
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-07, Oct 2019

105 | IJREAMV05I0755056 DOI : 10.35291/2454-9150.2019.0470 © 2019, IJREAM All Rights Reserved.

Shortest Path in Multi-stage Graph using Dynamic

Programming approach
1
S.P. Behera ,

2
S.Bhattacharjee,

3
D.Mishra

1
Ph.D Research Scholar,

2
Assistant Professor,

3
Professor

Department of Mathematics, Ravenshaw University, Cuttack, Odisha, India.

 C.V Raman (Autonomous) Engineering College ,Bhubaneswar, Odisha, India.

Abstract: The shortest path problem is a classic problem in combinatorial optimization .In this paper , we propose

Dynamic programming approach algorithm to find the shortest path from source to destination associated with

multistage graph & effectiveness of the algorithm is explained with respect to various strategies like Brute force,

Dijkstra’s algorithm & Greedy method. We have also implemented the proposed algorithm to find the shortest path of

multistage network using Java Programming language finally we have presented some numerical examples to explain

the solution procedure.

Keywords: Multistage graph, Brute force strategy, Greedy approach, Dijkstra’s algorithm, Dynamic programming

I. INTRODUCTION

 Generally shortest path problem is a problem of finding the

shortest path or route from a starting point to a final

destination. Generally, in order to represent the shortest

path problem we use graphs. A graph, which contains sets

of vertices and edges. Edges connect pairs of vertices.

Along the edges of a graph it is possible to walk by moving

from one vertex to other vertices. Depending on whether or

not one can walk along the edges by both sides or by only

one side determines if the graph is a directed graph or an

undirected graph. In addition, lengths of edges are often

called weights, and the weights are normally used for

calculating the shortest path from one point to another

point. In the real world it is possible to apply the graph

theory to different types of scenarios. For example, in order

to represent a map we can use a graph, where vertices

represent cities and edges represent routes that connect the

cities. If routes are one-way then the graph will be directed;

otherwise, it will be undirected. There exist different types

of algorithms that solve the shortest path problem.

However, only several of the most popular conventional

shortest path algorithms along with one that uses genetic

algorithm are going to be discussed in this paper, and they

are as follows: 1.Dijkstra’s Algorithm 2.Floyd-Warshall

Algorithm 3. Bellman-Ford Algorithm 4. Genetic Algorithm

(GA) Other than GA, nowadays, there are also many

intelligent shortest path algorithms that have been

introduced in several past research papers. For example, the

authors in [1] used a heuristic method for computing the

shortest path from one point to another point within traffic

networks.

They proposed a new dynamic direction restricted algorithm

obtained by extending the Dijkstra’s algorithm [1].‖ in

another paper [2], a heuristic GA was used for solving the

single source shortest path (SSSP) problem. Its main goal

was to investigate the SSSP problem within the Internet

routing setting, particularly when considering the cost of

transmitting messages/packets is significantly high, and the

search space is normally very large [8].

In this paper we are going to find out shortest path in

multistage graph using Dynamic programming approach.

Which in turn will find out the shortest path a workflow can

take to complete a task which is minimum distance taken in

sense.

II. LITERATURE REVIEW

 Dijkstra (1959) proposed a graph search algorithm that can

be used to solve the single-source shortest path problem for

any graph that has a non-negative edge path cost. This

graph search algorithm was later modified by Lee in 2006

and was applied to the vehicle guidance system. This

vehicle guidance system is divided into two paths; namely,

the shortest path and the fastest path algorithms (Chen et al.,

2009).While the shortest path algorithm focuses on route

length parameter and calculates the shortest route between

each order pair, the fastest path algorithm focuses on the

path with minimum travel time. The future travel time can

be predicted based on prediction models using historical

data for link travel time information which can be daily,

weekly or even a session. Meghanathan (2012) reviewed

Dijkstra’s algorithm and Bellman-Ford algorithm for

finding the shortest path in a graph. He concluded that the

time complexity of Dijkstra’s algorithm is O (|E|*log |V|)

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-07, Oct 2019

106 | IJREAMV05I0755056 DOI : 10.35291/2454-9150.2019.0470 © 2019, IJREAM All Rights Reserved.

while the time complexity of the Bellman-Ford algorithm is

O(|V||E|). Approximate shortest paths between graph nodes

using a collection of spanning trees. Spanning trees are easy

to generate, compact relative to original graphs, and can be

distributed across machines to parallelize queries. They

demonstrate its scalability and effectiveness using large

social graphs from Face book, Orkut, and Renren, the

largest of which includes 43 million nodes and 1 billion

edges. They describe techniques to incrementally update

Atlas as social graphs change over time. They capture graph

dynamics using 35 daily snapshots of a Face book network

and show that Atlas can amortize the cost of tree updates

over time. Finally, they apply Atlas to several graph

applications and show that they produce results that closely

approximate ideal results [8].

III. METHODOLOGY

The cost of a path from source (denoted by S) to sink

(denoted by T) is the sum of the costs of edges on the path.

In multistage graph problem we have to find the path from S

to T. there is set of vertices in each stage. The multistage

graph can be solved using forward and backward approach.

Let us solve multistage problem for both the approaches

with the help of example

Example1. Consider the graph G as shown in the figure

IV. EXPERIMENT

4.1 Result analysis with result to Brute force, Dijkstra’s

algorithm & Simple Greedy method:

 Brute force method of finding all possible paths

between Source and Destination and then finding the

minimum. That’s the WORST possible strategy.

 Dijkstra’s Algorithm of Single Source shortest

paths. This method will find shortest paths from

source to all other nodes which are not required in

this case. So it will take a lot of time and it doesn’t

even use the SPECIAL feature that this MULTI-

STAGE graph has.

 Simple Greedy Method – At each node, choose

the shortest outgoing path. If we apply this approach

to the example graph give above we get the solution

as 1 + 3 + 8 = 12. But a quick look at the graph will

show much shorter paths available than 12 So the

greedy method fails

4.2 Result analysis with use of Dynamic Programming

algorithm approach

The best option is Dynamic Programming. So we need to

find Optimal Sub-structure, Recursive Equations and

Overlapping Sub-problems. Optimal Substructure and

Recursive Equation

There is a single vertex in stage 1, then 3 vertices in stage 2,

then 2 vertices in stage 3 and only one vertex in stage 4 (this

is a target stage).

4.2.1 Explanation of Dynamic programming approach:

We define the notation: - M(x, y) as the minimum cost to T

(target node) from Stage x, Node y.

Shortest distance from stage 1, node 0 to

destination, i.e., 7 is M (1, 0).

// From 0, we can go to 1 or 2 or 3 to

// reach 7.

M (1, 0) = min (1 + M (2, 1),

2 + M (2, 2),

5 + M (2, 3))

This means that our problem of 0 —> 7 is now sub-divided

into 3 sub-problems

So if we have total 'n' stages and target

as T, then the stopping condition will be :-

M(n-1, i) = i ---> T + M(n, T) = i ---> T

Recursion Tree and Overlapping Sub-Problems:-

So, the hierarchy of M(x, y) evaluations will look something

like this :-

In M(i, j), i is stage number and

j is node number

 M(1, 0)

 / | \

 / | \

 M(2, 1) M(2, 2) M(2, 3)

 / \ / \ / \

M(3, 4) M(3, 5) M(3, 4) M(3, 5) M(3, 6) M(3, 6)

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-07, Oct 2019

107 | IJREAMV05I0755056 DOI : 10.35291/2454-9150.2019.0470 © 2019, IJREAM All Rights Reserved.

So, here we have drawn a very small part of the Recursion

Tree and we can already see Overlapping Sub-Problems.

We can largely reduce the number of M(x, y) evaluations

using Dynamic Programming

4.2.1.1 Backward approach :

d(S, T)=min {1+d(A, T),2+d(B,T),7+d(C,T)} (1)

Calculation of d(A,T), d(B,T) and d(C,T).

d(A,T)=min{3+d(D,T),6+d(E,T)}................. . (2)

d(B,T)=min{4+d(D,T),10+d(E,T)}.................. (3)

d(C,T)=min{3+d(E,T),d(C,T)}................. (4)

Now let us compute d(D,T) and d(E,T).

d(D,T)=8

d(E,T)=2 backward vertex=E

Let us put these values in equations (2), (3) and (4)

d(A,T)=min{3+8, 6+2}

 d(A,T)=8 A-E-T

d(B,T)=min{4+8,10+2}

 d{B,T}=12 A-D-T

d(C,T)=min(3+2,10)

 d(C,T)=5 C-E-T

d(S,T)=min{1+d(A,T), 2+d(B,T), 7+d(C,T)}

=min{1+8, 2+12,7+5}

 =min{9,14,12}

d(S,T)=9 S-A-E-T

 The path with minimum cost is S-A-E-T with the cost 9.

4.2.1.2 Forward approach

 d(S,A)=1

 d(S,B)=2

 d(S,C)=7

 d(S,D)=min{1+d(A,D),2+d(B,D)}

 =min{1+3,2+4}

 d(S,D)=4

 d(S,E)=min{1+d(A,E), 2+d(B,E),7+d(C,E)}

=min {1+6,2+10,7+3}

 =min {7,12,10}

 d(S,E)=7 i.e. Path S-A-E is chosen.

d(S,T)=min{d(S,D)+d(D,T),d(S,E)+d(E,T),d(S,C)+d(C,T)}

 =min {4+8,7+2,7+10}

 d(S,T)=9 i.e. Path S-E, E-T is chosen.

 The minimum cost=9 with the path S-A-E-T.

4.2.1.3 .Implementation using Java Programming:

class GFG

{

static int N = 8;

static int INF = Integer.MAX_VALUE;

// Returns shortest distance from 0 to

// N-1.

public static int shortestDist(int[][] graph)

{

// dist[i] is going to store shortest

// distance from node i to node N-1.

int[] dist = new int[N];

dist[N - 1] = 0;

// Calculating shortest path for

// rest of the nodes

for (int i = N - 2; i >= 0; i--)

{

// Initialize distance from i to

// destination (N-1)

dist[i] = INF;

// Check all nodes of next stages

// to find shortest distance from

// i to N-1.

for (int j = i; j < N; j++)

 {

// Reject if no edge exists

if (graph[i][j] == INF)

 {

continue;

 }

// We apply recursive equation to

// distance to target through j.

// and compare with minimum distance

// so far.

dist[i] = Math.min(dist[i], graph[i][j]

+ dist[j]);

 }

}

return dist[0];

}

// Driver code

public static void main(String[] args)

{

// Graph stored in the form of an

// adjacency Matrix

int[][] graph = new int[][]{{INF, 1, 2, 5, INF, INF, INF,

INF},

{INF, INF, INF, INF, 4, 11, INF, INF},

{INF, INF, INF, INF, 9, 5, 16, INF},

{INF, INF, INF, INF, INF, INF, 2, INF},

{INF, INF, INF, INF, INF, INF, INF, 18},

{INF, INF, INF, INF, INF, INF, INF, 13},

{INF, INF, INF, INF, INF, INF, INF, 2}};

System.out.println(shortestDist(graph));

 }

}

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-07, Oct 2019

108 | IJREAMV05I0755056 DOI : 10.35291/2454-9150.2019.0470 © 2019, IJREAM All Rights Reserved.

Output: 9

So the path with minimum cost is S-A-E-T with the cost 9.

4.3 Time Complexity Analysis :

The time complexity for each algorithm is illustrated in

Table I; n represents the total number of vertices, and m is

the total number of edges

Algorithm Time Complexity

Dijkstra

Bellman-Ford

Floyd-Warshall

But the time complexity by using Dynamic approach

is , which is least time complexity among Dijkstra

algorithm, Bellman-Ford & Floyd-Warshall algorithm.

V. CONCLUSIONS

The time complexity for each of the Dijkstra’s, Floyd-

Warshall and Bellman-Ford algorithms show that these

algorithms are acceptable in terms of their overall

performance in solving the shortest path problem. All of

these algorithms produce only one solution. However, the

main advantage of Dynamic approach for shortest path

associated with multi–stage over these algorithms is that it

may produce a number of different optimal solutions since

the result can differ every time the it is executed. In the

future our proposed frame work will be extended and

improved in finding the shortest path or distance between

two places in a map that represents any types of networks.

In addition, other artificial intelligence techniques such as

fuzzy logic and neural networks can also be implemented in

improving existing shortest path algorithms in order to

make them more intelligent and more efficient

REFERENCES

[1] C. Xi, F. Qi, and L. Wei, ―A New Shortest Path

Algorithm based on Heuristic Strategy,‖ Proc. of the 6th

World Congress on Intelligent Control and Automation,

Vol. 1, pp. 2531–2536, 2006.

[2] B.S. Hasan, M.A. Khamees, and A.S.H. Mahmoud, ―A

Heuristic Genetic Algorithm for the Single Source Shortest

Path Problem, ‖ Proc. of International Conference on

Computer Systems and Applications

[3] T. Li, L. Qi, and D. Ruan, ―An Efficient Algorithm for

the Single-Source Shortest Path Problem in Graph Theory‖,

Proc. of 3rd International Conference on Intelligent System

and Knowledge Engineering, Vol. 1, pp. 152-157, 2008.

[4] M. Jordan, ―Notes 7 for CS170‖, UC Berkeley, 2005.

[5]. Ahmat, K. A. (n.d.). Graph Theory and Optimization

Problems for Very Large Networks. New York: City

University of New

York/Information Technology.

[6]. Brendan, H. a. (2005). Generalizing Dijkstra's

Algorithm and Gaussian Elimination for solving MDPs.

International Conference onAutomated Planning and

Scheduling/Artificial Intelligence Planning System, (pp. 151

- 160).

[7]. Chen, K. M. (2009). A real-time wireless route

guidance system for urban traffic management and its

performance evaluation.

Papers of the 70th Vehicular Technology Conference

Anchorage VTC, (pp. 1 -5).

[8]. Ebrahimnejad, S. A. (2011). Find the Shortest Path in

Dynamic Network using Labelling Algorithm. Journal of

Business and Social

Science.

[9]. Goldberg, A. V. (n.d.). Point - to - Point Shortest Path

Algorithms with Pre-processing. Silicon

Valley:MicrosoftResearch.

[10]. Goyal, S. (n.d.). A Survey on Travelling Salesman

Problem. North Dakota: Department of Computer,

University of North Dakota.

[11]. Lee, D. C. (2006). Proof of a modified Dijkstra's

algorithm for computing shortest bundle delay in networks

with deterministically

[12]. T. Li, Q. a. (2008). An efficient Algorithm for the

single source Shortest Path Problem in Graph Theory.

International Conference

on Intelligent System and Knowledge Engineering, (pp. 152

- 157).

[13]. Taha, H. (2011). Operations research an introduction,

ninth edition. Pearson Publisher. Wadhwa, S. (n.d.).

Analysis of a network design problem. 2000: Lehigh

University

