

A New Approach of Generalized Pre-Closed Sets With Respect to an Ideal

Dr.P.Maheshwaran, Assistant Professor, Vivekananda College, Agasteeswaram, India,

pmeshwar@gmail.com

Abstract— An ideal on a set X is a non empty collection of subsets of X with heredity property which is also closed under finite unions. The concept of generalized closed sets was introduced by Levine. In this paper, I introduce and investigate the concept of generalized pre-closed sets with respect to an ideal

Keywords-g-closed sets, gp-closed sets, Ig-closed sets, Igp-closed sets, ideal, Topological spaces.

I. INTRODUCTION

Indeed ideals are very important tools in General Topology. It was the works of Newcomb[8], Rancin [9], Samuels [10] and Hamlet and Jankovic (see [1, 2, 3, 4, 5]) which motivated the research in applying topological ideals to generalize the most basic properties in General Topology. A nonempty collection I of subsets on a topological space (X,τ) is called a topological ideal [6] if it satisfies the following two conditions:

1. If $A \in I$ and $B \subset A$ implies $B \in I$ (heredity)

2. If $A \in I$ and $B \in I$, then $A \cup B \in I$ (finite additively)

If A is a subset of a topological space (X,τ) , cl(A) and int(A) denote the closure of A and the interior of A, respectively. Let $A \subset B \subset X$. Then $cl_B(A)$ (resp. $int_B(A)$) denotes closure of A (resp. interior of A) with respect to B. Levine [7] introduced the concept of generalized closed sets. This notion has been studied extensively in recent years by many topologists.

II. PRELIMINARIES

Definition 2.1. A subset A of a topological space (X,τ) is said to be generalized closed (briefly g-closed) if $cl(A) \subset U$ whenever $A \subset U$ and U is open in (X,τ) .

Definition 2.2. A subset A of a topological space (X,τ) is said to be generalized pre-closed (briefly gp-closed) if $pcl(A) \subset U$ whenever $A \subset U$ and U is open in (X,τ) .

Definition 2.3. Let (X,τ) be a topological space and I be an ideal on X. A subset A of X is said to be generalized closed with respect to an ideal (briefly Ig-closed) if and only if $cl(A) - U \in I$, whenever $A \subset U$ and U is open in (X,τ) .

In this paper, I introduce and study the concept of gp-closed sets with respect to an ideal, which is the extension of the concept of g-closed sets.

III. GENERALIZED PRE-CLOSED SETS WITH RESPECT TO AN IDEAL

Definition 3.1 Let (X,τ) be a topological space and I be an ideal on X. A subset A of X is said to be generalized preclosed with respect to an ideal (briefly Igp-closed) if and only if pcl(A) – U \in I, whenever A \subset U and U is open in (X,τ) .

Remark 3.1 Every g-closed set is Igp-closed, but the converse need not be true, as this may be seen from the following example.

Example 1. Let X={a, b, c}with topology ={ Φ , {a},{c},{a,c}, X} and I={ Φ , {a}, {b}, {a, b}}.Clearly, the set {a} is Igp-closed but not g-closed in (X, τ).

Remark 3.2 Every gp-closed set is Igp-closed, but the converse need not be true, as this may be seen from the following example.

Example 2. Let $X=\{a, b, c\}$ with topology $=\{\Phi, \{a\}, \{c\}, \{a,c\}, X\}$ and $I=\{\Phi, \{a\}, \{b\}, \{a, b\}\}$. Clearly, the set $\{a,c\}$ is Igp-closed but not gp-closed in (X,τ) .

Theorem 3.1. A set A is Igp-closed in (X,τ) if and only if F \subset pcl(A) – A and F is closed in X implies F \in I.

Proof. Let A be Igp-closed. Suppose that $F \subset pcl(A) - A$. If F is closed then $A \subset X - F$. Since A is Igp-closed. Then $pcl(A) - (X - F) \in I$. But $F \subset pcl(A) - (X - F)$ and hence F \in I.Conversely, Assume that $F \subset pcl(A) - A$ and F is closed in X implies that $F \in I$. Suppose $A \subset U$ and U is open. Then $pcl(A) - U = pcl(A) \cap (X-U) \subset pcl(A) - A$. But pcl(A) - U is closed. By assumption, $pcl(A) - U \in I$. Hence A is Igp-closed

Theorem 3.2. If A and B are Igp-closed sets of (X,τ) , then their union A U B is also Igp-closed.

Proof. Let A and B be Igp-closed sets in (X,τ) . If A U B \subset U and U is open, then A \subset U and B \subset U. Since A and B is Igp-closed sets. Then pcl(A) – U \in I and pcl(B) – U \in I

and hence $pcl(A \cup B) - U = (pcl(A)-U) \cup (pcl(B)-U) \in I$. That is A U B is Igp-closed.

Theorem 3.3. If A and B are Igp-closed sets of (X,τ) , then their intersection $A \cap B$ is also Igp-closed.

Proof. Let A and B be Igp-closed sets in (X,τ) . Then pcl(A) $-U \in I$ whenever $A \subset U$ and U is open and pcl(B) $-U \in I$ whenever $B \subset U$ and U is open and hence $pcl(A \cap B) - U$ $= (pcl(A) - U) \cap (pcl(B) - U) \in I$ whenever $A \cap B \subset U$ and U is open . That is $A \cap B$ is Igp-closed.

Theorem 3.4. If A is Igp-closed and $A \subset B \subset pcl(A)$ in (X,τ) , then B is Igp-closed in (X,τ) .

Proof. Let A is Igp-closed and A \subset B \subset pcl(A) in (X,τ) .Suppose B \subset U and U is open. Then A \subset U. Since A is Igp-closed, then we have $pcl(A)-U \in I$. Now $B \subset pcl(A)$. This implies that $pcl(B)-U \subset pcl(A)-U \in I$. Hence B is Igp-closed in (X,τ) .

Theorem 3.5. Let $A \subset Y \subset X$ and A be Igp-closed in (X,τ) . Then A is Igp-closed relative to the subspace Y of X, with respect to the ideal $I_Y = \{F \subset Y : F \in I\}$.

Proof. Let $A \subset U \cap Y$ and U be open in (X,τ) , then $A \subset U$. Since A is Igp-closed in (X,τ) , we have $pcl(A)-U \in I$. $(pcl(A)\cap Y) - (U\cap Y) = (pcl(A)-U)\cap Y \in I$, whenever $A \subset U \cap Y$ and U is open. Hence A is Igp-closed relative to the subspace Y.

Theorem 3.6. Let A be an Igp-closed set and F be a closed set in (X,τ) , then A \cap F is an Igp-closed set in (X,τ) .

Proof. Let A be an Igp-closed set and in (X,τ) . Then pcl(A) $- U \in I$, whenever A $\subset U$ and U is open. Let F be a closed set in (X,τ) . Since Every closed set is Igp-closed. Hence F is Igp-closed. By theorem 3.3, intersection of any two Igp-closed sets is also Igp-closed. Thus $A \cap F$ is an Igp-n Eng (X, τ) , then B is Igp-open in X. closed set in (X,τ) .

Remark 3.3. The following diagram holds for any subset of a topological space (X, τ) with respect to an ideal

Definition 3.2. Let (X,τ) be a topological space and I be an ideal on X. A subset $A \subset X$ is said to be generalized preopen with respect to an ideal (briefly Igp-open) if and only if X-A is Igp-closed.

Theorem 3.7. A set A is Igp-open in (X,τ) if and only if F– $U \subset pint(A)$, for some $U \in I$, whenever $F \subset A$ and F is closed.

Proof. Let A be Igp-open. Suppose $F \subset A$ and F is closed. We have $X - A \subset X - F$. Since A is Igp-open Then pcl(X -A) \subset (X–F) U U, for some U \in I. This implies X–((X–F) U U) \subset X–(pcl(X–A)) and hence F – U \subset pint(A).Conversely, assume that $F \subset A$ and F is closed imply $F-U \subset pint(A)$, for some $U \in I$. Consider an open set H such that $X-A \subset H$. Then X–H \subset A. By assumption, $(X-H)-U \subset pint(A) = X-pcl(X-A)$. This gives that $X - (H \cup U) \subset X$ -pcl(X-A). Then, pcl(X-A) $\subset H \cup U$, for some $U \in I$. This shows that $pcl(X-A)-G \in I$. Hence X-A is Igp-closed.

Theorem 3.8. If $A \subset Y \subset X$, A is Igp-open relative to Y and Y is Igp-open relative to X, then A is Igp-open relative to X.

Proof. Suppose $A \subset Y \subset X$, A is Igp-open relative to Y and Y is Igp-open relative to X. Suppose $H \subset A$ and H is closed. A is Igp-open relative to Y, by Theorem 3.7, $H-U \subset$ $pint_{Y}(A)$, for some $U \in I$. This implies there exists an open set G such that $H - U \subset G \cap Y \subset A$, for some $U \in I$. Since Y is Igp-open relative to X, $H \subset Y$ and H is closed; we have $F-V \subset pint(Y)$, for some $V \in I$. This implies there exists an open set K such that $H-V \subset K \subset Y$, for some $V \in I$. Now $H - (U \cup V) \subset (H - U) \cap (H - V) \subset G \cap K \subset G \cap Y \subset A.$ This implies that $H - (U \cup V) \subset pint(A)$, for some $U \cup V \in U$ I and hence A is Igp-open relative to X.

Theorem 3.9. Let $pint(A) \subset B \subset A$ and A be Igp-open in

Proof. Let $pint(A) \subset B \subset A$ and A be Igp-open in (X,τ) . Igp-closed. Then X–A \subset X–B \subset pcl(X–A) and X–A is By Theorem 3.4, X-B is Igp-closed and hence B is Igpopen.

Theorem 3.10. A set A is Igp-closed in (X,τ) if and only if pcl(A)–A is Igp-open.

Proof. Suppose $F \subset pcl(A)$ -A and F is closed. Then $F \in$ I. This implies that $F-U = \Phi$ for some $U \in I$. Clearly, F-U \subset pint(pcl(A)–A). By Theorem 3.7, pcl(A)–A is Igpopen.Conversely, Suppose A \subset G and G is open in (X, τ). Then $pcl(A)\cap(X-G) \subset pcl(A) \cap (X-A) = pcl(A)-A$. By hypothesis, $(pcl(A)\cap(X-G)) - U \subset pint(\alpha cl(A)-A) = \Phi$ for some $U \in I$. This implies that $pcl(A) \cap (X-G) \subset U \in I$ and hence pcl(A)–G \in I. Thus, A is Igp-closed.

Theorem 3.11. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be continuous and closed. If $A \subset X$ is Igp-closed in X, then f(A) is f(I)-gpclosed in (Y,σ) , where $f(I) = \{f(U): U \in I\}$.

Proof. Let $A \subset X$ and A be Igp-closed. Suppose $f(A) \subset G$ and G is open. Then $A \subset f^{-1}(G)$. By definition, $pcl(A) - f^{-1}(G) \in I$ and hence $f(pcl(A)) - G \in f(I)$. Since f is closed, $pcl(f(A)) \subset pcl(f(pcl(A))) = f(pcl(A))$. Then $pcl(f(A)) - G \subset f(pcl(A)) - G \in f(I)$ and hence f(A) is f(I)-gp-closed.

IV. CONCLUSION

Our work is an step forward to strengthen the theoretical foundation of topological spaces of generalized pre-closed with respect to an ideal. For further work one can quickly go for application of these theoretical developments, I list some important topics for further theoretical work.

ACKNOWLEDGMENT

The author is grateful to the editor and the referee(s) for their fruitful comments, valuable suggestions and careful corrections.

REFERENCES

- T. R. Hamlett and D. Jankovic, Compactness with respect to an ideal, Boll. Un. Mat. Ita.,(7), 4-B, 849-861. 1990.
- [2] T. R. Hamlett and D. Jankovic, Ideals in topological spaces and the set operator, Boll Un. Mat. Ita., 7, 863-874. 1990.
- [3] T. R. Hamlett and D. Jankovic, Ideals in General Topology and Applications (Midletown, CT, 1988), 115-125, Lecture Notes in Pure and Appl. Math. Dekker, New York, 1990.
- [4] T. R. Hamlett and D. Jankovic, Compatible extensions of ideals, Boll. Un. Mat. Ita., 7,453-465. 1992...
- [5] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Month.,97, 295-310. 1990. in Enginee
- [6] K. Kuratowski, Topologies I, Warszawa, 1933.
- [7] . Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2), 89-96.1970.
- [8] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Dissertation, Univ. Cal. at Santa Barbara, 1967.
- [9] D. V. Rancin, Compactness modulo an ideal, Soviet Math. Dokl., 13, 193-197. 1972.
- [10] P. Samuels, A topology from a given topology and ideal, J. London Math. Soc. (2)(10),409-416. 1975
- [11] Dr.P.Maheshwaran, Generalized α Closed Sets with respect to an Ideal, The International journal of analytical and experimental modal analysis, Volume XII, Issue V, May/2020, Page No:400-403

- [12] Dr.P.Maheshwaran, α Generalized Closed Sets with respect to an Ideal, Wutan Huatan Jisuan Jishu, Volume XVI, Issue V, May/2020, Page No: 332-336
- [13] Dr.P.Maheshwaran, Pre-Generalized Closed Sets with respect to an Ideal, Strad Research, VOLUME 7, ISSUE 6, 2020, Page No: 172-175