UNITARY BINARY GROUP VARIETIES AND ITS GEOMETRICAL APPLICATIONS

Dr. Niranjan Kumar Mishra
Assistant Professor, Dept. of Mathematics, K.K UNIVERSITY, Biharsharif, India.
Manohar Kumar Singh
Assistant Professor (Mechanical Engg.), ICFAI University, Jharkhand. India.

ABSTRACT: One consider the variety of the unitary binary group in n variable and it is shown that, this algebraic variety is rational and it has \boldsymbol{n}^{2} parameters. Then it is given a parametrical rational representation of this variety. We have established someone parameter subgroups of the unitary binary group. Besides we showed that these subgroups are geodesics of the pseudo-Riemannian space $V_{n^{2}}$.

KEY WORDS: Unitary binary group

I. Introduction

It is known that the unitary complex group $U(n)$ is formed by the complex matrices A of n -th order which satisfy the relation $A A^{*}=\mathrm{E}_{\mathrm{n}}$, where A^{*} is the adjoint of A and E_{n} is the identity matrix of nth order. This group is isomorphic with the simplistic orthogonal group in 2 n variable formed by the real matrices \mathbf{B} of 2 n -th order, which satisfy the relations.

$$
\left\{\begin{array}{c}
B \bar{B}=E_{2 n} \\
B I=I B
\end{array}\right.
$$

Where \bar{B} is the transpose of $B, E_{2 n}$ is the identify matrix of $2 n t h$ order and I is the matrix

$$
\left\|\begin{array}{cccc}
I_{2} & 0 & \ldots & 0 \\
0 & I_{2} & \ldots & 0 \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
\ldots & \ldots & \cdots & \cdots
\end{array}\right\| \text { Where } I_{2}=\| \begin{array}{cc}
0 & 1 \\
0 & 0
\end{array} \cdots
$$

The purpose of this speech is to show that the unitary binary group $\beta(n)$ formed by the matrices A of nth order which elements belong to the algebra of binary numbers. Which satisfy the relation $A A^{\prime}=E_{n}$, with A^{*} the adjoint of A isomorphic with the group of real matrices B of 2 nth order which fulfil the relations $B I \bar{B}=I, B J=J B$, where

$$
I=\left\|\begin{array}{cccc}
I_{2} & 0 & \ldots & 0 \\
0 & I_{2} & \ldots & 0 \\
\cdot & . & \ldots & \cdot \\
\cdot & . & \ldots & \cdot \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & I_{2}
\end{array}\right\| \quad J=\left\|\begin{array}{cccc}
J_{2} & 0 & \ldots & 0 \\
0 & J_{2} & \ldots & 0 \\
\cdot & . & \ldots & . \\
\cdot & . & \ldots & . \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & J_{2}
\end{array}\right\|
$$

With

$$
I_{2}=\left\|\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right\| \quad J_{2}=\left\|\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right\|
$$

Then we prove that this algebraic variety is rational, finding effectively rational parametrical representation and proving that it depends on n^{2} parameters.

Finally we shall give some geometrical application.

II. The variety of the unitary binary group

The algebra of binary numbers A is a commutative algebra of order two over the field R of real numbers generated by two elements 1 , e that satisfy the relations.

$$
1^{2}=\mathrm{e}^{2}=1 \quad \text { 1.e }=\mathrm{e} \cdot 1=\mathrm{e}
$$

An element $x=\in \boldsymbol{A}$ of the algebrs \boldsymbol{A} is like $x=a+e b$, with $a, b \in \boldsymbol{R}$ and the conjugate of x is by defination $\bar{x}=a-e b$.
The set U_{2} of real matrices of order two of the form $\left\|_{b}^{a} \quad b\right\|$ is an algebra over the field \mathbf{R} of real number.
It is known that the function $f: A \rightarrow U_{2}$ defined by $f(a+e b)=\left\|\begin{array}{ll}a & b \\ b & a\end{array}\right\|$ is an isomorphism of algebras (Rosenfield).
The unitary binary group $\beta(n)$ is formed by the matrices A of nth order with elements form the algebra A , which fulfils the relations $A A^{*}=E_{n}$ and the multiplication of matrices is a composition law. (A^{*} is the adjoint of A and E_{n} is the idenitifity matrix of nth order).

Let $\mathrm{SO}(2 \mathrm{n})$ be the group formed by the real matrices B of 2 nth order, which satisfy the relationship $B I \tilde{B}=I, B J=$ $J B$, where \tilde{B} is the transpose of B and I, J are the matrices of 2 nth order that satisfy the $I J=-J I$.

With

$$
I=\left\|\begin{array}{cccc}
I_{2} & 0 & \ldots & 0 \\
0 & I_{2} & \ldots & 0 \\
\cdot & . & \ldots & \cdot \\
\cdot & . & \ldots & \cdot \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & I_{2}
\end{array}\right\| \quad J=\left\|\begin{array}{cccc}
J_{2} & 0 & \ldots & 0 \\
0 & J_{2} & \ldots & 0 \\
\cdot & . & \ldots & . \\
\cdot & . & \ldots & . \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & J_{2}
\end{array}\right\|
$$

$$
I_{2}=\left\|\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right\| \quad J_{2}=\left\|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right\|
$$

Theorem1. The groups $\boldsymbol{\beta}(\boldsymbol{n})$ and $S O(2 n)$ are isomorphic.
We have shown by the computation of the number of independent relation that the number of parameters of the variety of the unitary binary group in n^{2}. The next result will give a parametrical rational representation of the unitary binary group.

Theorem2.

If X is a symmetric matrix and $X J=-J X$, then the variety of the unitary binary group $V_{n^{2}}$ formed by the matrices A with

$$
\left\{\begin{array}{l}
A I \tilde{A}=I \\
A J=J A
\end{array}\right.
$$

admits a rational parametrial represenattion of the form $A=(I+X)^{-1}(I-X)$ in the neighbourhood getermined by the condition

$$
|I+X| \neq 0
$$

III. SOME GEOMETRICAL APPLICATIONS.

The vector space $\mathbf{R}_{2 \mathrm{n} \times 2 \mathrm{n}}$ of real matrices of 2 nth order endowed with the pseudo-scalar product (indefinite bilinear symmetric form),

$$
<P, Q\rangle=-\frac{1}{2} \operatorname{Tr}(I P I \tilde{Q})
$$

Where $\operatorname{Tr}(A)$ represents the trace of matrix A , is a pseudo-Euclidian space.
The metric of this space is

$$
d s^{2}=-\frac{1}{2} T_{r}(I d P I d \tilde{P})
$$

Where $d P$ is differential of the matrix P.
The path is B: $\mathrm{R} \rightarrow V_{n^{2}}$ of pseudo - Riemannian space $V_{n^{2}}$ defined by $B(t)=e^{t x}$, where
X is an antisymmetric matrix of 2 nth order $(\tilde{X}=-X)$ which satisfied the relations.

$$
\left\{\begin{array}{l}
X I=I X \\
X J=J X
\end{array}\right.
$$

Where I and J are matrices introduced above, is an one parameters subgroup of the unitary binary group $\beta(n)$
For proving this result we showed that the equalities are fulfilled.

$$
\left\{\begin{array}{l}
B(t) \tilde{B}(t)=I \\
B(t) J=J B(t)
\end{array}\right.
$$

Theorem 3. The one parameter subgroups of the unitary binary group are geodesics of the pseudo-Riemannian space $V_{n}{ }^{2}$.
For showing that the path $B(t)=e^{t X}, t \in R$, is geodesic in the space $\beta(n)$, we proved that the
Vector $B^{\prime \prime}(t)$ is orthogonal to every vector $B^{\prime}(t)$ which satisies the equality $B^{\prime}(t) I \tilde{B}(t)+B(t) I \tilde{B}^{\prime}(t)=0$.

Some one parameter subgroups of the orthogonal group in n variables $O(n)$ where established by K.Teleman showing that these subgroups are geodesics of the Riemannian space $O(n)$.
E. Grecu has established some one parameter subgroups of the semi-pseudo-orthogonal group $O^{r, t}(p)$ in p variables and of the semi-orthogonal group $O^{r}(p)$, providing that these subgroups are geodesics of the semi- Riemannian spaces $O^{r, t}(p)$ respectively $O^{r}(p)$.

A more detailed work will be found in [2].

References

[1] J. Dieudonne, Surles groupes classique, Hermann, Paris, 1967
[2] M, Geanau On the unitary binary group, Southeast Asian Bulletin of Mathematics, Springer-Verlag, 1999-2000.
[3] E. Grecu Surles sous-groupes a un parameter de groupe semiothogonal, Demonstratio Mathematica. Vol. XVI (1983), 2
[4] E. Grecu Determination des grodesiques de certain espaces Riemanniens singuliers, Acta, Math. Hung 42(1983), 1-2
[5] B.A Rozenfeld, Non Eucliden espaces,1974.
[6] C.Teleman, Geometric diferentiala locala si globala, Wditure Tehnica. Bucuresti 1974
[7] C. W. Curtis, Linear algebra, 2nd ed., Allyn and Bacon, Inc., Boston, 1968
[8] I. M. Gelfand, Lectures on Linear Algebra, Interscience Publishers, New York, 1961

