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Abstract- One of the most important concepts in topological space is the pasting lemma for continuous functions. It 

plays an important role in algebraic topology. In the recent years pasting lemmas for some stronger and weaker forms 

of continuous functions such as g - continuous functions, gp - continuous functions, gpr- continuous functions, g∗ b - 

continuous functions have been introduced by several mathematicians.In this consequence, the pasting lemmas for s**g- 

continuous functions and s**g irresolute functions have been introduced in this paper.  
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I. INTRODUCTION 

Moreover, the pasting lemmas for continuous functions are 

established over last two decades. Anitha et al.[1] 

established the pasting lemma for rg-continuous, gc-

irresolute and gp-continuous functions. In this sequence, the 

pasting lemmas for s**g-continuous functions and s**g 

irresolute functions have been introduced in this paper. 

Throughout the paper, (X, ) or X denote the topological 

space on which no separation axiom is presumed unless 

explicitly stated. Let A be a subset of X.Then the closure 

and interior of A are the intersection of all closed sets 

containing A and union of all open sets contained in A 

respectively and they are denoted by cl(A) and int(A). A set 

A is called semi open.  

The complements of semi open, regular open, pre open, b-

open sets are called semi closed, regular closed,pre closed 

sets, b-closed respectively. The regular closure, regular 

interior, preclosure, preinterior, b-closure and b-interior of a 

set A are defined in similar way of closure and interior of a 

set A. Moreover, A is called s*g – closed[3]{respectively rg-

closed[5], rg*- closed[4], g*r – closed[4], gp-closed[16], gpr-

closed[6] and g*b-closed[19]}if cl(A) ⊆ U {respectively, cl(A) 

⊆ U, rcl(A) ⊆ U, rcl(A) ⊆ U, pcl(A) ⊆ U, pcl(A) ⊆ U  and bcl(A) 

⊆ U} whenever A⊆ U and U is semi open{respectively, regular 

open and g open}.  

The complements of semi open, {respectively, regular open, 

preopen, s*g-closed, rg- closed, rg*-closed, g*r – closed, gp-

closed, gpr-closed, g*b-closed} are called semi  

closed,{respectively,regular closed, preclosed, s*g -open, rg-

open, rg*-open, g*r- open, gp-open, gpr-open and g*b-open}. 

A function f: (X, )(Y, µ) is called 

continuous,{respectively, g-continuous[2], rg-continuous 

[15], gp continuous,  gpr - continuous,  s*g-

continuous, rg*- continuous[15], g*r-continuous[15], g*b-

continuous[20]}if  (V) is closed{respectively, g-closed, 

rg-closed, gp-closed, gpr-closed, s*g-closd, rg*-closed, g*r 

-closed, g*b-closed} for every closed set V in Y. 

A function f :(X, )  (Y, µ) is called 

irresolute,{respectively, gc-irresolute[2], rg- irresolute[15], 

gp- irresolute[17], gpr-irresolute[7], s*g- irresolute[3], rg*- 

irresolute[15], g*r- irresolute[15], g*b-irresolute[20]}if  

(V) is semi closed {resp.g- closed, rg-closed, gp-closed, 

gpr-closed, s*g-closed, rg*-closed, g*r-closed, g*b-

closed[19]}for every semi closed{resp. g- closed, rg-closed, 

gp-closed[16], gpr-closed[19], s*g-closed[3], rg*-closed[4], 

g*r-closed[4], g*b-closed}set V in Y.A collection {Aα :α 

I}of subsets of a space X is locally finite if every point of 

X has a neighbourhood that intersects only finitely many 

members of  {Aα :α I}. 

II. MAIN RESULTS 

Definition 2.1 A function f : (X, 1, 2)  (Y, µ1, µ2) is 

s**g – continuous if the inverse image of each closed set in 

Y is s**g closed set in X. 

Example 2.1 Let X = Y ={a, b, c},  = {, X, {a,c}} and µ 

={, X, {a,c},{c}, {a}}. Let f : (X, )  (Y, µ) be an 

identity mapping. Then f is s**g-continuous. 

Theorem2.1Every continuous function is  s**g-continuous. 
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Proof Let f :(X, )  (Y, µ) be continuous function and Let 

U be a closed set in (Y, µ) then ( U) is closed in (X, ).   

As every closed set is s**g closed set so that we have ( 

U) is s **g- closed . Hence f is s**g-continuous. 

The converse need not be true as seen from the following 

example. 

Example 2.2 Let X = Y = {a, b, c, d},  = {, X, {a}, {a, 

b}} and µ ={, Y, {a}}. Let f : (X, )  (Y, µ) be a 

function defined by f(a) = {b}, f(c) = {c}. Then f is s**g-

continuous but not continuous.   

Theorem2.2 The following are equivalent for a function f :  

(X, )  (Y, µ). a) f is s**g-continuous. b) (U) is s**g 

open for each open set U in Y. 

Proof a) =>b) Let f be s**g-continuous. Let A be open in 

Y.Then A
c
 is closed in Y. Since f is s**g- continuous we 

have ( A
c
) is s**g closed in X. Thus ( A) is s**g 

open in X.b) => a) Let  ( U) be s**g – open for each 

open set U in Y. Let V be closed in Y.Then V
c
 is open in Y. 

Therefore, by our assumption, ( V
c
) is s**g – closed in 

X. Thus   ( V) is s**g -open in X. Hence the proof. 

Definition 2.2 A function f : (X, )  (Y, µ) is s**g – 

irresolute if the inverse image of each s**g- closed set in Y 

is s**g-closed set in X. 

Example 2.2 Let X = Y = {a, b, c},  = { , X, {a}} and µ 

= { ,Y, {a}, {a, b}}. Let f : (X, )  (Y, µ) be an identity 

mapping. Then f is s**g – irresolute. 

We know that arbitrary union of cl(A i), i I is contained in 

closure of arbitrary union of subsets of Ai  in any 

topological space. The equality holds if the collection { Ai , 

i I} is locally finite.       

Theorem 3.1[7] The arbitrary union of s**g-closed sets Ai , 

i I in a topological space (X, ) is s**g- closed if the 

family { Ai , i I} is locally finite. 

Theorem 3.2 Let Y be a topological spaces, V  ⊆ Y and f : 

X Y. Then f is s**g – continuous if and only if V is 

closed in Y implies that ( V) is s**g – closed in X. 

Proof Case1) Let f : X Y be s**g- continuous. Let V  ⊆ 

Y be closed. Then V
c  ⊆ Y is open in Y. Since f is s**g – 

continuous, ( V
c
) is s**g open in X. ( V

c
) = [ ( 

V)]
c
 is s**g open in X. Therefore we have  ( V) is s**g 

– closed in X.  

Case2) Let V be closed in Y then ( V) is s**g – closed 

in X. Let A be open in Y. Then A
c
 is closed in Y. By our 

assumption ( A
c
) =[ ( A)]

c
 is s**g – closed in X. 

Thus, ( A) is s**g-open in X.Hence the proof. 

Theorem 3.3 Let X = A    B where A and B are both 

open and s**g- closed sets in X. Let f : A   Y and g : B  

 Y be s**g – continuous(s**g – irresolute). If  f(x) = g(x) 

for every x  A   B . Then f and g combine to give a 

s**g-continuous (s**g – irresolute) function h : X  Y 

defined by setting h(x) = f(x) if x A and h(x) = g(x) if x  

B. 

Proof Let U be closed (s**g – closed) in Y. Then h
-1

(U) = f
-

1
(U)  g

-1
(U). Since f : A   Y is s**g – continuous(s**g – 

irresolute) and g : B   Y be s**g – continuous(s**g – 

irresolute), g
-1

(U) is s**g – closed sets in B. Since A and B 

are both open and s**g – closed sets in X, f
-1

(U) and g
-1

(U) 

are s**g – closed sets in X. Since the union of two s**g – 

closed sets is s**g – closed sets. Therefore we have h
-1

(U) = 

f
-1

(U)  g
-1

(U).  is s**g – closed in X.Hence proved. 

Importance of pasting lemmas are recognized in the 

formation of continuous functions. In this regard, the 

pasting lemmas for s**g - continuous and s** girresolute 

functions are introduced herein  as discussed above. 

III.  CONCLUSION 

In this work, we have introduced the pasting lemmas for 

s**g – continuous and s**g – irresolute functions. This is a 

required development in the line of pasting lemmas for g - 

continuous functions, gp - continuous functions, gpr- 

continuous functions, g∗ b - continuous functions. However, 

there is scope for further development of these topics that 

will be explored in our future works. 
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