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Abstract Present six billions estimated devices are connected to internet; by 2020 it will be 25 billion. During this 

growth security has been identified as one of the weakest areas in Internet of Things (IOT). So to meet different 

challenges in securing IOT, we propose using machine learning within an IOT Gateway to help secure the system. By 

using Regression in a gateway to detect anomalies in the data sent from edge devices  
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I. INTRODUCTION 

Internet of Things (IoT) is presently a hot technology 

worldwide. Government, academia, and industry are 

involved in different aspects of research, implementation, 

and business with IoT. IoT cuts across different application 

domain verticals ranging from civilian to defense sectors. 

These domains include agriculture, space, healthcare, 

manufacturing, construction, water, and mining, which are 

presently transitioning their legacy infrastructure to support 

IoT. Today it is possible to envision pervasive connectivity, 

storage, and computation, which, in turn, gives rise to 

building different IoT solutions. IoT-based applications 

such as innovative shopping system, infrastructure 

management in both urban and rural areas, remote health 

monitoring and emergency notification systems, and 

transportation systems, are gradually relying on IoT based 

systems. 

Over the past decade, the popularity of Python as a 

mainstream programming language has exploded. Notable 

advantages of Python over other languages include, but are 

not limited to; It is a very simple language to learn and easy 

to implement and deploy, so you don't need to spend a lot of 

time learning lots of formatting standards and compiling 

options. It is portable, expandable and embeddable, so, it is 

not system dependent, and hence supports a lot of single 

board computers on the market these days, irrespective of 

architecture and operating system. Most importantly, it has 

a huge community which provides a lot of support and 

libraries for the language. 

We are living in a world surrounded by billions of 

computing systems, identifying, tracking, and analyzing 

some of our intimate personal information, including health, 

sleep, location, and network of friends. The trend is toward 

even higher proliferation of such devices, with an estimated 

50 billion smart, connected devices by 2020, according to a 

recent report by Cisco. These devices generate, process, and 

exchange a large amount of sensitive information and data 

(often collectively referred to as “security assets” or simply 

“assets”). In addition to private end-user information, assets 

include security-critical parameters introduced during the 

system architecture definition, e.g., fuses, cryptographic, 

and digital rights management (DRM) keys, firmware 

execution flows, and on-chip debug modes. Malicious 

access to these assets can result in leakage of company trade 

secrets for device manufacturers or content providers, 

identity theft or privacy breach for end users, and even 

destruction of human life. Security assurance of a modern 

computing device involves a number of challenges. One key 

challenge is the sheer complexity of the design. Most 

modern computing systems are architected via a system-on-

chip (SoC) paradigm, viz., through a composition of 

predesigned hardware or software blocks [referred to as 

intellectual properties (IPs)] that interact through a network 

of on-chip communication fabrics. The IPs themselves are 

highly complex artifacts optimized for performance, power, 

and silicon overhead. Adding to the complexity are the 

communication protocols used in implementing complex 

system-level use cases. Finally, security assets are sprinkled 

at different IPs across the design, and access to the assets is 

governed by complex security policies. The policies are 

defined by system architects as well as different IP and SoC 

integration teams, and undergo refinement and modification 

throughout the system development. This makes it 

challenging to validate a system, develop architectures to 

provide built-in resilience against unauthorized access, or 

update security requirements, e.g., in response to changing 

customer needs. Another source of challenge is the supply 

chain involved in the development of a modern computing 

device. There is a large number of players involved, 

including IP providers, SoC design house, and foundry. 

With the increasing globalization of the semiconductor 
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design and fabrication process, each of these players often 

involves large number of organizations often across.  

Geography coordinating to create a complex supply-chain 

pipeline. Every component of the pipeline is vulnerable to 

malicious design alterations, subversions, piracy, and other 

security threats. Even in cases where a component is 

designed without intended malice, aggressive time-to-

market requirements and high optimization needs often 

result in errors and vulnerabilities inadvertently left in the 

design, which can be exploited by a malicious adversary in 

the field. Given the broad spectrum of vulnerabilities and 

corresponding mitigation strategies, the subject of SoC 

security today is highly fragmented. 

II. RELATED WORK 

Gaps within security techniques are to protect sensor 

nodes, to maintain trust between devices, and to defend 

against Man in the Middle attacks, Denial of Service (DOS) 

attacks, etc. They concluded that there is currently extensive 

work occurring within IoT authentication and access control 

protocols but other work needs to be done as well. IoT 

requires intelligent processing and reliable transmission 

within the network. To provide this, the network 

architecture contains three layers: the application layer, the 

transport layer, and the sensing layer. The application layer 

contains the logical link between the user and the Internet 

through intelligent applications. Intelligent applications 

include smart home furnishings and intelligent architectures. 

The application layer uses machine learning, data mining, 

data processing, and other analytics to process information 

from the system and provides an output. The transport layer 

consists of network communications including Wi-Fi, 

Bluetooth, ZigBee, and 802.15.4. The transport layer 

contains the gateway or gateways that process the 

information and relay the information across the network.  

The sensing layer contains edge devices that are composed 

of a variety of sensors and actuators that collect data and 

send it through the transportation layer to the application 

layer for analysis. There are many security threats present in 

the transport layer. Our approach is to add machine learning 

within the transport layer to help determine if there are 

interruptions in the data transfer and to monitor the edge 

devices from the sensing layer. This approach will also 

address by addressing the entire system security, not simply 

the authentication and access control protocols.    

III. APPROACH 

In examining the approach, we will begin with an 

overview of our test bed creation and then discuss our 

machine learning methodology. 

A. Test bed creation 

First we installed Spyder 3.6 and imported libraries in 

Spyder 3.6 after that imported dataset by using 

Dataset = pd.read_csv (“Data.csv”) 

After that I declared 2 variables X & Y: X selects all 

columns except last one column in dataset and Y selects the 

only last column in dataset by using iloc. If any missed 

values are in dataset by using 

From sk.learn.preprocessing import imputer  

Library it calculate all the values by using mean such that it 

replaces the missed data in dataset.  In the given dataset we 

are having France, Germany, Spain, 3 variables which are 

present in X variable. So the machine learning will get 

confused regarding that 3 variables because machine 

learning can understand only mathematical equations and 

numbers, so to solve this problem I have use dummy 

variables which is known as One Hot Encoder in the 

programming. After that I had split the data set in to raining 

test and test set with ratio of 0.2i.e.., 80% trained data and 

20% test data by using library 

From sk.learn.cross_validation import train_test_split. 

In the given dataset if the values are in different ranges I 

have used feature scaling to solve the problem in the 

machine learning. Finally by using simple linear regression 

technique I have predicted the test values by comparing 

trained values  

B. Machine Learning Methodology 

Machine learning is the use of algorithms within a program 

to learn from collected data. Within machine learning there 

are various algorithms that exist to learn from data. We 

chose to implement a Simple Linear Regression technique 

to monitor the system. A Simple Linear Regression (SLR) is 

a type of machine learning that is modeled to predict 

outcome. To create an SLR, we chose to use Python. Spyder 

3.6 is a statistical programming tool that allows for 

computations. Packages are readily available in Python for 

machine learning, statistics, graphing, probability, etc. We 

chose to use Pandas package. The Pandas package allows us 

to analyze data to use for predictions.  

IV. EXPERIMENTS AND RESULTS 

In my data set it contains 50 columns about an organization 

like salaries, experience, etc.out of these I have taken 20% 

of data to test set and remaining 80% as trained set.  

X_test-npy x_train-Npy y_test-npy y_train-npy 

1.5 2.9 37731 56642 

10.3 5.1 122391 66029 

4.1 3.2 57081 64445 

3.9 4.5 63218 61111 

9.5 8.2 116969 113812 

8.7 6.8 109431 91738 

9.6 1.3 112635 46205 
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4 10.5 55794 121872 

5.3 3 83088 60150 

7.9 2.2 101302 39891 

 - 5.9  - 8163 

 - 6  - 93940 

 - 3.7 -  57189 

Table 1. Data Set 

 
Spliting data set in to trained set and test set.. 

Fig.2 Predicted test set with trained set 

V. COMPARISONS OF RESULTS 

S.no y_pred y-test Differences Detected 

1 40835 37731 0.3104 yes 

2 123079 122391 0.0688 yes 

3 65134.6 57081 0.80536 yes 

4 63265.4 63218 0.00474 yes 

5 115603 116969 -0.1366 Yes 

6 108126 109431 -0.1305 Yes 

7 116537 112635 0.3902 Yes 

8 64200 55794 0.8406 Yes 

9 76349.7 83088 -0.67383 Yes 

10 100649 101302 -0.0653 Yes 

Table 2. Comparison Between y prediction and y test 

 

Fig. 3 Comparision Between y_pred and y_test using Data 

Preprocessing 

Comparison 

Fig 2 Fig 3 Accuracy is 78.2% 

Table 3. Comparison figures 2 & 3. 

By comparing figures 2 and 3 we can say that after 

receiving data the accuracy measured is 97.6%  

 

Fig. 4 Comparision Between y_pred and y_test after Data 

preprocessing  

           

 

Fig. 5 Comparision Between y_pred and y_test after Data 

preprocessing  using Linear Regression. 

We used Arduino Uno devices to emulate edge devices. 

Each Arduino Uno was connected to an ESP8266 WIFI 

chip. We then connected 6 edge devices to a Raspberry Pi 

Model 3 device to implement a gateway. The Raspberry Pi 

Model 3 contains 1GB of RAM which allows for machine 

learning of smaller data sets. We were limited in the number 

of devices we can connect because of the wireless driver 

used in the Raspberry Pi 1. The table-1 data was sent from 

that edge devices to the gateway. Finally I predicted the 

data as shown in table 1.2 with accuracy 97.6%.  

Comparison 

Fig 4 Fig 5 Accuracy is 97.6% 

Table 4.. Comparison figures 2 & 3. 
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VI. CONCLUSION 

As billions of IoT devices become connected together, 

securing these devices and systems is fundamental. 

Currently, there is a weakness in IoT security that needs to 

be addressed. While many people are addressing 

weaknesses in authentication and access control, securing 

the system as a whole is crucial. To accomplish this, we 

propose the use of machine learning to detect anomalies in 

an IoT system. By using Linear regression, we were able to 

train the network to detect invalid data points. During our 

tests, because of our limited availability of valid data points 

we encountered difficulties. We were able to add additional 

data points that were invalid readings and retrained our 

model to detect both valid and invalid data points. We 

determined that our approach shows promise in detecting 

invalid data points in IoT systems. We are convinced that 

the next steps is to create a large scale test bed and collect 

an increased amount of data to train the system. Finally, we 

conclude that the use of Linear Regression within an IoT 

gateway can offer the foundation for a more secure IoT 

system. 

VII. FUTURE SCOPE 

By Using Linear Regression we maintained accuracy 97.6% 

but there is deviation of 3.7%. By implementing Deep 

Learning we can achieve 100% Accuracy. Because ANN 

supports large Data sets. 
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