

Pairwise S**GLC Continuous Maps in Bitopological Space

¹V. Subha, ²N. Seenivasagan, ³A. Edward Samuel

¹Research Scholar, ^{2,3} Assistant Professor, ^{1,2,3}Department of Mathematics,

^{1,3}Govt Arts college, Kumbakonam, India(Affiliated to Bharathidasan University), ²Govt Arts

college for women, Nilakottai India,

¹subhasavi870@gmail.com, ²vasagan2000@gmail.com, ³aedward74_thrc@yahoo.co.in

Abstract- The purpose of this paper is to introduce the distinct concepts of pairwise S**GLC – continuity and we discuss some of their consequences and the restriction maps of pairwise S**GLC – continuity.

Keywords – *pairwise S**GLC* – *continuous, pairwise S**GLC* – *irresolute.*

I. INTRODUCTION

The difference of two closed subsets of an n - dimensional Euclidean space was studied by Kuratowski and Sierpinski [10] in 1921 and indirectly their work represents the idea of a locally closed subset of a topological space (X, τ) . Bourbaki [1] defined a subset of a topological space as locally closed if it is the intersection of an open set and a closed set. Ganster and Reilly [6] introduced locally closed sets in topological spaces and studied three different ideas of general continuity and Stone[12] called locally closed sets as FG sets. H. Maki, P. Sundaram and K. Balachandran^[11] introduced the concept of generalized locally closed sets and obtained different notions of Ganster, Arockiarani and generalized continuities. Balachandran[7] introduced regular generalized locally closed sets and rglc-continuous functions and discussed some of their properties.

K. Chandrasekhara Rao and K.Joseph[2] introduced the concepts of semi star generalized open sets and closed sets in topological spaces.K. Chandrasekhara Rao and K. Kannan[3,4] introduced the concepts of semi star generalized locally closed sets, semi star generalized maximal spaces with the help of semi star generalized closed sets.

J.C. Kelly[9] introduced the concept of bitopological spaces. M.Jelic[8] introduced lodcally closed sets and locally closed continuity in bitopological spaces.K. Chandrasekhara Rao and K. Kannan[5] introduced the concepts of semi star generalized closed sets in bitopological spaces.

In this paper the concepts of Pairwise $S^{**}GLC$ – continuous, Pairwise $S^{**}GLC$ – irresolute are introduced and study their basic properties.

II. PRELIMINARIES

In this section (X , τ_1 , τ_2) or simply X denotes a bitopological space .By $\tau_i - S^*GO$ (X , τ_1 , τ_2){ respectively, $\tau_i - S^*GC$ (X , τ_1 , τ_2)}, we shall mean the collection of all $\tau_i - s^*g$ open sets(respectively, $\tau_i - s^*g$ closed sets) in (X , τ_1 , τ_2).

For any subset $A \subseteq X$, τ_i int (A) and τ_i cl (A) denote the interior and closure of a set A with respect to the topology τ_i respectively. A^c denotes the complement of A in X unless explicitly stated.

Definition 2.1 A subset of a bitopological space (X , τ_1 , τ_2) is called

- n Engineering a) $\tau_i \tau_j$ semi open if there exists a τ_1 open set U such that $U \subseteq A \subseteq \tau_2$ cl(U), i, j =1, 2, i $\neq j$.
 - b) $\tau_i \tau_i$ semi closed if X A is $\tau_i \tau_i$ semi open.
 - c) $\tau_i \tau_j$ generalized closed ($\tau_i \tau_j$ g closed) if τ_j cl(U) \subseteq U whenever A \subseteq U and U is τ_i -open in X.
 - d) $\tau_i \tau_j$ generalized open ($\tau_i \tau_j$ g open) if X A is $\tau_i \tau_j$ - g closed.
 - e) $\tau_i \tau_j$ -semi star generalized closed ($\tau_i \tau_j s*g$ closed) if τ_j - cl(U) \subseteq U whenever A \subseteq U and U is τ_i - semi open in X.
 - $\begin{array}{ll} f) & \tau_i\tau_j \ -semi \ star \ generalized \ open \ (\tau_i\tau_j \ \ s*g \\ open) \ if \ X-A \ is \ \tau_i\tau_j \ \ s*g \ closed \ in \ X. \end{array}$

Definition 2.2 A subset A of a bitopological space (X , τ_1 , τ_2) is said to be a

a) $\tau_i \tau_j$ -locally closed set if $A = G \cap F$, where G is τ_1 - open & F is τ_2 - closed in X, i,j =1, 2, i $\neq j$.

- b) $\tau_i \tau_j$ -locally semi closed set if $A = G \cap F$, where G is τ_1 - open & F is τ_2 - semi closed in X, i, j = 1, 2, i \neq j.
- c) $\tau_i \tau_j$ semi locally closed set if $A = G \cap F$, where G is τ_1 - semi open & F is τ_2 - semi closed in X, i, j = 1, 2, i \neq j.
- d) $\tau_i \tau_j$ g locally closed set if $A = G \cap F$, where G is τ_1 g open & F is τ_2 g closed in X , i , j = 1, 2, i \neq j.
- e) $\tau_i \tau_j$ -sg locally closed set if $A = G \cap F$, where G is τ_1 - sg open & F is τ_2 - sg closed in X, i, $j = 1, 2, i \neq j$.
- f) $\tau_i \tau_j$ -s*g locally closed set if $A = G \cap F$, where G is τ_1 - s*g open & F is τ_2 - s*g closed in X, i, j = 1, 2, i \neq j.
- g) $\tau_i \tau_j$ -sg locally closed* set if $A = G \cap F$, where G is τ_1 sg open & F is τ_2 closed in X, i, j = 1, 2, i $\neq j$.
- h) $\tau_i \tau_j$ -sg locally closed** set if $A = G \cap F$, where G is τ_1 - open & F is τ_2 - sg closed in X , i , j = 1, 2, i \neq j.
- i) $\tau_i \tau_j$ -gs locally closed set if $A = G \cap F$, where G is τ_1 - gs open & F is τ_2 - gs closed in X, i, $j = 1, 2, i \neq j$.

Definition 2.3 A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is

- a) Pairwise 1 c continuous if $f^{-1}(U)$ is $\tau_i \tau_j$ locally closed for each σ_j - open set U in Y, i, $j = 1, 2, i \neq j$.
- b) Pairwise glc continuous if $f^{-1}(U)$ is $\tau_i \tau_j g$ locally closed for each σ_j - open set U in Y, i, $j = 1, 2, i \neq j$.
- c) Pairwise sglc continuous if $f^{-1}(U)$ is $\tau_i \tau_j$ sg - locally closed for each σ_j - open set U in Eng Y, i, j = 1, 2, i \neq j.
- d) pairwise gslc continuous if f⁻¹ (U) is $\tau_i \tau_j -$ gs locally closed for each σ_j open set U in Y, i, j = 1, 2, i $\neq j$.
- e) pairwise s*glc continuous if f⁻¹ (U) is $\tau_i \tau_j$ s*g locally closed for each σ_j - open set U in Y, i, j = 1, 2, i $\neq j$.

III. Pairwise S**GLC continuous Maps

 $\tau_2\tau_1$ - $s^{**}g\,$ - locally closed**] for each σ_2 - open set U in Y.

Definition 3.3 A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise S**GLC - continuous { resp. pairwise S**GLC* continuous, pairwise S**GLC** - continuous } if f is both $\tau_1\tau_2$ - S**GLC - continuous { resp. $\tau_1\tau_2$ - S**GLC* continuous, $\tau_1\tau_2$ - S**GLC** - continuous} and $\tau_2\tau_1$ -S**GLC - continuous { resp. $\tau_2\tau_1$ - S**GLC* - continuous, $\tau_2\tau_1$ - S**GLC** - continuous}.

Example 3.4 Let $X = Y = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{c, d\}, \{c\}\}$ and $\tau_2 = \{\phi, X, \{a, b\}, \{a, b, d\}\}, \sigma_1 = \{\phi, Y, \{c, d\}\}, \sigma_2 = \{\phi, Y, \{a, b\}\}$. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is both pairwise S**GLC - continuous and pairwise S**GLC** - continuous.

Example 3.5 Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{b, c\}, \{b\}\}$ and $\tau_2 = \{\phi, X, \{a\}\}, \sigma_1 = \{\phi, Y, \{b, c\}\}, \sigma_2 = \{\phi, Y, \{c\}\}.$ Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is pairwise S**GLC* - continuous.

Definition 3.6. A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is strongly $\tau_1\tau_2 - S^{**}GLC$ – continuous {resp. strongly $\tau_1\tau_2 - S^{**}GLC^*$ - continuous, strongly $\tau_1\tau_2 - S^{**}GLC^{**}$ continuous} if $f^{-1}(U)$ is τ_1 - open for each $\sigma_1\sigma_2 - s^{**}g$ locally closed [resp. $\sigma_1\sigma_2 - s^{**}g$ - locally closed*, $\sigma_1\sigma_2 - s^{**}g$ s^**g - locally closed**] set U in Y.

Definition 3.7 A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is strongly $\tau_2\tau_1 - S^{**}GLC$ - continuous {resp. strongly $\tau_2\tau_1 - S^{**}GLC^*$ - continuous, strongly $\tau_2\tau_1 - S^{**}GLC^{**}$ continuous} if $f^{-1}(U)$ is τ_2 - open for each $\sigma_2\sigma_1 - s^{**}g$ locally closed [resp. $\sigma_2\sigma_1 - s^{**}g$ - locally closed*, $\sigma_2\sigma_1 - s^{**}g$ s^**g - locally closed**] set U in Y.

Example 3.8 Let $X = Y = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{c, d\}, \{c\}\}$ and $\tau_2 = \{\phi, X, \{a, b\}, \{a, b, d\}\}, \sigma_1 = \{\phi, Y, \{c, d\}\}, \sigma_2 = \{\phi, Y, \{a, b\}\}$. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is both strongly pairwise S**GLC - continuous and strongly pairwise S**GLC** - continuous.

Example 3.9 Let $X = Y = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{c, d\}, \{c\}\}$ and $\tau_2 = \{\phi, X, \{c, d\}, \{a, b, d\}\}, \sigma_1 = \{\phi, Y, \{c, d\}\}, \sigma_2 = \{\phi, Y, \{a, b\}\}$. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is both strongly pairwise S**GLC** - continuous.

Definition 3.11 A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $\tau_2\tau_1 - S^{**}GLC - irresolute {resp. <math>\tau_2\tau_1 - S^{**}GLC^* -$

irresolute, $\tau_2\tau_1 - S^{**}GLC^{**}$ - irresolute} if $f^{-1}(U)$ is $\tau_2\tau_1 - s^{**}g$ locally closed [resp. $\tau_2\tau_1 - s^{**}g$ locally closed*, $\tau_2\tau_1 - s^{**}g$ locally closed**] for each $\sigma_2\sigma_1 - s^{**}g$ locally closed set {resp. $\sigma_2\sigma_1 - s^{**}g$ - locally closed*, $\sigma_2\sigma_1 - s^{**}g$ - locally closed**} U in Y.

Definition 3.12 A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise S**GLC - irresolute {resp. pairwise S**GLC* irresolute, pairwise S**GLC** - irresolute} if f is both $\tau_1\tau_2$ -S**GLC- irresolute {resp. $\tau_1\tau_2$ - S**GLC* - irresolute, $\tau_1\tau_2$ -S**GLC** - irresolute} and $\tau_2\tau_1$ - S**GLC - irresolute {resp. $\tau_2\tau_1$ - S**GLC* - irresolute {resp. $\tau_2\tau_1$ - S**GLC* - irresolute}.

Example 3.13 Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b, c\}\}, \sigma_1 = \{\phi, Y, \{a\}, \{a, b\}\}, \sigma_2 = \{\phi, Y, \{b, c\}, \{c\}\}$. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is both pairwise S**GLC - irresolute & pairwise S**GLC** - irresolute.

Example 3.14 Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{c\}, \{b, c\}\}$ and $\tau_2 = \{\phi, X, \{a, b\}, \{a\}\}, \sigma_1 = \{\phi, Y, \{c\}\}\}, \sigma_2 = \{\phi, Y, \{a, b\}\}$. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is pairwise S**GLC* - irresolute.

Theorem 3.15

- a) Every pairwise lc continuous is pairwise S**GLC - continuous function
- b) Every pairwise S**GLC* continuous function is pairwise S**GLC continuous.
- c) Every pairwise S**GLC** continuous function is pairwise S**GLC*- continuous.
- d) Every pairwise S**GLC irresolute function is pairwise S**GLC continuous.

Proof.(a) Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be pairwise lccontinuous. Then $f^{-1}(U)$ is $\tau_i \tau_j$ - locally closed for each σ_i open set U in Y, $i \neq j$ and i, j = 1, 2. Then $f^{-1}(U)$ is $\tau_i \tau_j s^{**}g$ - locally closed for each σ_i - open set U in Y. Therefore we have $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise $S^{**}GLC$ continuous.

(b) Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be pairwise $S^{**}GLC^*$ - continuous function. Then $f^{-1}(U)$ is $\tau_i \tau_j$ - $S^{**}GLC^*$ for each σ_i - open set U in Y, $i \neq j$ and i, j = 1, 2. Then $f^{-1}(U)$ is $\tau_i \tau_j$ - $S^{**}GLC$ for each σ_i - open set U in Y.Hence $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise $S^{**}GLC$ continuous.

(c) and (d) are similar to prove.

Remark 3.16 The reverse of the above theorems need not be true as seen from the following examples.

Example 3.17a) In example 3.4, f is pairwise $S^{**}GLC$ - continuous, but neither pairwise lc - continuous nor pairwise $S^{**}GLC^*$ - continuous.

b) Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a, c\}\}$ and $\tau_2 = \{\phi, X, \{b\}, \{a, b\}\}, \sigma_1 = \{\phi, Y, \{c\}\}, \sigma_2 = \{\phi, Y, \{a, b\}\}$. Let f: (X, τ_1, τ_2) \rightarrow (Y, σ_1, σ_2) be a function defined by f (a) = f (b) = b, f (b) = c. Then f is pairwise S**GLC - continuous.

We know that every $\tau_i\tau_j$ - $s^{**}g$ closed sets is $\tau_i\tau_j$ - s^*g closed, $\tau_i\tau_j$ - g closed, $\tau_i\tau_j$ - g closed, $\tau_i\tau_j$ - g closed, $i, j = 1, 2, i \neq j$ and therefore we have every pairwise $S^{**}GLC$ - continuous function is pairwise s^*glc - continuous, pairwise glc - continuous, pairwise glc - continuous, pairwise glc - continuous.

Anyhow none of these implications can be reversed. The following example supports the claim.

Example 3.18 Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a, b\}\}$ and $\tau_2 = \{\phi, X, \{c\}\}, \sigma_1 = \{\phi, Y, \{b, c\}\}, \sigma_2 = \{\phi, Y, \{a\}\}.$ Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is pairwise glc - continuous and pairwise gslc - continuous but not pairwise S**GLC - continuous.

Theorem 3.19 (a) If $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise S**GLC** continuous and W be a subset of X. Then the restriction map $f/w : (W, \tau_{1w}, \tau_{2w}) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise S**GLC** - continuous.

(b) If $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise S**GLC* continuous and W be a subset of X. Then the restriction map $f/w : (W, \tau_{1w}, \tau_{2w}) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise S**GLC* - continuous.

Proof. (a) Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be pairwise $S^{**}GLC^{**}$ continuous. Then $f^{-1}(U)$ is $\tau_i\tau_j - s^{**}g$ locally closed** for each σ_i - open set U in Y, $i \neq j$ and i, j = 1, 2. Therefore, $f^{-1}(U)$ is the intersection of an τ_i - open set G and F is $\tau_j - s^{**}g$ closed set in (X, τ_1, τ_2) . Now $(f_W)^{-1}(U) = (G \cap W) \cap (F \cap W)$. Since G is τ_i - open in X then $G \cap W$ is τ_i - open in W and since F is $\tau_j - s^{**}g$ closed in X then $F \cap W$ is $\tau_j - s^{**}g$ closed in W. Hence f/w : $(W, \tau_{1w}, \tau_{2w}) \to (Y, \sigma_1, \sigma_2)$ is pairwise $S^{**}GLC^{**}$ continuous.

(b) Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be pairwise $S^{**}GLC^*$ continuous. Then $f^{-1}(U)$ is $\tau_i \tau_j - s^{**}g$ locally closed* for each σ_i - open set U in Y, $i \neq j$ and i, j = 1, 2. Therefore, $f^{-1}(U)$ is the intersection of an τ_i - open set G and F is τ_j $s^{**}g$ closed set in (X, τ_1, τ_2) . Now $(f/_W)^{-1}(U) = (G \cap W)$ $\cap (F \cap W)$. Since G is τ_i - open in X then $G \cap W$ is τ_i open in W and since F is τ_j - $s^{**}g$ closed in X then $F \cap W$ is τ_j - $s^{**}g$ closed in W. Hence $f/w : (W, \tau_{1w}, \tau_{2w}) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise $S^{**}GLC^*$ continuous.

IV. CONCLUSION

In this work we have established the concepts of pairwise $S^{**}GLC$ – continuity and pairwise $S^{**}GLC$ irresolute functions which is applicable in most areas of pure

mathematics. However, there is scope for further research studies of these topics that will be investigated in our future works.

REFERENCES

[1] N. Bourbaki, General topology, Part I, Addison Wesley, Reading, Mass., 1966.

[2] K.Chandrasekhara Rao and K.Joseph , Semi star generalized closed sets in topological spaces, Bulletin of Pure and Applied Sciences, 19 E (No 2) 2000, 281 - 290.

[3] K.Chandrasekhara Rao and K.Kannan, s*g locally closed sets in topological spaces, Bulletin of Pure and Applied Sciences, 26E(1),2007, 59-64.

[4] K.Chandrasekhara Rao and K.Kannan, some properties of s*g locally closed sets, Journal of Advanced Research in pure Mathematics, 1(1), 2009,1-9.

[5] K.Chandrasekhara Rao and K.Kannan, s*g locally closed sets and s*g locally open sets in bitopological spaces, Varahmihir Journal of Mathematical Sciences, 5(2),2005,473-485

[6] M.Ganster and I.L.Reilly, Locally closed sets and LC -Continuous functions, International J. Math. and Math. Sci., 12 (1989), 417-424.

[7] M. Ganster, Arockiarani and K. Balachandran, Regular generalized locally closed sets and RGLC continuous functions, Indian J. Pure and Appl. Math., 27(3)(1996), 235-244.

[8] M. Jelic, On Pairwise LC - continuous mappings, Indian J. pure appl. Math., 22(1) : 55 - 59, January 1991.

[9] J. C. Kelly, Bitopological Spaces, Proc. London Math Society, 13(1963), 71 - 89.

[10] C. Kuratowski, W. Sierpinski, surles differences deux ensembles fermes, Tohoku Math J., 20 (1921), 22-25.

[11] H.Maki, P. Sundaram and K. Balachandran, Generalized locally closed sets and glc -continuous functions, Indian J. Pure Appl. Math., 27(3), (1996), 235 – 244.

[12] A. H. Stone, Absolutely FG spaces, Pro. Amer. Math. Soc., 80(1980), 515-520.