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ABSTRACT - Partial observability, nondeterminism or a combination of the two develop the problem of uncertainty a 

common occurrence in big data. An agent is needed to handle this uncertainty. This paper aims to see how an agent can 

tame uncertainty with the degree of belief and to design an agent program that implements the agent function, the 

mapping from percepts to actions, especially in the field of big data where volumes of data needs to be handled. The 

agent program more often takes the current percept as input from the sensors and return an action. Uncertainty arises 

because of ignorance or volumes of data; The agent’s lack to express the truth of the event in the sentence due to 

uncertainty that prevails, which can be expressed using probability. Probabilities summarises the agent’s belief relative 

to the evidence and probability distribution is used to specify the probability that exist in assigning to any random 

variables. Partial observability of the world brings in unobserved aspects, these can be resolved by estimating the 

values using probability, that help better agent decision in any field including big data. The agent program come into 

being through learning methods. An agent is designed to form representations of a complex world, the world with huge 

voluminous data, use a process of inference to derive new representations about the world, and use these new 

representations to deduce what to do. 

Key words: Big Data, Partial observation, Uncertainty, degree of belief, Probability Distribution. 

I. INTRODUCTION 

An agent is needed to handle the uncertainty that develop 

due to partial observation, missing information, outliers, 

etc. that persist in every field that generates tremendous 

volumes of data. Here the agent may never know for 

certain what state it is in or where it will end up after a 

sequence of action. One principle of a problem-solving 

agent solving the problem of partial observability is using 

the key concept of belief state, representing the agent’s 

current belief about the possible physical states it might be 

in, given the sequence of actions and percept up to that 

point. On the other hand, a logical agent or knowledge-

based agent considers ever logically possible explanation 

for the observation, no matter how unlikely in the world of 

big data. This leads to impossible large and complex 

belief-state representations. A correct contingent plan that 

handles every eventuality can grow arbitrarily large and 

must consider arbitrarily unlikely contingencies.  

Sometimes there is no plan that is grantee to achieve the 

goal, yet the agent must act.  It must have some way to 

compare the merits of plans that are not guaranteed.  

Suppose, for example,[1] an automated taxi has the goal of 

delivering a passenger to the airport on time, the sensor for 

this task generates huge volumes of data and the data even 

more grows when the time is increased. The agent forms a 

plan, A90, that involves leaving home 90 minutes before 

the plane departs, driving at a reasonable speed and the 

airport is 5 miles away, a logical taxi agent will not be able 

to conclude with certainty that ―plan A90 will get to the 

airport in time‖.  Instead, it reaches the weaker conclusion 

that plan A90 will get to the airport in time, as long as the 

car doesn’t breakdown or run out of gas and don’t get into 

an accident and the plane doesn’t leave early and etc.  

None of these conditions can be deduced for sure, so the 

plans success cannot be inferred.  Specifying all these 

exceptions is called the qualification problem.  There is no 

complete solution within logic, system designers have to 

use good judgment in deciding how detailed they want to 

be in specifying their model and what details they want to 

leave out.  Other plans, such as A180, might increase the 

agent’s belief that it will get to the airport on time but also 

increase the likelihood of a long wait.  The performance 

measure includes getting to the airport in time for the 

flight, avoiding a long, unproductive wait at the airport, 

and avoiding speeding tickets along the way.  The agent’s 

knowledge cannot guarantee any of these outcomes for 

A90, but it can provide some degree of belief that they will 

be achieved.  So, the relational decision therefore depends 
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on both the relative importance of various goals and the 

likelihood that, and degree to which, they will be achieved.  

These ideas pay way for the development of the general 

theories of uncertain reasoning and rational decisions. 

Consider an example of uncertain reasoning: diagnosing a 

dental patient toothache.  Diagnosis almost always 

involves uncertainty and decision making.  Using 

proportional logic, the rule for dental diagnosis[1] 

approach breaks down as, 

 Toothache => Cavity 

But not all patients with toothache have cavities some of 

them have gum disease and abscess, or of several other 

problems. Here the need for decision making with all 

available data occurs, which increases the sample size and 

complexity. In order to make the rule true, addition of 

almost unlimited possible problems had to be done. 

Toothache => Cavity ˅ Gum problem ˅ Abscess ….. 

On turning the rule more casual: 

 Cavity => Toothache 

But this rule is not correct either, not all cavities cause 

pain.  So, to fix the rule is to make it logically exhausted.  

That is to augment the left-hand side with all the 

qualification required for a cavity to cause a toothache.  

Use of logic to cope with the domain like medical 

diagnosis fails for three main reasons.  One is laziness that 

is too much work to list the complete set of antecedents or 

consequence needed to ensure and exception less rule.  

Second is theoretical ignorance, in adequate theory in 

medical science for this domain.  Third, practical 

ignorance, even if all the rules are known, uncertainty 

about a particular patient can run.  This is typical for 

judgemental domains.  The agent’s knowledge can at best 

provide only a degree of belief in the relevant sentences.  

One main tool for dealing with degree of belief is 

probability theory.  For a sentence a logical agent can take 

three states, namely 1 a  true state or 0  a false state or  a 

state with no opinion, whereas if the agent considers the 

same sentence probabilistically, then numerical range 

between 0 (for sentences that are certainly false) and 1 

(certainly true) may be assigned for degree of belief.  

Probability provides a way of summarising the uncertainty 

that comes from laziness and ignorance, there by solving 

the qualification problem.  Probability statements 

represents a knowledge state, not a statement in view to 

the real world. Real world big data problems can be 

addressed using probability theory This paper is organised 

as follows: section-1 Introduction to uncertainty, section-2 

Literature review, section-3 Uncertainty and rational 

decision, section-4 Basic probability notations, section-4 

Language of propositions in probability assertion, section-

5 Probability axioms and Inference using full joint 

distribution, section-6 conclusion and future work. 

 

II. LITERATURE REVIEW 

Thomas Vandel, et al, [2] [3] [4] In quantifying 

uncertainty with Bayesian deep learning focus on 

uncertainty in climate projections with respect to 

modelling precipitation of a day.  As climatic systems are 

complex and dynamic a model that withstand discrete – 

continues distributions be proposed, focus mainly lies on 

precipitation estimation.  Uncertainty with respect to noise 

parameter and heteroscedastic issues are handled using a 

model proposed with its main concentration of statistical 

down scaling. [5] Another mode that can work on discrete-

continues data model with log normal likelihood, support 

the use of mode for fat-tailed skewed distribution, that 

commonly seems to arise in these applications.  Apart 

from proposing a discrete-continues model that uses 

Bayesian deep learning for uncertainty quantification, a 

comparison of predictive accuracy and uncertainty 

calibration was carried out to understand the ground truth 

observation.  Fadi Ai Turjman et al. [6] In quantifying 

uncertainty in internet of medical things and big data 

services using intelligence and deep learning address waste 

calculate the price incurred for big data transfer services 

provided over the crowd in the presence of dynamic 

uncertainty factors with respect to network topology, data 

transfer rate, acceptance of the node and computational 

complexity.  In the era of communication delivery data at a 

best phase is considered important, to enhance quality, 

energy consumption and performance of cloud service but 

this cannot be carried out without considering the price 

attribute as cost effectiveness place a major role in 

deciding the performance of the model.  Uncertainty in 

utility devices and communication link in cloud based IOT 

infrastructure need to be addressed by investigating 

different approaches to have cost effective optimised 

pricing model.  The performance of the proposed 

framework was compared against genetic algorithm and 

simulated annealing algorithm.  The comparison was 

tested for distributed and centralized version.  Low 

running time was achieved for distributed algorithm. 

FeiFei Yang et al [7] [8] Address quantifying uncertainty 

in machine learning based power outage prediction model 

training.  A tool for sustainable strong restoration 

addresses the problem faced in the united states due to 

extreme weather conditions which has its impact through 

interruptions in the delivery of power.  An outage 

prediction model (OPM) is proposed which considers into 

account two resilience components.  The study model 

considers factors like environmental conditions, electric 

layout, weather conditions.  Regression tree model, 

boosted gradian tree, Bayesian addictive regression tree 

are some models proposed earlier to predict power 

outages.  The proposed model takes into consideration the 

issue of uncertainty that can occur due to the sample size 

of the available training data and the issue related to low 

impact, high impact factors namely over estimation and 
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under estimation respectively.  Quantifying the uncertainty 

of the OPM was evaluated using [9] [10] absolute error, 

mean absolute percentage error, R-squared and nash-

sutcliffe efficiency on training sample of extra tropical and 

thunderstorm events.  The study for OPM attained an 

acceptable predicted performance.  

III. UNCERTAINTY ISSUE AND 

RATIONAL DECISIONS 

Data being huge and complex to handle, relation decisions 

support an agent to come to a solution with optimality. To 

make choices of considering the plan A90 or plan A180[1], 

give rise to different probable outcomes, choice of the plan 

is based on the preference an agent make. An outcome 

from the plan is a fully definite state, including such 

aspects of whether the agent reaches the airport on time 

and the wait time incurred at the airport. Utility theory can 

be used to maximize the expected utility with preferences. 

Utility theory on an average says that every given 

probability has a degree of usefulness, or utility, and it is 

the agent likeliness to prefer states with higher utility. A 

rational agent must try to possess all Utility or preference 

with probabilities that will help decision making agent to 

handle uncertainty called decision theory[1]. 

 Decision theory = probability theory + utility theory 

The fundamental idea of decision theory is that any 

rational agent must behave as if and only if it chooses the 

action that will yield the highest expected utility, averaged 

over all the possible outcomes of the action. This is called 

the principle of maximum expected utility (MEU). To note 

―expected‖ means the ―average,‖ or ―statistical mean‖ of 

the outcomes, weighted by the probability of the outcome. 

Figure 2.1 sketches the structure of an agent that uses 

decision theory to select actions. An agent’s belief state 

represented in decision theory is their probabilities and not 

just the possibilities for world states. With all possible 

belief state, it is the agent choice to make probabilistic 

predictions of the action outcomes and therefore select the 

action with expected utility to maximise. 

function Decision theory - Agent (percept) returns an 

action 

persistent: belief state, probabilistic beliefs about the 

current state of the world 

action, the agent’s action 

update belief state based on action and percept 

calculate outcome probabilities for actions, 

given action descriptions and current 

belief state 

select action that maximise expected utility 

given outcomes probabilities and utility 

information 

return action 

 
Figure 2.1 A Decision Theory- Agent that selects rational 

actions.[1] 

IV. ELEMENTARY PROBABILITY 

NOTATION 

Occurrence of an event, recording of the observations, 

representation of the problem includes probability 

notation. For an agent to represent and use probabilistic 

information,[1] a formal language is needed in data 

science. probabilistic assertions are about possible worlds. 

Probabilistic assertions talk about how probable the 

various worlds are. In probability theory, sample space is 

represented by set of all possible worlds. The possible 

worlds are mutually exclusive and exhaustive—two 

possible worlds cannot both be the case, and therefore 

cannot occur simultaneously. For example, if we are about 

to roll two (distinguishable) dice, there are 36 possible 

worlds to consider: (1,1), (1,2), ..., (6,6). The Greek letter 

Ω (uppercase omega) is used to refer to the sample space, 

and ω (lowercase omega) refers to elements of the space, 

that is, particular possible worlds. A fully specified 

probability model associates a numerical probability P(ω) 

with each possible world.1 The basic axioms of probability 

theory say that every possible world has a probability 

between 0 and 1 and that the total probability of the set of 

possible worlds is 1:  

0 ≤ P(ω) ≤ 1 for every ω and ∑      P(ω)=1       (1) 

Probabilistic assertions and queries are not usually about 

particular possible worlds, but about sets of them. For 

example, on rolling two dice the cases where the two dice 

add up to 11, the cases where doubles are rolled, and so 

on. In probability theory, these sets are called events,an 

event is a subset of a sample space, the sets are always 

described by propositions in a formal language. For each 

proposition, the corresponding set contains just those 

possible worlds in which the proposition holds. The 

probability associated with a proposition is defined to be 

the sum of the probabilities of the worlds in which it holds:  

For any proposition φ, P(φ) = ∑             (2) 

Probabilities such as P (Total = 11) and P(doubles) are 

called unconditional or prior probabilities (and sometimes 

just ―priors‖ for short); they refer to degrees of belief in 

propositions in the absence of any other information. Most 

of the time, however, some information, usually called 

evidence, already been revealed. For example, the first die 

may already be showing a 5 In this case, the unconditional 

probability of rolling doubles, but the conditional or 

posterior probability (or just ―posterior‖ for short) of 

rolling doubles given that the first die is a 5. This 

probability is written P (doubles | Die1 = 5), where the ― | ‖ 

is pronounced ―given.‖ Mathematically speaking, 

conditional probabilities are defined in terms of 

unconditional probabilities as follows: for any propositions 

a and b, we have 

  P (a | b) =  
      

    
   (3)  
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which holds whenever P(b) > 0. For example, 

  P (doubles | Die1 = 5) = 
                   

          
  

The definition makes sense if on remembering that 

observing b rules out all those possible worlds where b is 

false, leaving a set whose total probability is just P(b). 

Within that set, the a-worlds satisfy a   b and constitute a 

fraction P(a   b)/P(b). The definition of conditional 

probability, Equation (3), can be written in a different form 

called the product rule: 

  P (a   b) = P (a | b) P(b)  

It comes from the fact that, for a and b to be true, we need 

b to be true, and we also need a to be true given b.  

V. THE LANGUAGE OF PROPOSITIONS 

IN PROBABILITY ASSERTIONS 

 In this section, [1] propositions describing sets of possible 

worlds are written in a notation that combines elements of 

propositional logic and constraint satisfaction notation. A 

factored representation, in which a possible world is 

represented by a set of variable/value pairs. Variables in 

probability theory are called random variables and their 

names begin with an uppercase letter. Thus, in the dice 

example, Total and Die are random variables. Every 

random variable has a domain—the set of possible values 

it can take on. The domain of Total for two dice is the set 

{2,..., 12} and the domain of Die is {1,..., 6}. A 

Boolean random variable has the domain {true, false}. By 

convention, propositions of the form A = true are 

abbreviated simply as a, while A = false is abbreviated as 

¬a. the domain of Weather might be {sunny, rain, cloudy, 

snow}. When no ambiguity is possible, it is common to 

use a value by itself to stand for the proposition that a 

particular variable has; thus, sunny can stand for Weather 

= sunny. Variables can have infinite domains, too—either 

discrete (like the integers) or continuous (like the reals). 

For any variable with an ordered domain, inequalities are 

also allowed, such as Number of Atoms in Universe ≥ 

10
70

. Finally, these sorts of elementary propositions 

(including the abbreviated forms for Boolean variables) 

can be combined by using the connectives of propositional 

logic. For example, we can express ―The probability that 

the patient has a cavity, given that she is a teenager with 

no toothache, is 0.1‖ as follows [1]:  

P (cavity | ¬toothache   teen) = 0.1  

When talking about the probabilities of all the possible 

values of a random variable. It can be written as: 

P (Weather = sunny) = 0.6  

P (Weather = rain) = 0.1  

P (Weather = cloudy) = 0.29 

P (Weather = snow) = 0.01  

But when abbreviated 

P (Weather) = {0.6, 0.1, 0.29, 0.01}, 

where the bold P indicates that the result is a vector of 

numbers, and assumes a predefined ordering {sunny, rain, 

cloudy, snow} on the domain of Weather. Here P 

statement defines a probability distribution for the random 

variable Weather. The P notation is also used for 

conditional distributions: P (X | Y) gives the values of P (X 

= xi | Y = yj) for each possible i, j pair. For continuous 

variables, it is not possible to write out the entire 

distribution as a vector, because there are infinitely many 

values. Instead, the probability that a random variable 

takes on some value x as a parameterized function of x can 

be defined. For example, the sentence P (Noon Temp = x) 

= Uniform[18C,26C] (x) 

 expresses the belief that the temperature at noon is 

distributed uniformly between 18 and 26 degrees Celsius. 

This is called a probability density function. In addition to 

distributions on single variables, notation is needed for 

distributions on multiple variables. Commas are used for 

this. For example, P (Weather, Cavity) denotes the 

probabilities of all combinations of the values of Weather 

and Cavity. This is a 4 × 2 table of probabilities called the 

joint probability distribution of Weather and Cavity. 

Variables can also be mixed with and without values; P 

(sunny, Cavity) would be a two-element vector giving the 

probabilities of a sunny day with a cavity and a sunny day 

with no cavity. The P notation makes certain expressions 

much more concise than they might otherwise be. For 

example, the product rules for all possible values of 

Weather and Cavity can be written as a single equation [1]:  

P (Weather, Cavity) = P (Weather | Cavity) P (Cavity) 

instead of as these 4 × 2=8 equations (using abbreviations 

W and C): 

P (W = sunny   C = true) = P (W = sunny | C = true) P (C = true) 

P (W = rain   C = true) = P (W = rain | C = true) P (C = true) 

P (W = cloudy   C = true) = P (W = cloudy | C = true) P (C = 

true) 

P (W = snow   C = true) = P (W = snow | C = true) P (C = true) 

P (W = sunny   C = false) = P (W = sunny | C = false) P (C = 

false) 

P (W = rain   C = false) = P (W = rain | C = false) P (C = false) 

P (W = cloudy   C = false) = P (W = cloudy | C = false) P (C = 

false) 

P (W = snow   C = false) = P (W = snow | C = false) P (C = 

false) 

Now the syntax for propositions and probability assertions 

is defined and semantics given. To complete the semantics, 

it is needed to say what the worlds are and how to 

determine whether a proposition holds in a world. This 

part is taken directly from the semantics of propositional 

logic, as follows. A possible world is defined to be an 

assignment of values to all of the random variables under 

consideration. It is easy to see that this definition satisfies 

the basic requirement that possible worlds be mutually 

exclusive and exhaustive. For example, if the random 

variables are Cavity, Toothache, and Weather, then there 

are 2 × 2 × 4 = 16 possible worlds. Furthermore, the truth 
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of any given proposition, no matter how complex, can be 

determined easily in such worlds using the same recursive 

definition of truth as for formulas in propositional logic. 

From the preceding definition of possible worlds, it 

follows that a probability model is completely determined 

by the joint distribution for all of the random variables—

the so-called full joint probability distribution. For 

example, if the variables are Cavity, Toothache, and 

Weather, then the full joint distribution is given by 

P(Cavity, Toothache, Weather). This joint distribution can 

be represented as a 2 × 2 × 4 table with 16 entries. Because 

every proposition’s probability is a sum over possible 

worlds, a full joint distribution suffices, in principle, for 

calculating the probability of any proposition.  

VI. PROBABILITY AXIOMS AND INFERENCE 

USING FULL JOINT DISTRIBUTION 

The basic axioms of probability (Equations (1) and (2)) 

imply certain relationships among the degrees of belief 

that can be accorded to logically related propositions. [1] 

For example, we can derive the familiar relationship 

between the probability of a proposition and the 

probability of its negation:  

     P(¬a) = ω ¬a P(ω)   by Equation (2) 

= ω ¬a P(ω) + ω a P(ω) − ω a P(ω)  

= ω Ω P(ω) − ω a P(ω) grouping the first two 

terms 

 = 1 − P(a)   by (1) and (2). 

One argument for the axioms of probability is as follows; 

If an agent has some degree of belief in a proportion a, 

then the agent should be able to state odds at which it is 

indifferent to a bet for or against a.  probabilistic inference 

ie the computation of posterior probabilities for query 

proportions given observed evidence.  The full joint 

distribution is used as the knowledge base from which 

answers to all questions may be derived.  On examining 

with a simple example, a domain consisting of just three 

Boolean variable toothache, cavity and catch.  The full 

disjoint distribution is a 2x2x2 table as shown in the figure 

[1] below.   

 Toothache ¬ Toothache 

 Catch ¬ Catch Catch ¬ Catch 

Cavity 0.108 0.012 0.072 0.008 

¬ Cavity 0.016 0.064 0.144 0.576 

The probabilities in the full joint distribution sum to 1 as 

required by the axioms of probability.  The equation (2) 

gives us a direct way to calculate the probability of any 

proposition simple or complex, simply identify those 

possible worlds in which the proposition is true and add up 

their probabilities. The above example is explained for 

three Boolean variables and can be implemented for any 

Big Data problems 

VII. CONCLUSION AND FUTURE WORK 

Big Data uncertainty problem can be approached and 

solved with Probability theory. This paper suggests 

probability theory as a suitable foundation for uncertain 

reasoning and an introduction to its use.  Uncertainty arises 

due to partial observable environments and when data 

happens to be voluminous.  Probabilities summarise the 

agent’s belief relative to the evidence.  Decision theory 

combines the agent’s belief and desires defining the best 

action as the one that maximises expected utility.  Basic 

probability statement includes prior probabilities and 

conditional probabilities over simple and complex 

propositions. The axioms of probability constrain the 

possible assignments of probabilities to propositions. 

Probability is a rigorous formalism for uncertain 

knowledge Joint probability distribution specifies 

probability of every atomic event and queries can be 

answered by inference Rules allow unknown probabilities 

to be computed form known conditional probabilities. 

Quantifying uncertainty can be applied in machine 

learning, deep learning, Internet of Things, fields of 

climatic research, medical diagnosis and many decision 

seeking problems. 
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