
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-08, Nov 2019

257 | IJREAMV05I0856066 DOI : 10.35291/2454-9150.2019.0519 © 2019, IJREAM All Rights Reserved.

Providing Security to Data Using Machine

Learning
1
Amalapurapu Srinag,

2
Tankasala Pravallika,

3
Rabbani Mahaboob

1,2,3
Assistant Professor, Vignan’s Nirula Institute of Technology & Sciences, Guntur & India,

1
srinag401@gmail.com,

2
pravallika486@gmail.com,

3
rabbanivlsi@gmail.com

Abstract Present six billions estimated devices are connected to internet; by 2020 it will be 25 billion. During this

growth security has been identified as one of the weakest areas in Internet of Things (IOT). So to meet different

challenges in securing IOT, we propose using machine learning within an IOT Gateway to help secure the system. By

using Regression in a gateway to detect anomalies in the data sent from edge devices

Keywords — Internet of Things, machine Learning, Regression, security, Gateway, Edge Device.

I. INTRODUCTION

Internet of Things (IoT) is presently a hot technology

worldwide. Government, academia, and industry are

involved in different aspects of research, implementation,

and business with IoT. IoT cuts across different application

domain verticals ranging from civilian to defense sectors.

These domains include agriculture, space, healthcare,

manufacturing, construction, water, and mining, which are

presently transitioning their legacy infrastructure to support

IoT. Today it is possible to envision pervasive connectivity,

storage, and computation, which, in turn, gives rise to

building different IoT solutions. IoT-based applications

such as innovative shopping system, infrastructure

management in both urban and rural areas, remote health

monitoring and emergency notification systems, and

transportation systems, are gradually relying on IoT based

systems.

Over the past decade, the popularity of Python as a

mainstream programming language has exploded. Notable

advantages of Python over other languages include, but are

not limited to; It is a very simple language to learn and easy

to implement and deploy, so you don't need to spend a lot of

time learning lots of formatting standards and compiling

options. It is portable, expandable and embeddable, so, it is

not system dependent, and hence supports a lot of single

board computers on the market these days, irrespective of

architecture and operating system. Most importantly, it has

a huge community which provides a lot of support and

libraries for the language.

We are living in a world surrounded by billions of

computing systems, identifying, tracking, and analyzing

some of our intimate personal information, including health,

sleep, location, and network of friends. The trend is toward

even higher proliferation of such devices, with an estimated

50 billion smart, connected devices by 2020, according to a

recent report by Cisco. These devices generate, process, and

exchange a large amount of sensitive information and data

(often collectively referred to as “security assets” or simply

“assets”). In addition to private end-user information, assets

include security-critical parameters introduced during the

system architecture definition, e.g., fuses, cryptographic,

and digital rights management (DRM) keys, firmware

execution flows, and on-chip debug modes. Malicious

access to these assets can result in leakage of company trade

secrets for device manufacturers or content providers,

identity theft or privacy breach for end users, and even

destruction of human life. Security assurance of a modern

computing device involves a number of challenges. One key

challenge is the sheer complexity of the design. Most

modern computing systems are architected via a system-on-

chip (SoC) paradigm, viz., through a composition of

predesigned hardware or software blocks [referred to as

intellectual properties (IPs)] that interact through a network

of on-chip communication fabrics. The IPs themselves are

highly complex artifacts optimized for performance, power,

and silicon overhead. Adding to the complexity are the

communication protocols used in implementing complex

system-level use cases. Finally, security assets are sprinkled

at different IPs across the design, and access to the assets is

governed by complex security policies. The policies are

defined by system architects as well as different IP and SoC

integration teams, and undergo refinement and modification

throughout the system development. This makes it

challenging to validate a system, develop architectures to

provide built-in resilience against unauthorized access, or

update security requirements, e.g., in response to changing

customer needs. Another source of challenge is the supply

chain involved in the development of a modern computing

device. There is a large number of players involved,

including IP providers, SoC design house, and foundry.

With the increasing globalization of the semiconductor

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-08, Nov 2019

258 | IJREAMV05I0856066 DOI : 10.35291/2454-9150.2019.0519 © 2019, IJREAM All Rights Reserved.

design and fabrication process, each of these players often

involves large number of organizations often across.

Geography coordinating to create a complex supply-chain

pipeline. Every component of the pipeline is vulnerable to

malicious design alterations, subversions, piracy, and other

security threats. Even in cases where a component is

designed without intended malice, aggressive time-to-

market requirements and high optimization needs often

result in errors and vulnerabilities inadvertently left in the

design, which can be exploited by a malicious adversary in

the field. Given the broad spectrum of vulnerabilities and

corresponding mitigation strategies, the subject of SoC

security today is highly fragmented.

II. RELATED WORK

Gaps within security techniques are to protect sensor

nodes, to maintain trust between devices, and to defend

against Man in the Middle attacks, Denial of Service (DOS)

attacks, etc. They concluded that there is currently extensive

work occurring within IoT authentication and access control

protocols but other work needs to be done as well. IoT

requires intelligent processing and reliable transmission

within the network. To provide this, the network

architecture contains three layers: the application layer, the

transport layer, and the sensing layer. The application layer

contains the logical link between the user and the Internet

through intelligent applications. Intelligent applications

include smart home furnishings and intelligent architectures.

The application layer uses machine learning, data mining,

data processing, and other analytics to process information

from the system and provides an output. The transport layer

consists of network communications including Wi-Fi,

Bluetooth, ZigBee, and 802.15.4. The transport layer

contains the gateway or gateways that process the

information and relay the information across the network.

The sensing layer contains edge devices that are composed

of a variety of sensors and actuators that collect data and

send it through the transportation layer to the application

layer for analysis. There are many security threats present in

the transport layer. Our approach is to add machine learning

within the transport layer to help determine if there are

interruptions in the data transfer and to monitor the edge

devices from the sensing layer. This approach will also

address by addressing the entire system security, not simply

the authentication and access control protocols.

III. APPROACH

In examining the approach, we will begin with an

overview of our test bed creation and then discuss our

machine learning methodology.

A. Test bed creation

First we installed Spyder 3.6 and imported libraries in

Spyder 3.6 after that imported dataset by using

Dataset = pd.read_csv (“Data.csv”)

After that I declared 2 variables X & Y: X selects all

columns except last one column in dataset and Y selects the

only last column in dataset by using iloc. If any missed

values are in dataset by using

From sk.learn.preprocessing import imputer

Library it calculate all the values by using mean such that it

replaces the missed data in dataset. In the given dataset we

are having France, Germany, Spain, 3 variables which are

present in X variable. So the machine learning will get

confused regarding that 3 variables because machine

learning can understand only mathematical equations and

numbers, so to solve this problem I have use dummy

variables which is known as One Hot Encoder in the

programming. After that I had split the data set in to raining

test and test set with ratio of 0.2i.e.., 80% trained data and

20% test data by using library

From sk.learn.cross_validation import train_test_split.

In the given dataset if the values are in different ranges I

have used feature scaling to solve the problem in the

machine learning. Finally by using simple linear regression

technique I have predicted the test values by comparing

trained values

B. Machine Learning Methodology

Machine learning is the use of algorithms within a program

to learn from collected data. Within machine learning there

are various algorithms that exist to learn from data. We

chose to implement a Simple Linear Regression technique

to monitor the system. A Simple Linear Regression (SLR) is

a type of machine learning that is modeled to predict

outcome. To create an SLR, we chose to use Python. Spyder

3.6 is a statistical programming tool that allows for

computations. Packages are readily available in Python for

machine learning, statistics, graphing, probability, etc. We

chose to use Pandas package. The Pandas package allows us

to analyze data to use for predictions.

IV. EXPERIMENTS AND RESULTS

In my data set it contains 50 columns about an organization

like salaries, experience, etc.out of these I have taken 20%

of data to test set and remaining 80% as trained set.

X_test-npy x_train-Npy y_test-npy y_train-npy

1.5 2.9 37731 56642

10.3 5.1 122391 66029

4.1 3.2 57081 64445

3.9 4.5 63218 61111

9.5 8.2 116969 113812

8.7 6.8 109431 91738

9.6 1.3 112635 46205

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-08, Nov 2019

259 | IJREAMV05I0856066 DOI : 10.35291/2454-9150.2019.0519 © 2019, IJREAM All Rights Reserved.

4 10.5 55794 121872

5.3 3 83088 60150

7.9 2.2 101302 39891

 - 5.9 - 8163

 - 6 - 93940

 - 3.7 - 57189

Table 1. Data Set

Spliting data set in to trained set and test set..

Fig.2 Predicted test set with trained set

V. COMPARISONS OF RESULTS

S.no y_pred y-test Differences Detected

1 40835 37731 0.3104 yes

2 123079 122391 0.0688 yes

3 65134.6 57081 0.80536 yes

4 63265.4 63218 0.00474 yes

5 115603 116969 -0.1366 Yes

6 108126 109431 -0.1305 Yes

7 116537 112635 0.3902 Yes

8 64200 55794 0.8406 Yes

9 76349.7 83088 -0.67383 Yes

10 100649 101302 -0.0653 Yes

Table 2. Comparison Between y prediction and y test

Fig. 3 Comparision Between y_pred and y_test using Data

Preprocessing

Comparison

Fig 2 Fig 3 Accuracy is 78.2%

Table 3. Comparison figures 2 & 3.

By comparing figures 2 and 3 we can say that after

receiving data the accuracy measured is 97.6%

Fig. 4 Comparision Between y_pred and y_test after Data

preprocessing

Fig. 5 Comparision Between y_pred and y_test after Data

preprocessing using Linear Regression.

We used Arduino Uno devices to emulate edge devices.

Each Arduino Uno was connected to an ESP8266 WIFI

chip. We then connected 6 edge devices to a Raspberry Pi

Model 3 device to implement a gateway. The Raspberry Pi

Model 3 contains 1GB of RAM which allows for machine

learning of smaller data sets. We were limited in the number

of devices we can connect because of the wireless driver

used in the Raspberry Pi 1. The table-1 data was sent from

that edge devices to the gateway. Finally I predicted the

data as shown in table 1.2 with accuracy 97.6%.

Comparison

Fig 4 Fig 5 Accuracy is 97.6%

Table 4.. Comparison figures 2 & 3.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-08, Nov 2019

260 | IJREAMV05I0856066 DOI : 10.35291/2454-9150.2019.0519 © 2019, IJREAM All Rights Reserved.

VI. CONCLUSION

As billions of IoT devices become connected together,

securing these devices and systems is fundamental.

Currently, there is a weakness in IoT security that needs to

be addressed. While many people are addressing

weaknesses in authentication and access control, securing

the system as a whole is crucial. To accomplish this, we

propose the use of machine learning to detect anomalies in

an IoT system. By using Linear regression, we were able to

train the network to detect invalid data points. During our

tests, because of our limited availability of valid data points

we encountered difficulties. We were able to add additional

data points that were invalid readings and retrained our

model to detect both valid and invalid data points. We

determined that our approach shows promise in detecting

invalid data points in IoT systems. We are convinced that

the next steps is to create a large scale test bed and collect

an increased amount of data to train the system. Finally, we

conclude that the use of Linear Regression within an IoT

gateway can offer the foundation for a more secure IoT

system.

VII. FUTURE SCOPE

By Using Linear Regression we maintained accuracy 97.6%

but there is deviation of 3.7%. By implementing Deep

Learning we can achieve 100% Accuracy. Because ANN

supports large Data sets.

REFERENCES

[1] M Janice Ca˜nedo, Anthony Skjellum, “Using

Machine Learning to Secure IoT Systems,” Auburn

Cyber Research Center. Samuel Ginn College of

Engineering. Auckland, New Zealand, pp. 219-221,

2016.

[2] Quamar Niyaz, Weiqing Sun, Ahmad Y Javaid, and

Mansoor Alam on A Deep Learning Approach for

Network Intrusion Detection System, 3rd ed., vol. 2.

Oxford: USA, 1892, pp.456-462, 2017.

[3] Ren Junn Hwang and Yan Zhi Huang, “Secure Data

Collection Scheme for Wireless Sensor Networks,”

31st International Conference on Advanced

Information Networking and Applications Workshops.

New Taipei City, Taiwan New York: Academic, 2017,

pp. 553-558.

[4] Bhavin Patel, Neha Pandya, on “Data Transfer Security

solution for Wireless Sensor Network,” International

Journal of Computer Applications Technology and

Research Volume 2– Issue 1, 63-66, 2013, ISSN:

2319–8656.

[5] Ionut Indre, Camelia Lemnaru, “Detection and

Prevention System against Cyber Attacks and Botnet

Malware for Information Systems and Internet of

Things,” 978-1-5090-3899-2/16/$31.00 ©2016

[6] Rodr´ıguez-Mota∗, P.J. Escamilla-Ambrosio†, J.

Happa‡, J.R.C. Nurse, “Towards IoT Cyber security

Modeling: From Malware Analysis Data to IoT System

Representation,” 978-1-5090-5137-3/16/$31.00 2016

IEEE.

[7] Alessandro Sforzin† and Mauro Conti, “RPiDS:

Raspberry Pi IDS A Fruitful Intrusion Detection

System for IoT,” 2016 Intl IEEE Conferences on

Ubiquitous Intelligence & Computing, Advanced and

Trusted Computing, Scalable Computing and

Communications, Cloud and Big Data Computing,

Internet of People, and Smart World Congress 978-1-

5090-2771-2/16 $31.00 © 2016 IEEE DOI

10.1109/UIC-ATC-ScalCom-CBDCom-IoP-

SmartWorld.2016.114

[8] S. Sridhar, Dr.S.Smys, “Intelligent Security Framework

for IoT Devices,” 978-1-5090-4715-4/17/$31.00

©2017 IEEE .

