and c are non negative 

real number and satisfy 0 < a+2b+c < 1 and b+c < 1 , 

then T has  a unique fixed point in M. 

Proof 

 Let x0 be any point on M and the sequence {xn} 

be defined as the following xn+1 = Txn, n=0,1,2…. the 

inequality (1)  implies that 

11 ,   nnnn TxTxzxx
   

 

1111 ,   nnnnnn xxcTxxbzTxxa  

1111 ,   nnnnnn xxcxxbzxxa  

111 ,   nnnnnn xxbxxbzxxa

   1 nn xxc
 

zxxcbaxxb nnnn ,)()1( 11  
 

zxx
b

cba
zxx nnnn ,

1
, 11  




  

Holds true for each n=0,1,2,…. For each z M , the 

condition of the theorem implies that 

1
1







b

cba
h  

zxxhzxx nnnn ,, 11  
  ….. (2) 

Holds true for each non negative,  n=0,1,2,…. and each  

z M ,  Further (2) implies that  

zxxhzxx n

nn ,, 011      ….. (3) 

This implies that T is contraction mapping. 

Holds true for each n=0,1,2…. and z M . 

Now to show that {xn} is Cauchy sequence in M. 

Using the properties of 2 norm and (3) we get 

.,,, 211   zxxzxxzxx kmkmkmkmkkm

                         

    +……+ zxx kk ,. 1   

zxxkkmkm ,)....( 01

21   

    
zxxmmk ,)1....( 01

21   
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zxxxx
k

kkm ,
1

01 






 

Holds true for all m , k ε M and z ε M 

Since h < 1, Taking m, k  ,

0,
,

lim



 zxx

km
kkm

 

Holds true for all m, k ε M and z ε M 

The sequence {xn} is Cauchy sequence in M. 

Since M is 2 Banach Space, therefore the sequence {xn} is 

convergent sequence to u, 

 (i.e) Mu so that ux
n

n 


}{
lim  

Now to show that u is fixed point on T. 

zTuxzxuzTuu nn ,,, 11    

zTuTxzxu nn ,,1  
 

zTxubzTuuazxu nn ,,,1  

 
zuxc n ,  

Taking limit n→∞, we get  

zTuuazTuu ,, 
 

0,  zTuu , Since a < 1 

     Tu = u 

(i.e) u is a fixed point on T. 

We will prove that T has a unique fixed point on M. 

Let u,w ε M be two distinct fixed points on T, 

such that Tu = u and Tv = v then  

zTvTuzTuu ,, 
 

zvuczTuvbzTvva ,,, 
 

zvucb ,)(   

Holds true for each z ε M. 

0,  zvu since  b+c <1 

   u=v 

T has a unique fixed point on M. 

Now in Section II, I will find a fixed point theorem in 

generalized 2 Banach Space for Contraction mapping.   

IV. FIXED POINT THEOREM IN 

GENERALIZED 2 BANACH SPACE FOR 

CONTRACTION MAPPING 

Theorem 4.1  

Let M be a Generalized 2 Banach Space with || .|| and 

MMT :  mapping  

zxTybzyTyayTxT ),(),()()(   

 yxc    ……(5) 

for all x, y, z M where a,b and c are non negative real 

number and satisfy b+ s (a+b+c) < 1  for s 1 and b+c <1 

,then T has  a unique fixed point.  

Proof 

Let x0 ε M
 
be a sequence in M such that  

  
01 xTTxx n

nn   , 
 then   

zTxTxzxx nnnn ,, 11    

zxxczTxxbzTxxa nnnnnn ,,, 1111  

zxxczxxbzxxa nnnnnn ,,, 1111  

zxxbzxxa nnnn ,, 11    

       
zxxczxxb nnnn ,, 11  

  

zxxcbazxxb nnnn ,)(,)1( 11  
 

zxx
b

cba
zxx nnnn ,

1

)(
, 11  






 

    
zxxh nn ,1

 where b

cba
h






1  

Continuing this process we can easily say that  

zxxhzxx n

nn ,, 011  
 

This implies that T is contraction mapping. 

Now it is to show that {xn} is Cauchy sequence in M.  

Let m, n > 0 with m > n then from (1) we have, 

 zxxzxxszxx mnnnmn ,,, 11  
 

zxxszxxs nnnn ,, 21

2

1  

....,32

3   zxxs nn  

zxxhszxxsh nn ,, 10

12

10  

..,10

23   zxxhs n

 

.....])(1[, 2

10  shshzxxshn

 

zxx
sh

shn

,
1

10 


   

Now using the lemma 2.10 and taking limit n→∞, We 

get 
0,

lim



zxx

n
mn

 

therefore {xn} is a Cauchy sequence in M. 

Since M is complete , 

we consider that {xn} converges to x*. 

Now we show that x* is fixed point of T. 

],,[, **** zTxxzxxszTxx nn   

],,[ *

1

* zTxTxzxxs nn    
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zTxxazxxs n ,,[ *** 

 
],, *

11

* zxxczTxxb nn  
 

zxxbzxxszTxxas nn ,,[,)1( **** 

   
zxxc n ,*

1   ] 

zxxbzxx
as

s
zTxx nn ,,[

1
, **** 




 

 
],*

1 zxxc n  
 

Taking limit n→∞ we get 

0,
lim

** 


zTxx
n  

** xTx   

x
*
  is fixed point of T 

Now for uniqueness of fixed point , 

Let x and y be two fixed point of T such that x=Tx and 

y=Ty then 

zTyTxzyx ,,   

zyxczTxybzTyya ,,,   

zyxcbzyx ,)(,   

We get 0,  zyx , since b+c <1 

therefore x = y 

This complete the theorem. 

V. CONCLUSIONS 

The aim of this paper are proven two theorems which are 

fixed point theorem on 2 Banach Space and fixed point 

theorem on generalized 2 Banach space for contraction 

mapping.  
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