
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-11, Feb 2020

205 | IJREAMV05I1159081 DOI : 10.35291/2454-9150.2020.0091 © 2020, IJREAM All Rights Reserved.

Optimization approach to improving coding

efficiency based on Object-oriented metrics and

COCOMO-II technique
1
Dr. Sudhir Kumar Meesala,

2
Ragini yadav

1
Department of CSE, Assistant professor, Chouksey engineering college, India.

Abstract: With the increasing size and complexity of software’s, Software development has become a more clamorous

process and hence needs to take care of even the simplest activity in the development process. The problems being faced

in the software developments are quality degradation, cost overrun, schedule overrun.

Measurement programs in software organizations are an important source of control over the quality, defects

evaluation and cost in software development. An effective measurement process requires continuous evaluation of

different software metrics and integrating them into the software development process. Object-oriented metrics that

can be used to measure the quality, Object-oriented design focus on measurements that are applied to the class and

design characteristics.

In this paper, it is suggested that a combination of the methods should be used to Increase the Correctness and

accuracy, how to improve the coding efficiency of an impact on the results when evaluating the project using object-

oriented approaches based on model MOOD Metrics, CK metrics and COCOMO-II. Evaluating code using object-

oriented approaches identifies some factors. This directly deals with the quality of the software. Using these results is

very beneficial to improve software estimation, quality training, and research used for more accurate estimations of

project milestones, and developing a software system that contains minimal faults.

Key Words: Object oriented, Mood, CK, COCOMO, Defects, measurement, coding etc

I. INTRODUCTION

Software engineering is the discipline which paves the

roadmap for development of software’s within given

schedule and effort and with the desired quality. Object

oriented design metrics is an essential part of software

environment. The main objective of analyzing metrics is to

improve the quality of the software.

Software measurements have become essential in software

engineering. Many of the software developer’s measure

characteristics of the software to make sure those

requirements are consistent and complete, the design is of

high quality, and the code is ready to be tested. Effective

project manager’s measure attributes of process and product

to be able to tell when the software should be ready for

delivery and/or the budget has been exceeded.

Regular feedback from the development process is

helpful in determining the status of the task and the project.

Tracking gives opportunity to the project manager to take

care of any unexpected situation.

II. PROJECT MANAGEMENT

Project Management is the organization and management of

resource team in such a way that all the work required to

complete a project can be done within defined scope,

quality, and time and cost constraints. The purpose of

project management is to first find out the activities needed

to take the project to its end and secondly to allocate

resources to these activities in a planned way.

III. SOFTWARE MEASUREMENT

Measurement programs in software organizations are an

important source of control over quality, defects evaluation

and cost in software development. Software measurement

has evolved into a key software engineering discipline.

Using some Object oriented methods identifies some key

factor of coding and that are used for

IV. OBJECT ORIENTED DESIGN

Object-oriented design is a method of design encompassing

the process of object oriented decomposing design is

concerned with developing an object-oriented module of a

software system to apply the identified requirements.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-11, Feb 2020

206 | IJREAMV05I1159081 DOI : 10.35291/2454-9150.2020.0091 © 2020, IJREAM All Rights Reserved.

Designer will use OOD because it is a faster development

process, module based architecture, contains high reusable

features, increases design quality and so on.

V. COCOMO II MODEL

Budgeting, planning and tracking, risk analysis and return

on investments analyses are some of the uses of software

cost, schedule and effort estimation. COCOMO II is one of

the most widely used parametric models, for effort and

schedule estimation.

VI. COMPARISON OF THE COCOMO II

TOOLS

The tool developed as the result of thesis stores the

information about the estimates and the actual data of the

projects in to be used later by the tracking and calibration

module and hence solves the problem of tracking and

manual data feeding for calibration. measurement various

model. This directly deals with the quality of the software.

Table 3.1: Comparison of the Tools

 CoStar Construx

Estimate

COCOM

O II

1999.0

SLIM-

ESTIMA

TE

Estimation √ √ √ √

Estimation

Model Used

COCOMO

II

COCOMO

II

COCOMO

II

SLIM

Project

Planning and

Tracking

x x X √

Report

Generation

√ √ X x

Calibration √ √ √ √

Calibration

Method Used

Regression

Method

Regression

Method

Regression

Method

Regression

Method

VII. STATEMENT OF THE PROBLEM

Study of tools has revealed the following drawbacks in the

current scenario.

1. Not define Efficiency of developer and comparison

between developers working ability.

2. During the development, the management needs to keep

track of information about the status of project; the tools

available do not have such features.

3. The method used for calibration of tools does not

incorporate the expert’s judgment in the resulting

parameter values.

4. Tools available for the above activities are isolated to

each other i.e. the tools available are either estimation

tools or for planning and tracking also not compare

between developers coding efficiency.

5. Any supporting documents or reports should be available

to the person in the organization like SRS for the

project, design specification. Current tools do not have

this feature.

6. While calibration, past projects’ data need to fetched

manually.

VIII. INTERNAL QUALITY OF OOD

OO features Characteristics Key Points

Cohesion Cohesion measures the

degree of connectivity

among the elements of a

single class or object.

Cohesion can be used

to identify

the poorly designed

classes.

Coupling Coupling indicates the

relationship or

interdependency

between modules

Coupling is a measure

of interconnecting

among modules in a

software structure

Inheritance Inheritance is the sharing

of attributes and

operations among

classes based on a

hierarchical

relationship”.

Reusability

Encapsulation The process of

compartmentalizing the

elements of an

abstraction that

constitute

its structure and

behavior.

Hide the internal

representation,or state,

of an object from the

outside.

IX. MOOD METRICS

F. B. Abreu proposed these system-level metrics. his set of

six metrics measures four main structural mechanisms of

object-oriented design that is encapsulation (Method Hiding

Factor and Attribute Hiding Factor), inheritance (Method

Inheritance Factor and Attribute Inheritance Factor),

polymorphism (Polymorphism Factor) and message-passing

(Coupling Factor).An explanation of the metrics with Java

bindings follows except for coupling factor which was not

measured

A system, based on the MOOD, has been developed to

evaluate and grade Java programs. The interval of each

MOOD metrics has been adapted, based on experimental

results, to be fit in the evaluation of Java Programs. Also, a

weight factor has been introduced to reflect the importance

of each characteristic.

Software measurements have become increasingly essential

in software engineering. Many of the best software

developer’s measure characteristics of the software to make

sure that requirement are consistent and complete, the

design is of high quality, and the code is ready to be tested.

The MOOD metrics are used to assess Java programs. The

MOOD metrics consist of the following software quality

indicators: Attribute Hiding Factor (AHF), Method Hiding

Factor (MHF), Method Inheritance Factor (MIF), Attribute

Inheritance Factor (AIF), Coupling Factor (COF), and

Polymorphism Factor (POF).

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-11, Feb 2020

207 | IJREAMV05I1159081 DOI : 10.35291/2454-9150.2020.0091 © 2020, IJREAM All Rights Reserved.

X. CK METRICS

1. Weighted Method per Class (WMC) – WMC measures

the complexity of a class. WMC is a predictor of how much

time and effort is required to develop and maintain the

class. A large number of methods also mean a greater

potential impact on derived classes, since the derived

classes inherit the methods of the base class. If we analyze

the WMC then we will find that high WMC leads to more

faults which increases the density of bugs and decreases

quality.

2. Depth of inheritance Tree (DIT) – DIT metric is the

length of the maximum path from the node to the root of the

tree. The deeper a class is in the hierarchy, the more

methods and variables it is likely to inherit, making it more

complex. High depth of the tree indicates greater design

complexity. Thus it can be hard to understand a system with

many inheritance layers. A high DIT has been found to

increase faults and many methods might be reused.

3. Number of Children (NOC) – It is equal to the number

of immediate child classes derived from a base class. NOC

measures the breadth of a class hierarchy. A high NOC

indicates several things like- High reuse of base class, base

class may require more testing, improper abstraction of

parent class etc.

4. Coupling Between Objects (CBO) - Two classes are

coupled when methods declared in one class use methods or

instance variables defined by the other classes. Multiple

accesses to the same class are counted as one access. Only

method calls and variable references are counted. An

increase of CBO indicates the reusability of a class will

decrease; also a high coupling has been found to indicate

fault proneness. Thus, the CBO values for each class should

be kept as low as possible.

5. Response for a Class (RFC) – The RFC is the count of

the set of all methods that can be invoked in response to a

message to an object of the class or by some method in the

class.

This includes all methods accessible within the class

hierarchy. Pressman, states that since RFC increases, the

effort required for testing also increases because the test

sequence grows. If RFC increases, the overall design

complexity of the class increases and becomes hard to

understand.

6. Lack of Cohesion (LCOM) - LCOM measures the

dissimilarity of methods in a class by instance variables or

attributes. A highly cohesive module should stand alone;

high cohesion indicates good class subdivision. LCOM

measures the amount of cohesiveness present, how well a

system has been designed and how complex a class is.

LCOM is account of the number of method pairs whose

similarity is not zero. Lack of cohesion or low cohesion

increases complexity, thereby increasing the likelihood of

errors during the development process. If LCOM is high

methods may be coupled to one another via attributes and

then class design will be complex. So, designer should keep

cohesion high, that is, keep LCOM low.

XI. FACTOR CALCULATION

1. Method Hiding Factor (MHF)

∑ ∑

∑

Where:

V (Mmi) =
∑

And:

is_visible (Mmi, Cj) = {

}

MOOD-Java Binding:

TC– total number of classes in the system/package.

Md(Ci) – number of constructors and methods defined with

any access modifier excluding abstract and inherited

methods.

2. Attribute Hiding Factor (AHF)

∑ ∑

∑

Where:

V (Mmi) =
∑

And:

is_visible (Ami, Cj) = {

}

MOOD-Java Binding: Ad (Ci) – number of all attributes

with any access modifier but not including inherited.

3. Method Inheritance Factor (MIF)

∑

∑

Where Ma (Ci) = Md (Ci) + Mi (Ci)

The numerator is the sum of inherited methods in all classes

of the system. The denominator’s the total number of

available methods in all classes.

MOOD-Java Binding:

Mi (Ci) – number of inherited methods but not overridden

Md (Ci) – number of defined non-abstract methods with

any access modifier.

Ma (Ci) – number of methods that class Ci can call.

4. Attribute Inheritance Factor (AIF)

∑

∑

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-11, Feb 2020

208 | IJREAMV05I1159081 DOI : 10.35291/2454-9150.2020.0091 © 2020, IJREAM All Rights Reserved.

Where, Aa (Ci) = Ad (Ci)+Ai (Ci)

It is defined analogous to MIF.

MOOD- Java Binding:

Ai (Ci) – number of inherited attributed

Ad(Ci) – number of defined attributes with any access

Modifier.

Aa(Ci) – number of attributes that Class Ci can reference.

XII. PROGRAMMER CODING EVALUATION AND

PERFORMANCE MEASUREMENT

Our approach focused programmer efficiency and working

capability. the concept software metrics evaluation and

analysis application and provides metrics results by

applying Chidamber & Kemerer and MOOD metrics to

several standard Java libraries and projects. It also

introduces Java bindings for these set of metrics. The

analysis of the results reveals helpful cognitions about how

object-oriented approach is being implemented by these

technologies. In addition to providing common trends in

metrics values, this information can be combined with

validation studies from other researchers to adapt software

design to proven approaches and hence avoid possible

expensive maintenance tasks and optimize design for better

quality software The tool was developed with the intention

to be used by project management team which bears the

responsibility of completing the project within time, budget

and with the specified quality.

Fig1. Programmer coding key evaluation

Fig2. Coding evaluation & performance measurement

A metrics based analysis of various programming language

libraries can expose structural and design commonalities

among them. Thus we can obtain more generalized view of

software design heuristics. The analysis data can also reveal

comparative inherent complexity within various standard

libraries which is likely to be inherited to the software

applications using those libraries. Some other Future

Research Direction.

XIII. DEFECT EVALUATION

The presence of coding defects in object oriented code can

have a severe impact on the quality of software. The

detection and correction of coding defects is an important

issue for cost effective maintenance. They increase the

performance of the software. we propose an automatic

coding evaluation technique which uses the comparison

past and current code are reference for good coding to

detect the defects in existing software coding. We also

propose the correction technique which can refactor the

code to meet the coding specifications to improve coding

efficiency.

XIV. FUTURE WORK

Analyzes a specific set of object-oriented metrics for

various Java technology libraries. A similar analysis can be

performed for other competing technologies such as .NET

C++ etc.

CK and MOOD belong to the class of structural and

complexity metrics.

 Programmer coding evaluation using

multimedia data.

 Training and Research area.

 Reduce execution time and space complexity.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-11, Feb 2020

209 | IJREAMV05I1159081 DOI : 10.35291/2454-9150.2020.0091 © 2020, IJREAM All Rights Reserved.

 Better report generation of the project which

can be a blueprint for forwarding engineering

process

 Better HR management.

REFERENCES

 [1] Jaechang Nam , Wei Fu, Student Member, IEEE,

Sunghun Kim, Member, IEEE, Tim Menzies , Member,

IEEE, and Lin Tan, Member, IEEE "Heterogeneous Defect

Prediction” IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 44, NO. 9, SEPTEMBER 2018.

[2] Ping Cao a , Ke Yang b, Ke Liu c "Optimal selection

and release problem in software testing process: A

continuous time stochastic control approach" European

Journal of Operational Research March 2, 2019.

[3] Magne Jørgensen and Martin Shepperd, "A Systematic

Review of Software evelopment Cost Estimation Studies,"

IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 33, NO. 1, JANUARY 2007.

[4] Tirimula Rao Benalaa, Rajib Mallb "DABE:

Differential evolution in analogy-based software

development effort estimation"Swarm and Evolutionary

Computation 38 (2018) 158–172.

[5] Manish Agrawal and Kaushal Chari "Software Effort,

Quality, and Cycle Time: A Study of CMM Level 5

Projects" IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 33, NO. 3, MARCH 2007.

[6] Barbara A. Kitchenham,Robert T. Hughes, and Stephen

G. Linkman, "Modeling Software Measurement Data,"

IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 27, NO. 9, SEPTEMBER 2001.

[7] Alexander Egyed, Member, IEEE "Automatically

Detecting and Tracking Inconsistencies in Software Design

Models" IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011.

[8] Ning Nan and Donald E. Harter, Member, IEEE

"Impact of Budget and Schedule Pressure on Software

Development Cycle Time and Effort" IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. 35, NO. 5, SEPTEMBER/OCTOBER 2009.

