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Abstract: The shortest path problem is a classic problem in combinatorial optimization .In this paper , we propose 

Dynamic programming approach  algorithm to find the shortest path from source to destination associated with 

multistage graph & effectiveness of the algorithm is explained with respect to various strategies like Brute force, 

Dijkstra’s algorithm & Greedy method. We have also implemented the proposed algorithm to find the shortest path of 

multistage network using Java Programming language finally we have presented some numerical examples to explain 

the solution procedure. 
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I. INTRODUCTION 

 Generally shortest path problem is a problem of finding the 

shortest path or route from a starting point to a final 

destination. Generally, in order to represent the shortest 

path problem we use graphs. A graph, which contains sets 

of vertices and edges. Edges connect pairs of vertices. 

Along the edges of a graph it is possible to walk by moving 

from one vertex to other vertices. Depending on whether or 

not one can walk along the edges by both sides or by only 

one side determines if the graph is a directed graph or an 

undirected graph. In addition, lengths of edges are often 

called weights, and the weights are normally used for 

calculating the shortest path from one point to another 

point. In the real world it is possible to apply the graph 

theory to different types of scenarios. For example, in order 

to represent a map we can use a graph, where vertices 

represent cities and edges represent routes that connect the 

cities. If routes are one-way then the graph will be directed; 

otherwise, it will be undirected. There exist different types 

of algorithms that solve the shortest path problem. 

However, only several of the most popular conventional 

shortest path algorithms along with one that uses genetic 

algorithm are going to be discussed in this paper, and they 

are as follows:  1.Dijkstra’s Algorithm 2.Floyd-Warshall 

Algorithm 3. Bellman-Ford Algorithm 4. Genetic Algorithm 

(GA) Other than GA, nowadays, there are also many 

intelligent shortest path algorithms that have been 

introduced in several past research papers. For example, the 

authors in [1] used a heuristic method for computing the 

shortest path from one point to another point within traffic 

networks. 

They proposed a new dynamic direction restricted algorithm 

obtained by extending the Dijkstra’s algorithm [1].‖ in 

another paper [2], a heuristic GA was used for solving the 

single source shortest path (SSSP) problem. Its main goal 

was to investigate the SSSP problem within the Internet 

routing setting, particularly when considering the cost of 

transmitting messages/packets is significantly high, and the 

search space is normally very large [8]. 

In this paper we are going to find out shortest path in 

multistage graph using Dynamic programming approach. 

Which in turn will find out the shortest path a workflow can 

take to complete a task which is minimum distance taken in 

sense. 

II. LITERATURE REVIEW 

  Dijkstra (1959) proposed a graph search algorithm that can 

be used to solve the single-source shortest path problem for 

any graph that has a non-negative edge path cost. This 

graph search algorithm was later modified by Lee in 2006 

and was applied to the vehicle guidance system. This 

vehicle guidance system is divided into two paths; namely, 

the shortest path and the fastest path algorithms (Chen et al., 

2009).While the shortest path algorithm focuses on route 

length parameter and calculates the shortest route between 

each order pair, the fastest path algorithm focuses on the 

path with minimum travel time. The future travel time can 

be predicted based on prediction models using historical 

data for link travel time information which can be daily, 

weekly or even a session. Meghanathan (2012) reviewed 

Dijkstra’s algorithm and Bellman-Ford algorithm for 

finding the shortest path in a graph. He concluded that the 

time complexity of Dijkstra’s algorithm is O (|E|*log |V|) 
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while the time complexity of the Bellman-Ford algorithm is 

O(|V||E|). Approximate shortest paths between graph nodes 

using a collection of spanning trees. Spanning trees are easy 

to generate, compact relative to original graphs, and can be 

distributed across machines to parallelize queries. They 

demonstrate its scalability and effectiveness using large 

social graphs from Face book, Orkut, and Renren, the 

largest of which includes 43 million nodes and 1 billion 

edges. They describe techniques to incrementally update 

Atlas as social graphs change over time. They capture graph 

dynamics using 35 daily snapshots of a Face book network 

and show that Atlas can amortize the cost of tree updates 

over time. Finally, they apply Atlas to several graph 

applications and show that they produce results that closely 

approximate ideal results [8]. 

III. METHODOLOGY 

The cost of a path from source (denoted by S) to sink 

(denoted by T) is the sum of the costs of edges on the path. 

In multistage graph problem we have to find the path from S 

to T. there is set of vertices in each stage. The multistage 

graph can be solved using forward and backward approach. 

Let us solve multistage problem for both the approaches 

with the help of example 

Example1.    Consider the graph G as shown in the figure 

 

IV. EXPERIMENT 

4.1 Result analysis with result to Brute force, Dijkstra’s 

algorithm & Simple Greedy method: 

  Brute force method of finding all possible paths 

between Source and Destination and then finding the 

minimum. That’s the WORST possible strategy. 

 Dijkstra’s Algorithm of Single Source shortest 

paths. This method will find shortest paths from 

source to all other nodes which are not required in 

this case. So it will take a lot of time and it doesn’t 

even use the SPECIAL feature that this MULTI-

STAGE graph has. 

 Simple Greedy Method – At each node, choose 

the shortest outgoing path. If we apply this approach 

to the example graph give above we get the solution 

as 1 + 3 + 8 = 12. But a quick look at the graph will 

show much shorter paths available than  12  So the 

greedy method fails  

4.2 Result analysis with use of Dynamic Programming 

algorithm approach  

The best option is Dynamic Programming. So we need to 

find Optimal Sub-structure, Recursive Equations and 

Overlapping Sub-problems. Optimal Substructure and 

Recursive Equation  

There is a single vertex in stage 1, then 3 vertices in stage 2, 

then 2 vertices in stage 3 and only one vertex in stage 4 (this 

is a target stage). 

4.2.1 Explanation of Dynamic programming approach: 

We define the notation: - M(x, y) as the minimum cost to T 

(target node) from Stage x, Node y. 

Shortest distance from stage 1, node 0 to 

destination, i.e., 7 is M (1, 0). 

// From 0, we can go to 1 or 2 or 3 to 

// reach 7. 

M (1, 0) = min (1 + M (2, 1), 

2 + M (2, 2), 

5 + M (2, 3)) 

This means that our problem of 0 —> 7 is now sub-divided 

into 3 sub-problems 

So if we have total 'n' stages and target 

as T, then the stopping condition  will be :- 

M(n-1, i) = i ---> T + M(n, T) = i ---> T 

Recursion Tree and Overlapping Sub-Problems:- 

So, the hierarchy of M(x, y) evaluations will look something 

like this :- 

In M(i, j), i is stage number and 

j is node number 

                   M(1, 0) 

           /          |         \                              

          /           |          \                             

       M(2, 1)      M(2, 2)        M(2, 3) 

    /      \        /     \         /    \ 

M(3, 4)  M(3, 5)  M(3, 4)  M(3, 5) M(3, 6)  M(3, 6) 

 .         .       .       .          .        . 
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So, here we have drawn a very small part of the Recursion 

Tree and we can already see Overlapping Sub-Problems. 

We can largely reduce the number of M(x, y) evaluations 

using Dynamic Programming 

4.2.1.1 Backward approach : 

d(S, T)=min {1+d(A, T),2+d(B,T),7+d(C,T)}    ........(1) 

Calculation of d(A,T), d(B,T) and d(C,T). 

d(A,T)=min{3+d(D,T),6+d(E,T)}.................       . (2) 

d(B,T)=min{4+d(D,T),10+d(E,T)}..................      (3) 

d(C,T)=min{3+d(E,T),d(C,T)}.................           (4) 

Now let us compute d(D,T) and d(E,T). 

d(D,T)=8 

d(E,T)=2 backward vertex=E 

Let us put these values in equations (2), (3) and (4) 

d(A,T)=min{3+8, 6+2} 

                           d(A,T)=8 A-E-T 

d(B,T)=min{4+8,10+2} 

                           d{B,T}=12 A-D-T 

d(C,T)=min(3+2,10) 

                            d(C,T)=5 C-E-T 

d(S,T)=min{1+d(A,T), 2+d(B,T), 7+d(C,T)} 

=min{1+8, 2+12,7+5} 

                           =min{9,14,12} 

d(S,T)=9     S-A-E-T 

     The path with minimum cost is S-A-E-T with the cost 9. 

4.2.1.2 Forward approach 

    d(S,A)=1 

    d(S,B)=2 

    d(S,C)=7 

   d(S,D)=min{1+d(A,D),2+d(B,D)} 

   =min{1+3,2+4} 

  d(S,D)=4 

  d(S,E)=min{1+d(A,E), 2+d(B,E),7+d(C,E)} 

=min {1+6,2+10,7+3} 

 =min {7,12,10} 

  d(S,E)=7 i.e. Path S-A-E is chosen. 

d(S,T)=min{d(S,D)+d(D,T),d(S,E)+d(E,T),d(S,C)+d(C,T)} 

     =min {4+8,7+2,7+10} 

  d(S,T)=9 i.e. Path S-E, E-T is chosen. 

 The minimum cost=9 with the path S-A-E-T. 

4.2.1.3 .Implementation using Java Programming: 

class GFG 

{ 

 

static int N = 8; 

static int INF = Integer.MAX_VALUE; 

 

// Returns shortest distance from 0 to 

// N-1. 

public static int shortestDist(int[][] graph) 

{ 

 

// dist[i] is going to store shortest 

// distance from node i to node N-1. 

int[] dist = new int[N]; 

 

dist[N - 1] = 0; 

 

// Calculating shortest path for 

// rest of the nodes 

for (int i = N - 2; i >= 0; i--) 

{ 

 

// Initialize distance from i to 

// destination (N-1) 

dist[i] = INF; 

 

// Check all nodes of next stages 

// to find shortest distance from 

// i to N-1. 

for (int j = i; j < N; j++) 

        { 

// Reject if no edge exists 

if (graph[i][j] == INF) 

         { 

continue; 

         } 

 

// We apply recursive equation to 

// distance to target through j. 

// and compare with minimum distance 

// so far. 

dist[i] = Math.min(dist[i], graph[i][j] 

+ dist[j]); 

       } 

} 

 

return dist[0]; 

} 

 

// Driver code 

public static void main(String[] args) 

{ 

// Graph stored in the form of an 

// adjacency Matrix 

int[][] graph = new int[][]{{INF, 1, 2, 5, INF, INF, INF, 

INF}, 

{INF, INF, INF, INF, 4, 11, INF, INF}, 

{INF, INF, INF, INF, 9, 5, 16, INF}, 

{INF, INF, INF, INF, INF, INF, 2, INF}, 

{INF, INF, INF, INF, INF, INF, INF, 18}, 

{INF, INF, INF, INF, INF, INF, INF, 13}, 

{INF, INF, INF, INF, INF, INF, INF, 2}}; 

System.out.println(shortestDist(graph)); 

     } 

} 
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Output:       9 

So the   path with minimum cost is S-A-E-T with the cost 9. 

4.3 Time Complexity Analysis : 

The time complexity for each algorithm is illustrated in 

Table I; n represents the total number of vertices, and m is 

the total number of edges 

Algorithm Time Complexity 

Dijkstra 
 

Bellman-Ford 
 

Floyd-Warshall 
 

 

But the time complexity by using Dynamic approach 

is , which is least time complexity among Dijkstra 

algorithm, Bellman-Ford & Floyd-Warshall algorithm. 

V. CONCLUSIONS 

The time complexity for each of the Dijkstra’s, Floyd-

Warshall and Bellman-Ford algorithms show that these 

algorithms are acceptable in terms of their overall 

performance in solving the shortest path problem. All of 

these algorithms produce only one solution. However, the 

main advantage of  Dynamic approach for shortest path 

associated with multi–stage over these algorithms is that it 

may produce a number of different optimal solutions since 

the result can differ every time the it  is executed. In the 

future our proposed  frame work will be extended and 

improved in finding the shortest path or distance between 

two places in a map that represents any types of networks. 

In addition, other artificial intelligence techniques such as 

fuzzy logic and neural networks can also be implemented in 

improving existing shortest path algorithms in order to 

make them more intelligent and more efficient 
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