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Abstract: This paper presents the technical details of the system implementation. The whole system is implemented by 

using mixture of C++, Java and MATLAB language as we show fit for certain tasks. For instance, we used C++ under 

Linux to implement the feature extraction process, since this tasks is time critical and is designed  to work on-line and 

in real-time. Conversely, some parts of the feature evaluation process were implemented in MATLAB and Java under 

Windows since those tasks were not time critical ones and also because MATLAB and Java languages offer a high 

number of libraries that facilitate the implementation process. 
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I. INTRODUCTION 

The overall feature extraction and evaluation process is 

depicted in Figure 1. As seen in the figure, there are three 

types of input data that the system requires as follows: the 

tuning combinations, the actual data, and the labels of the 

data. The system is design to read from already saved TCP 

dump files, and can be easily extended to sniff packets 

directly from the network. In order to analyze the data, the 

system requires it to be labeled. In the best case scenario 

this can be provided upfront through a labeling file, or can 

be approximated at the runtime. Thus, the system is 

designed to be independent of the data labels, which makes 

the third input of the system optional. The first processing 

unit that the data goes through is the Framework for Real 

Time Network Feature Construction module.  

This module is design to be a highly customizable, stand-

alone application that based on the feature classification 

schema, produces a total of 671 feature for each individual 

packet that it. Once the features are produced they are sent 

to the Statistical Profiler Module, where profile creation, 

protocol and attack filtering happens. Since for attack 

filtering the system needs to know the exact label of the 

data, in parallel with the feature extraction process, there is 

a packet labeling process which consists of a Detection 

Module, and an Alert Aggregator that works together for 

attack label extraction. These two modules will be bypassed 

in the event when the labels are already provided through 

an external labeling file. 

 

Figure 1: The overall view of the implementation block 

diagram. 

The profile produced by the Statistical Profiler Module are 

temporarily saved in a custom-made database, which allows 

the next processing level to use them once all the profiles 

are computed. Furthermore, a second functionally of the 

Statistical Profiler Module is to estimate the potential 

number of false positives that each feature may produce 

under certain tunings. Once this task is done, the results are 

saved in the False Positives DB. The last processing step is 

performed by the Feature Evaluation Module. This module 

implements the core of our proposed evaluation. It has as 

input both the feature profiles as well as the feature false 

positive estimation, and it produces the final results. 

In order to verify the experimental results, the packets and 

the associated features that are produced by the Connection 

Reconstruction & Feature Extraction Module are also sent 

to a Feature Performance Testing Module that empirically 
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evaluates the performance of each individual feature and 

sends the results to the Display Module. 

II. DETECTION MODULE 

For labeling purposes we use an off-the-shelf product for 

the intrusion detection when no labels are provides for the 

given dataset. For the purpose of this work we choose to 

work with Snort, an open source intrusion detection system. 

Snort system uses a series of preprocessor modules and also 

rules that are customized to identify certain types of attacks. 

For instance, for scanning attacks, we use the sports can 

preprocessor, while for DoS and DDoS attacks we use the 

DoS and DDoS rules from Snort. We acknowledge that due 

to the nature of network data, there isn't any ideal solution 

that will detect all types of attacks with zero false positive 

and misclassified instances. That is why the final alerts that 

an IDS produces may not be correct all the time. However, 

despite these drawbacks this labeling procedure remains the 

sole option for unlabeled datasets. The output of Snort is 

saved in a comma separated file.   The file contains for each 

individual alert the following information: alert time-stamp, 

message, protocol, source and destination IP, and source 

and destination ports. The output is dumped into a comma 

separated file by using the following line in the snorstconf 

file: output alert csv: alert.csv timestamp, msg, proto, src, 

srcport, dst, dstport. 

III. ALERT AGGREGATOR 

The aim of the alert aggregator module is to reduce the 

number of alerts generated by the Detection Module. It is 

designed to implement the following tasks: 

 Filter the intrusions that are not relevant by 

removing those intrusions that are out of the scope 

of this study. For instance, intrusions that are on 

different protocols than the ones considered in our 

experimental results (i.e., TCP, UDP, and ICMP) 

 Merge multiple alerts that share the same attributes 

(e.g., attackers, victim, type of intrusion) into a 

single intrusion. For instance, merging the same 

alert that appears at two or more distinct times. 

 Merge multiple alerts that share the same attacker 

and multiple victims into a single alert. Examples of 

such scenarios can be horizontal scanning, DDoS 

attacks that can be farther reported as a single alert. 

The implementation of this module is done using Java, and 

it consists of a single class that parses the output of the 

output of the detection engine and returns a more compact 

set of alerts that later on are used by Statistical Profile 

Module. Note that both, the Detection Modula and the Alert 

Aggregator Module are bypassed in the case when the 

labels of the dataset are provided. 

 

IV. STATISTICAL PROFILER MODULE 

The next processing step is the attack and normal profile 

generation. The task is accomplished by the Statistical 

Profiler Module. Figure 2 depicts the underlying block 

diagram of this module. This module uses the provided 

attack labels to filter out the intrusive and normal behavior 

of each individual feature, and stores the corresponding 

statistical data into uniquely identifiable profiles. Each 

profile keeps track of the mean   and standard deviation   

statistics of a particular feature during the normal or 

intrusive stages. It is known that the features tend to have 

different values for different protocols. For instance, the 

size of the ICMP packets is expected to be smaller than the 

size of TCP packets. Thus, instead of creating a single 

profile for the normal behavior of a feature, our system 

creates individual normal profiles for each protocol that 

applies to the current feature.  

 

Figure 2: The overall view of the Statistical Profiler 

Module block diagram. 

Let    represents the i
th

 feature to be analyzed   denote the 

j
th 

encountered intrusion, and   represent the k
th 

tuning 

factor selected. Consequently, two types of profiles are 

defined as follows: 

 Normal profile: A normal profile is uniquely 

identified by       tuple, and characterizes a 

particular feature  Extracted using   tuning during 

the normal network operation. The profile keeps 

track of the          and          Statistical 

representing the normal mean and standard 

deviation during the previously specified scenario. 

 Intrusive profile: An intrusive profile is uniquely 

identified by            tuple, and characterizes 

a particular feature  extracted using    tuning 

while under the   attack. Similarly, the profile 

keeps track of the              and              

Statistics representing the mean and standard 

deviation of the intrusive behavior. 

All these statistical profiles are stored in the DB Profiles 

database, and are constantly updated. Note that the    factor 

depends on the type of the current feature  . 

The module also evaluates the false positives that each 

features produces. The False Positive Evaluation sub 

module is responsible for this task, and the detail algorithms 

that it implements are described. Once the evaluation is 

done, the false positive predictions              are saved 
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into False PositiveDB. The database keeps for each feature 

  the corresponding       value. The process of extracting 

profiles and false positive prediction is repeated once for 

each TCP dump file and tuning combinations, until all the 

possible combinations are exhausted. 

V. FEATURE PERFORMANCE TESTING MODULE 

The purpose of this module is to empirically evaluate the 

performance of each individual feature in the detection 

process given a set of attacks and corresponding tunings. 

The module is depicted in Figure 3 and implements two 

functions. The first one is an anomaly detection module that 

mines the data for possible instructions, and the second 

function performs the assessment on the alerts that the 

anomaly detection module produces. Once that is done, it 

reports the final performance to the Display Module. We 

choose to work with a very simplistic threshold-based 

anomaly detection algorithm that uses a lower and upper 

control limit to define the boundaries of the normal values. 

The two thresholds are computed during the training phase 

and are set on both sides of the normal population mean at 

five types of equations. During the detection phase, an 

anomaly is signaled for each individual point that exceeds 

the two boundaries. 

 

Figure 3: The overall view of the block diagrams for the 

Feature Performance Testing Module and Display Module. 

For this purpose, the data from each dataset has been 

divided into 2 parts, one for training and one for testing. 

The training part consists of 80% of the normal data 

whereas the testing part consists of the rest 20% plus all the 

intrusions in the datasets. The detection results are 

computed for each individual tuning value and feature. The 

average of those individual runs is further reported. For 

statistical significance, the best and worst cases are 

excluded. The Performance Assessment Module receives 

the generated alerts from the Detection Module and 

compares them with the true attack labels that it has access 

to. The module computes four main evaluation functions as 

follows: 

 The number of detected Intrusions: This 

value represents the number of actual attacks 

detected by the current feature during the 

testing phase. 

 The number of misclassified Intrusions: 

This value represents the number of attacks 

that the current feature misclassifies. 

 True positive rate: This value represents the 

percentage of correctly classified intrusions 

over the total number of intrusions that the 

current feature produces while in the testing 

phase. 

 False positive rate: This value represents the 

percentage of normal data incorrectly 

classified as intrusion by the current feature 

while in the testing phase. 

VI. SOFTWARE TESTING 

The numerous building blocks of the system combined with 

the massive amount of data that it processes forced us to 

empirically test end evaluate the performance and reliability 

of each individual building block, as well as of the whole 

system. The whole system (as well as all its building 

blocks) was thoroughly checked for programming mistakes 

and software failure. To accomplish this goal, we use static 

and dynamic testing. Static testing is the forces of 

inspecting the source code without actually running it; 

whereas, dynamic testing involves running the code with a 

given set of test cases. The dynamic testing was done using 

unit testing methodology, where a set of unit tests were 

applied to all the subcomponents of each module. Finally, 

black box testing methodology was used to check the 

functionality of each main building block against its 

requirements. For instance, in the case of Connection 

Reconstruction & Feature Extraction module we used a 

small testing dataset consisting of several connections. We 

computed the expected result for each of the studied 

features and then we compared that against the output of the 

program.  

VII. CONCLUSION 

In this paper we presented the technical details of the 

implementation. In particular, the feature construction 

process was in detail explained, and also the feature 

evaluation process. The logistics around data labeling and 

empirical evaluations were outlined as well. The 

implementation is done by the use of three languages (i.e., 

C++, Java, and MATLAB) that complement each other 

through the functionalities that they provide. For instance, 

for an efficient memory usage we use C++ language under 

Linux to implement the feature extraction process. 

Conversely, whenever speed of memory was not an issue, 

for convenience and also libraries that are available we used 

Java MATLAB under Windows. 
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