
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-04, July 2020

105 | IJREAMV06I0464104 DOI : 10.35291/2454-9150.2020.0508 © 2020, IJREAM All Rights Reserved.

Optimized Load Balancing and Task Scheduling

using Dominant Sequence Clustering and Honey

Bee Algorithm in Cloud
1
Arunima V R,

2
Jasmine A,

3
Sherene Antony,

4
Neethu M S

1,2,3
B. Tech Student,

4
Assistant Professor LBS Institute of Technology for Women, Trivandrum,

India.
1
arunimavr05@gmail.com,

2
jasminmaheen003@gmail.com,

3
sherene.antony@gmail.com,

4
neethums.ms@gmail.com

Abstract- The ready availability of the computer systems and its resources, especially data storage and computing

power with the least or no direct active supervision by the users contribute to cloud computing. Cloud computing offers

services that enable users to access SaaS, PaaS, and IaaS over the internet. Issues in Cloud include security, energy

efficiency, load balancing, etc. Load balancing and task scheduling are two challenging issues. Load balancing is the

process of distributing the workload to nodes to maximize throughput, reduce response time, etc. On the other hand,

task scheduling is the balancing of jobs over the nodes. Load balancing and task scheduling are mandatory in Cloud for

efficient resource utilization. To surpass the drawbacks of existing approaches, we have proposed an optimized method

that incorporates Dominant Sequence Clustering (DSC) for task scheduling and Honey Bee Optimization (HBO)

algorithm for load balancing. The first step of the process is task clustering. The second step is task ranking using the

Modified Heterogeneous Earliest Finish Time (MHEFT) algorithm. We have verified the proposed algorithm with

existing algorithms and results show improvement in average execution time and significant decrease in waiting time of

tasks.

Keywords --Cloud computing; DSC algorithm; HBO algorithm; Load balancing; MHEFT algorithm; task scheduling;

VMs.

I. INTRODUCTION

Cloud computing is an internet-based distributed computing

that operates as a pay-as-you-go model to support the

increased user demand. In recent years, an enormous

variety of commercial corporations and organizations are

deploying their applications in cloud knowledge centres

because of the economy of scale provided by cloud

computing. There are several challenges related to the cloud

setting. Task programming and load balancing are major

challenges that are being featured by cloud adopters.

Scheduling is a balancing process where tasks are

scheduled based on the algorithm used and specific

requirements. A task is executed like an action that uses the

input resources to produce efficient output in the

computation nodes. The primary goal is to maximize

resource utilization by reducing task execution. Several

internal and external requirements vary for each task;

bandwidth, storage, response time, etc.

In the cloud, multiple jobs running at the same time demand

for different resources. With the increase in consumers, the

number of tasks that need to be scheduled increases

proportionately. The scheduling algorithm used needs to be

effective for interruption handling, fault tolerance, and

response time reduction. Tasks are assigned to the

processor for execution, resulting in minimum execution

time and maximum profit of the cloud owner. Task

scheduling thereby assigns tasks to the apt processor. By

scheduling tasks efficiently, we can utilize resources well

and have economic efficiency.

Load balancing is a strategy that distributes the dynamic

local workload uniformly across all the nodes in the entire

cloud to avoid a situation where certain nodes are heavily

loaded while others are idle or least active. It helps

organizations to manage the application or workload

demands by allocating resources among multiple

computers, networks, or servers. Some of the jobs may be

rejected due to overcrowding. Hence various algorithms

have been proposed.

In a cloud computing environment, whenever a virtual

machine is heavily loaded or overloaded with multiple

tasks, these tasks have to be removed and submitted to the

underloaded virtual machine to balance the load among

machines of the same data centre. Two classifications of

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-04, July 2020

106 | IJREAMV06I0464104 DOI : 10.35291/2454-9150.2020.0508 © 2020, IJREAM All Rights Reserved.

load balancing algorithms are static and dynamic. In a static

algorithm, the traffic is divided equally between the servers

which require an earlier knowledge of system resources, so

that the decision of shifting of the load does not depend on

the present state of the system. In dynamic algorithms, the

lightest server in the whole network or system is looked for

and chosen for balancing a load. The present state of the

system is making use of to build decisions to handle the

load.

II. PROPOSED SYSTEM

In this project, we mainly applied two algorithms: Honey

Bee Optimization (HBO) algorithm for load balancing and

Dominant Sequence Clustering (DSC) algorithm for task

scheduling that mainly aims to do the following: -

• Balancing load of virtual nodes

• Minimizing Response Time (RT)

Task scheduling and load balancing algorithms are

employed in our work to enhance response time. The

design of the projected work, within which we used the

DSC algorithm to schedule tasks based on their priorities, is

conferred in Figure. Task priority is based on the deadline

and makespan. To determine the highest priority task, each

of the tasks is rescheduled and ranked for the upcoming

processes. Virtual Machines (VMs) are then clustered.

The flowchart of our projected work indicates that the

incoming tasks of users are directly given to the DSC

algorithm, and also the changed Heterogeneous Earliest

Finish Time (MHEFT) algorithm is employed to rank

scheduled tasks. The task with the highest priority is

transferred to the VM allocation method. The

Optimized_HBO algorithm considers the capacity and

client connectivity of servers, is employed to balance loads,

and so tasks are allotted to VMs that successively decreases

the response time.

Figure 1. The Architecture of the proposed work

A. TASK SCHEDULING

The DSC algorithm is employed to schedule tasks. The

priority of each forthcoming task is taken under

consideration for scheduling and clustering.

B. TASK GROUPING

The DSC algorithm clusters forthcoming tasks by

computing priority (P(i)) values using the highest (top(i))

and bottom (bot(i)) levels of the tasks. The highest level

(top(i)) of a task defines the length of the longest path from

entry task to i. The lowest level (bot(i)) is the length of the

longest path from i to exit task.

Task priority is computed as:-

P(i) = top(i) +bot(i) (1)

where P(i) denotes the priority of task i, top(i) denotes the

highest level of task i, and bot(i) denotes the lowest level of

task i. The highest and lowest levels of a task are added up

to figure out its priority P(i). Task clustering and task

scheduling using the DSC algorithm are illustrated in

Figure 2. Priority values are computed for each of the tasks

and utilised in task clustering, followed by task scheduling.

Tasks are clustered on the thought of their priorities via the

DSC algorithm. Scheduled tasks are ranked to choose the

perfect priority task to be transferred to the forthcoming

processes.

Figure 2. Flowchart illustrating task clustering and

scheduling [1]

C. TASK RANKING

The MHEFT algorithm is used to rank scheduled tasks

generated by utilising the DSC algorithm. The top priority

task among the scheduled tasks is chosen from the

approaching processes, like VM clustering and load

balancing. To rank tasks, the average execution and

communication times for transferring information are

calculated. The arrival time of the tasks are checked in the

cases when two tasks with identical priority are received.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-04, July 2020

107 | IJREAMV06I0464104 DOI : 10.35291/2454-9150.2020.0508 © 2020, IJREAM All Rights Reserved.

The final priority is then assigned to the task that arrived

first.

The ranking of task R(ti) is calculated as: -

 (2)

where E(ti) is that the average execution time of the task

across all VMs, s(ti) is the set of immediate successors of

the task, R(tj) is the computation of all of its children, ci,j,

the communication time that corresponds to transfer of

datai,j, via edges i and j;

ci,j is computed as: -

 (3)

where y is the average latency, b denotes the average

bandwidth of communication links among VMs within the

system.

D. OPTIMIZED_HB FLOW CHART

In this section, a flow diagram describing the control

structure for the Optimized_HB is depicted in Figure 3. It

describes the mechanism of load balancing among

overloaded virtual machines and underloaded virtual

machines. The basic idea is to submit the tasks to the virtual

machine until the machine gets overloaded i.e. load on that

virtual machine exceeds the threshold value. We do not

submit tasks to the overloaded machine and we send the

remaining tasks to underloaded virtual machines that can be

found by the RANDOMLY SEARCH method. Here in the

flowchart Cloudlets corresponds to tasks/jobs that user

requests to the VM.

Figure 3. HBO Algorithm Flowchart [3]

E. ALGORITHM

1. Start

2. For each task do

3. Calculate the load on VM and decide whether to do load

balancing or not

4. Group the VMs based on load as overloaded or

underloaded.

5. Find the supply of underloaded VMs and the demand of

overloaded VMs.

6. Sort the overloaded and underloaded VM sets

7. Sort the tasks in overloaded VMs based on priority.

8. Find the capacity of VMs in the underloaded set.

9. For each task in each overloaded VM find a suitable

underloaded VM based on capacity.

10. Update the overloaded and underloaded VM sets.

11. End of step 2.

12. Stop.

F. CALCULATIONS OF OPTIMIZED_HB

The proposed Optimized_HB algorithm allocates the

incoming task to a VM that currently has fewer tasks than

the remaining VMs. Also, the deviation of the processing

time of this VM from the average processing time of all

VMs is a smaller amount than the predefined threshold

value. So it avoids underutilization and overutilization of

resources. The calculations employed in the Optimized_HB

are shown below.

1. VM Current Load Calculation:-

It measures the magnitude relation between total lengths of

the submitted tasks to a VM to the process rate of that VM

at a selected instance. Suppose the total range of tasks

appointed to a VM is N, Len corresponds to the length of

single tasks and MIPS denotes Million Instruction Per

Second rate of that VM, then the current load is calculated

using the equation (4).

 (4)

In order to find the total load on the entire data center, the

sum of load on each VMs is calculated as per the equation

(5).

 (5)

The processing capacity of VM can be calculated using the

equation (6) as given below.

 (6)

Where PEnum corresponds to the number of processing

elements in a particular VM, PEmips corresponds to the

processing power of PE in MIPS rate and VMbw

corresponds to the bandwidth associated with a VM. A data

centre may consist of several VMs. Thus, the total capacity

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-04, July 2020

108 | IJREAMV06I0464104 DOI : 10.35291/2454-9150.2020.0508 © 2020, IJREAM All Rights Reserved.

of the entire data centre can be calculated from using the

equation (7).

 (7)

Then the proposed algorithm computes the processing time

of each task using equation (8).

 (8)

The processing time required for the datacentre to complete

all the tasks in it can be calculated by the equation (9).

 (9)

The proposed method uses the Standard Deviation (SD) for

measuring the deviations in the workload on each VM.

Equation (10) gives the SD of loads.

 (10)

2. Load Balancing & Scheduling Decision:-

In this phase, load balancing and rescheduling of tasks are

decided depending on the SD value calculated using

equation (10). In order to maintain system stability by

minimizing the number of migrations, the decision will be

taken only when the capacity of the datacentre is greater

than the current load. For finding the load, a threshold value

is set (value lies in 0-1) based on the SD calculated which is

compared with the calculated SD measure. The load

balancing and scheduling are done only if the calculated SD

exceeds the threshold value.

3. VM Grouping:-

VMs are classified into two groups: overloaded VMs and

underloaded VMs. This may cut back the time needed to

seek out the best VM for task migration. Within the

proposed technique the overloaded VMs are thought of as

honeybees and the underloaded VMs are their food sources.

The VMs are classified in line with the SD and threshold

value already calculated on the basis of the load.

4. Task Scheduling:-

The system should realize the demand for every overloaded

VM and provide it to the overloaded VMs. The VMs are

sorted based on the capacity in ascending order. The

proposed methodology selects the task with the lowest

priority from the overloaded VM and it is rescheduled to an

underloaded VM (target VM) having the best capacity. The

supply to a specific VM is the difference between its

capacity and current load and may be calculated utilising

equation (11).

 (11)

Then the demand of a VM is calculated using the equation

(12).

 (12)

On the submission of each task into the cloud, the system

calculates the standard deviation. If the standard deviation

of the VM load ϭ is underneath or adequate to the threshold

condition, whose value is between [0–1] then the system is

balanced. Otherwise, the system is in an unbalanced state,

overloaded, or underloaded. If the standard deviation of

loads is larger than the threshold, then the load balancing

method is initiated. Throughout this load balancing method,

VMs are classified into underloaded and full VM sets. Then

the submitted tasks are rescheduled to the VM having the

best capacity. Once the present workload of a VM cluster

exceeds the utmost capacity of the group that is predefined

by the threshold value, then the cluster is overloaded. Load

balancing isn't attainable in this VM cluster.

III. RESULTS

For the analysis section, we carried out a comparison

between the normal honey bee algorithm and the newly

proposed Optimized_HB.

A. INPUT

Figure 4. User input on the screen

B. OUTPUT

Figure 5. Average response time outputted

The performance analysis of the proposed Optimized_HB is

carried out in a simulated dynamic environment. In this

heterogeneous environment, VMs having different

specifications are deployed. Cloudlets with varying

specifications are submitted into this cloud environment.

The response time for each of the submitted tasks is

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-04, July 2020

109 | IJREAMV06I0464104 DOI : 10.35291/2454-9150.2020.0508 © 2020, IJREAM All Rights Reserved.

measured and compared with the Normal Honey Bee

technique. The response time of the proposed

Optimized_HB method with Normal Honey Bee while

keeping the number of VMs constant and the number of

tasks varying is shown in Table 1. These values are used as

a reference and the corresponding graph is plotted in Figure

6.

Table 1: Comparison of Response time with varying no.

of tasks and constant no. of VMs

No. of Tasks Normal Honey Bee Proposed Technique

100 80.82 13.08

200 150.58 23.73

300 213.47 36.51

400 300.9 47.02

500 389.07 59.67

Figure 6 shows the average response time of honey bee

based algorithm and proposed Optimized_HB algorithm

versus the number of tasks. The X-axis represents the

number of tasks and Y-axis represents the response time in

milliseconds. The number of tasks takes the values from

100, 200, 300, 400, and 500. It is clearly evident that the

response time is greatly reduced for Optimized_HB

compared to that of the Normal Honey Bee algorithm.

The above experimental results show how the proposed

Optimized_HB algorithm reduces the response to time to a

great extent. Our Optimized_HB saves up to 84% of the

average response time over the Normal Honey Bee

algorithm. This is because the Optimized_HB considers the

least load, availability of VMs, and load variation of each

VM when assigning tasks to VMs.

Figure 6. Comparison chart for response time versus no.

of tasks

The graph considers a constant number of virtual machines

i.e. 10 virtual machines. When the number of tasks is 100,

the normal honey bee algorithm responds in 80.82 ms time

whereas the proposed technique responds in 13.08 ms. At

200 tasks, the normal algorithm responds in 150.58 ms and

the latter in 23.73 ms. At 300 tasks, the former responds in

213.47 ms and the latter in 36.51 ms. At 400 tasks, the

former responds in 300.9 ms and the latter in 47.02 ms.

Finally, at 500 tasks, the former responds in 389.07 ms and

the latter in 59.67 ms.

The response time of the proposed Optimized_HB method

with Normal Honey Bee while keeping the number of tasks

constant and the number of VMs varying is shown in Table

2. These values are used as a reference and the

corresponding graph is plotted in Figure 7.

Table 2: Comparison of response time with varying no.

of VMs and constant no. of tasks

No. of VMs Normal Honey Bee Proposed Technique

10 751.01 128.28

30 258.66 43.75

50 156.91 27.03

70 112.25 19.49

90 86.26 15.45

Figure 7 shows the average response time of honey bee

based algorithm and proposed Optimized_HB algorithm

versus the number of VMs. The X-axis represents the

number of VMs and Y-axis represents the response time in

milliseconds. The number of VMs takes the values from 10,

30, 50, 70, and 90. It is evident that the response time is

greatly reduced for Optimized_HB compared to that of the

Normal Honey Bee algorithm.

The above experimental results show how the proposed

Optimized_HB algorithm reduces the response to time to a

great extent. Our Optimized_HB saves up to 83% of the

average response time over the Normal Honey Bee

technique.

Figure 7. Comparison chart for response time versus no.

of VMs

The graph considers a constant number of tasks i.e. 1000

tasks. When the number of VMs is 10, the normal honey

bee algorithm responds in 751.01 ms time whereas the

proposed technique responds in 128.28 ms. At 30 VMs, the

normal algorithm responds in 258.66 ms and the latter in

43.75 ms. At 50 VMs, the former responds in 156.91 ms

and the latter in 27.03 ms. At 70 VMs, the former responds

in 112.25 ms and the latter in 19.49 ms. Finally, at 90 VMs,

the former responds in 86.26 ms and the latter in 15.45 ms.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-04, July 2020

110 | IJREAMV06I0464104 DOI : 10.35291/2454-9150.2020.0508 © 2020, IJREAM All Rights Reserved.

From these results, it is clear that response time is reduced

into a significant amount while using our Optimized_HB

algorithm. This is because Optimized_HB considers an

optimized technique for distributing loads in VMs. Now,

the users will get a faster response than older methods.

Response time is a good measure of QoS provided by the

service provider. So here the provider can assure good QoS

to their customers.

IV. CONCLUSION

This project focuses on an optimized approach for load

balancing and task scheduling in the cloud computing

environment by incorporating the foraging behaviour of

honey bee (HBO) and DSC algorithm that eventually led to

a decrease in the total response time of the user tasks and

also effectively handling and servicing requests from the

users. Incoming tasks are clustered using the DSC

algorithm on the thought of priority. The priority value is

computed consistent with the highest and lowest levels of

the tasks and is employed to make clusters for task

scheduling. The MHEFT algorithm is adopted to rank

scheduled tasks via rank value computation, during which

the average execution and communication times for every

task are reconsidered. The highest priority task is chosen

and appointed first for approaching processes. The tasks are

to be sent to the underloaded machine and like foraging

bees, succeeding tasks also are sent to that virtual machine

until the machine gets overloaded as flower patches

exploitation is completed by scout bees. Load balancing

that's inspired by honey bee behaviour improves the final

throughput of the process. Priority-based balancing focuses

on reducing the quantity of time a task possesses to serve a

queue of the VM. Thus, it reduces the response time of

VMs. As a part of the evaluation strategy, we compared our

proposed Optimized_HB with the Normal Honey Bee

algorithm. Results demonstrated that our algorithm stands

good in terms of a minimal response time compared to the

normal honey bee algorithm without increasing additional

overheads. In the subsequent years, we plan to improve this

proposed algorithm by considering other QoS factors of

tasks such as makespan, accepted rate, etc.

V. REFERENCES

 [1] A. Al-Rahayfeh, S. Atiewi, A. Abuhussein and M.

Almiani, "Novel Approach to Task Scheduling and Load

Balancing Using the Dominant Sequence Clustering and

Mean Shift Clustering Algorithms", Future Internet, vol.

11, no. 5, p. 109, 2019. Available: 10.3390/fi11050109.

 [2] C. K. P. Gohel, “A Novel Honey Bee Inspired

Algorithm for Dynamic Load Balancing In Cloud

Environment,” International Journal of Advanced Research

in Electrical, Electronics and Instrumentation Engineering,

vol. 4, no. 8, pp. 6995–7000, 2015.

 [3] H. Gupta and K. Sahu, "Honey Bee Behaviour Based

Load Balancing of Tasks in Cloud Computing",

International Journal of Science and Research (IJSR), vol.

3, no. 6, pp. 842-846, 2014.

 [4] K. R. Remesh Babu and P. Samuel, “Enhanced Bee

Colony Algorithm for Efficient Load Balancing and

Scheduling in Cloud,” Journal of Network and Innovative

Computing, vol. Volume 4.

 [5] M. Hamza, S. Pawar and Y. Jain, "A New Modified

HBB Optimized Load Balancing in Cloud Computing",

International Journal of Computer Science and Network,

vol. 4, no. 5, pp. 799-809, 2020.

 [6] S. Mittal and A. Katal, "An Optimized Task Scheduling

Algorithm in Cloud Computing," 2016 IEEE 6th

International Conference on Advanced Computing (IACC),

Bhimavaram, 2016, pp. 197-202.

 [7] T. Mathew, K. C. Sekaran, and J. Jose, “Study and

analysis of various task scheduling algorithms in the cloud

computing environment,” 2014 International Conference

on Advances in Computing, Communications and

Informatics (ICACCI), 2014.

 [8] W. Hashem, H. Nashaat and R. Rizk, "Honey Bee

Based Load Balancing in Cloud Computing," KSII

Transactions on Internet and Information Systems, vol. 11,

no. 12, pp. 5694-5711, 2017. DOI:

10.3837/tiis.2017.12.001.

 [9] Z. Y. Zhang and M. Moh, “Randomized Load

Balancing for Cloud Computing using Bacterial Foraging

Optimization,” Proceedings of the 2019 ACM Southeast

Conference on ZZZ - ACM SE '19, 2019.

