
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-09, Dec 2019

31 | IJREAMV05I0957010 DOI : 10.35291/2454-9150.2019.0535 © 2019, IJREAM All Rights Reserved.

Study of Frame Work for Real Time Network

Feature Construction Module, Architecture and

Implementation
1
Nabonarayan Jha,

2
Anand Singh,

1
Lecturer, Department of Mathematics, Patan Multiple Campus, Patan Dhoka, Lalitpur,

Tribhuvan University, Kathmandu, Nepal.

Department of Computer Engineering, Kantipur City College, Kathamndu, Nepal.

1
nabonarayan123@gmail.com,

2
profdranand@gmail.com

Abstract: This paper presents the technical details of the system implementation. The whole system is implemented by

using mixture of C++, Java and MATLAB language as we show fit for certain tasks. For instance, we used C++ under

Linux to implement the feature extraction process, since this tasks is time critical and is designed to work on-line and

in real-time. Conversely, some parts of the feature evaluation process were implemented in MATLAB and Java under

Windows since those tasks were not time critical ones and also because MATLAB and Java languages offer a high

number of libraries that facilitate the implementation process.

Keywords-- MATLAB, JAVA, ICMP, TCP, DDoS

I. INTRODUCTION

The overall feature extraction and evaluation process is

depicted in Figure 1. As seen in the figure, there are three

types of input data that the system requires as follows: the

tuning combinations, the actual data, and the labels of the

data. The system is design to read from already saved TCP

dump files, and can be easily extended to sniff packets

directly from the network. In order to analyze the data, the

system requires it to be labeled. In the best case scenario

this can be provided upfront through a labeling file, or can

be approximated at the runtime. Thus, the system is

designed to be independent of the data labels, which makes

the third input of the system optional. The first processing

unit that the data goes through is the Framework for Real

Time Network Feature Construction module.

This module is design to be a highly customizable, stand-

alone application that based on the feature classification

schema, produces a total of 671 feature for each individual

packet that it. Once the features are produced they are sent

to the Statistical Profiler Module, where profile creation,

protocol and attack filtering happens. Since for attack

filtering the system needs to know the exact label of the

data, in parallel with the feature extraction process, there is

a packet labeling process which consists of a Detection

Module, and an Alert Aggregator that works together for

attack label extraction. These two modules will be bypassed

in the event when the labels are already provided through

an external labeling file.

Figure 1: The overall view of the implementation block

diagram.

The profile produced by the Statistical Profiler Module are

temporarily saved in a custom-made database, which allows

the next processing level to use them once all the profiles

are computed. Furthermore, a second functionally of the

Statistical Profiler Module is to estimate the potential

number of false positives that each feature may produce

under certain tunings. Once this task is done, the results are

saved in the False Positives DB. The last processing step is

performed by the Feature Evaluation Module. This module

implements the core of our proposed evaluation. It has as

input both the feature profiles as well as the feature false

positive estimation, and it produces the final results.

In order to verify the experimental results, the packets and

the associated features that are produced by the Connection

Reconstruction & Feature Extraction Module are also sent

to a Feature Performance Testing Module that empirically

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-09, Dec 2019

32 | IJREAMV05I0957010 DOI : 10.35291/2454-9150.2019.0535 © 2019, IJREAM All Rights Reserved.

evaluates the performance of each individual feature and

sends the results to the Display Module.

II. DETECTION MODULE

For labeling purposes we use an off-the-shelf product for

the intrusion detection when no labels are provides for the

given dataset. For the purpose of this work we choose to

work with Snort, an open source intrusion detection system.

Snort system uses a series of preprocessor modules and also

rules that are customized to identify certain types of attacks.

For instance, for scanning attacks, we use the sports can

preprocessor, while for DoS and DDoS attacks we use the

DoS and DDoS rules from Snort. We acknowledge that due

to the nature of network data, there isn't any ideal solution

that will detect all types of attacks with zero false positive

and misclassified instances. That is why the final alerts that

an IDS produces may not be correct all the time. However,

despite these drawbacks this labeling procedure remains the

sole option for unlabeled datasets. The output of Snort is

saved in a comma separated file. The file contains for each

individual alert the following information: alert time-stamp,

message, protocol, source and destination IP, and source

and destination ports. The output is dumped into a comma

separated file by using the following line in the snorstconf

file: output alert csv: alert.csv timestamp, msg, proto, src,

srcport, dst, dstport.

III. ALERT AGGREGATOR

The aim of the alert aggregator module is to reduce the

number of alerts generated by the Detection Module. It is

designed to implement the following tasks:

 Filter the intrusions that are not relevant by

removing those intrusions that are out of the scope

of this study. For instance, intrusions that are on

different protocols than the ones considered in our

experimental results (i.e., TCP, UDP, and ICMP)

 Merge multiple alerts that share the same attributes

(e.g., attackers, victim, type of intrusion) into a

single intrusion. For instance, merging the same

alert that appears at two or more distinct times.

 Merge multiple alerts that share the same attacker

and multiple victims into a single alert. Examples of

such scenarios can be horizontal scanning, DDoS

attacks that can be farther reported as a single alert.

The implementation of this module is done using Java, and

it consists of a single class that parses the output of the

output of the detection engine and returns a more compact

set of alerts that later on are used by Statistical Profile

Module. Note that both, the Detection Modula and the Alert

Aggregator Module are bypassed in the case when the

labels of the dataset are provided.

IV. STATISTICAL PROFILER MODULE

The next processing step is the attack and normal profile

generation. The task is accomplished by the Statistical

Profiler Module. Figure 2 depicts the underlying block

diagram of this module. This module uses the provided

attack labels to filter out the intrusive and normal behavior

of each individual feature, and stores the corresponding

statistical data into uniquely identifiable profiles. Each

profile keeps track of the mean and standard deviation

statistics of a particular feature during the normal or

intrusive stages. It is known that the features tend to have

different values for different protocols. For instance, the

size of the ICMP packets is expected to be smaller than the

size of TCP packets. Thus, instead of creating a single

profile for the normal behavior of a feature, our system

creates individual normal profiles for each protocol that

applies to the current feature.

Figure 2: The overall view of the Statistical Profiler

Module block diagram.

Let represents the i
th

 feature to be analyzed denote the

j
th

encountered intrusion, and represent the k
th

tuning

factor selected. Consequently, two types of profiles are

defined as follows:

 Normal profile: A normal profile is uniquely

identified by tuple, and characterizes a

particular feature Extracted using tuning during

the normal network operation. The profile keeps

track of the and Statistical

representing the normal mean and standard

deviation during the previously specified scenario.

 Intrusive profile: An intrusive profile is uniquely

identified by tuple, and characterizes

a particular feature extracted using tuning

while under the attack. Similarly, the profile

keeps track of the and

Statistics representing the mean and standard

deviation of the intrusive behavior.

All these statistical profiles are stored in the DB Profiles

database, and are constantly updated. Note that the factor

depends on the type of the current feature .

The module also evaluates the false positives that each

features produces. The False Positive Evaluation sub

module is responsible for this task, and the detail algorithms

that it implements are described. Once the evaluation is

done, the false positive predictions are saved

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-09, Dec 2019

33 | IJREAMV05I0957010 DOI : 10.35291/2454-9150.2019.0535 © 2019, IJREAM All Rights Reserved.

into False PositiveDB. The database keeps for each feature

 the corresponding value. The process of extracting

profiles and false positive prediction is repeated once for

each TCP dump file and tuning combinations, until all the

possible combinations are exhausted.

V. FEATURE PERFORMANCE TESTING MODULE

The purpose of this module is to empirically evaluate the

performance of each individual feature in the detection

process given a set of attacks and corresponding tunings.

The module is depicted in Figure 3 and implements two

functions. The first one is an anomaly detection module that

mines the data for possible instructions, and the second

function performs the assessment on the alerts that the

anomaly detection module produces. Once that is done, it

reports the final performance to the Display Module. We

choose to work with a very simplistic threshold-based

anomaly detection algorithm that uses a lower and upper

control limit to define the boundaries of the normal values.

The two thresholds are computed during the training phase

and are set on both sides of the normal population mean at

five types of equations. During the detection phase, an

anomaly is signaled for each individual point that exceeds

the two boundaries.

Figure 3: The overall view of the block diagrams for the

Feature Performance Testing Module and Display Module.

For this purpose, the data from each dataset has been

divided into 2 parts, one for training and one for testing.

The training part consists of 80% of the normal data

whereas the testing part consists of the rest 20% plus all the

intrusions in the datasets. The detection results are

computed for each individual tuning value and feature. The

average of those individual runs is further reported. For

statistical significance, the best and worst cases are

excluded. The Performance Assessment Module receives

the generated alerts from the Detection Module and

compares them with the true attack labels that it has access

to. The module computes four main evaluation functions as

follows:

 The number of detected Intrusions: This

value represents the number of actual attacks

detected by the current feature during the

testing phase.

 The number of misclassified Intrusions:

This value represents the number of attacks

that the current feature misclassifies.

 True positive rate: This value represents the

percentage of correctly classified intrusions

over the total number of intrusions that the

current feature produces while in the testing

phase.

 False positive rate: This value represents the

percentage of normal data incorrectly

classified as intrusion by the current feature

while in the testing phase.

VI. SOFTWARE TESTING

The numerous building blocks of the system combined with

the massive amount of data that it processes forced us to

empirically test end evaluate the performance and reliability

of each individual building block, as well as of the whole

system. The whole system (as well as all its building

blocks) was thoroughly checked for programming mistakes

and software failure. To accomplish this goal, we use static

and dynamic testing. Static testing is the forces of

inspecting the source code without actually running it;

whereas, dynamic testing involves running the code with a

given set of test cases. The dynamic testing was done using

unit testing methodology, where a set of unit tests were

applied to all the subcomponents of each module. Finally,

black box testing methodology was used to check the

functionality of each main building block against its

requirements. For instance, in the case of Connection

Reconstruction & Feature Extraction module we used a

small testing dataset consisting of several connections. We

computed the expected result for each of the studied

features and then we compared that against the output of the

program.

VII. CONCLUSION

In this paper we presented the technical details of the

implementation. In particular, the feature construction

process was in detail explained, and also the feature

evaluation process. The logistics around data labeling and

empirical evaluations were outlined as well. The

implementation is done by the use of three languages (i.e.,

C++, Java, and MATLAB) that complement each other

through the functionalities that they provide. For instance,

for an efficient memory usage we use C++ language under

Linux to implement the feature extraction process.

Conversely, whenever speed of memory was not an issue,

for convenience and also libraries that are available we used

Java MATLAB under Windows.

REFERENCES

[1] A. Blum and R.L. Rivest, Training a 3-node neural

network is np-complete, COLT '88: Proceedings of the

first annual workshop on Computational learning

theory (San Francisco, CA, USA), Morgan Kaufmann

Publishers Inc., 1988, pp. 9{18.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-09, Dec 2019

34 | IJREAMV05I0957010 DOI : 10.35291/2454-9150.2019.0535 © 2019, IJREAM All Rights Reserved.

 [10] A.L. Blum and P. Langley, Selection of relevant

features and examples in machine learning, Artificial

Intelligence, 97(1997), no. 1, 245{271.

 [11] DARPA, Darpa intrusion detection and evaluation

dataset 1999, http://www.ll.mit.edu, Website, Last

accessed February 2006.

 [3] J.L. Verdegay A. Sancho-Royo, Methods for the

construction of membership functions, vol. 14, 1999,

pp.1213{1230

Joachim Biskup and Ulrich Flegel, Transaction-based

pseudonyms in audit data for privacy

respectinfintrusion detection, Proceedings of Recent

Advances in Intrusion Detection, 3rd International

Symposium, (RAID 2000) (Toulouse, France) (H.

Debar, L. M, and S. F. Wu, eds.), Lecture Notes in

Computer Science, Springer-Verlag Heidelberg,

October 2000, pp. 28{48.

 [2] KDD 99, The fifth international conference on

knowledge discovery and data mining

http://kdd.ics.uci.edu/, Website, Last accessed October

2005.

 [4] Magnus Almgren and Ulf Lindqvist, Application-

integrated data collection for security monitoring,

Proceedings of Recent Advances in Intrusion

Detection, 4th International Symposium, (RAID) 2001)

(Davis, CA, USA) (W, L. M Lee, and A. Wespi, eds.)

Lecture Notes in Computer Science, Springer-Verlag

Heidelberg, October 2001, pp. 22{36.

 [6] M. Ben-Basaat, Handbook of Statistics 2:

Classification, pattern recognition and reduction of

dimensionally, ch. Use of Distance Measures,

Information Measures and Error Bounds in Feature

Evaluation, pp. 773{791, North Holland, 1982.

 [5] R. Basu, R.K. Cunningham, S.E.Webster, and R.P.

Lippmann, Detecting low-profile probes and novel

denial-of-service attacks, Proceedings of the workshop

on Information Assurance and Security, United States

Military Academy (IEEE, ed.), June 2001, pp. 5{10.

[9] Tepdump public repository,

http://www.tcpdump.org/,March 10, 2005, last access.

[7] V. Berk, G. Bakos, and R. Morris, Designing a

framework for active worm detection on global

networks, Proceedings of the IEEE International

Workshop on Information Assurance (Darmstadt,

Germany), March 2003, pp. 13{23).

