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Abstract: The present paper deals with the existence of the first kind when the second and third primaries are triaxial

rigid bodies and the fourth primary is of comparatively smaller mass and placed at triangular libration point of the

CR3BP (Circular Restricted Three — body Problem). Applying the model of Hassan et al. [1, 2], we have verified the

criterion of Duboshin [3] for periodic orbits and found satisfied.
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I. INTRODUCTION

Giacaglia [4] applied the method of analytic continuation to
examine the existence of periodic orbits of collision of the
first kind in the Circular Restricted Four—body Problem
(CR4BP). Bhatnagar [5] generalized the problem in elliptic
case. Further Bhatnagar [6] extended the work of Giacaglia
[4] in the Circular Restricted Four—body Problem (CR4BP)
by considering three primaries at the vertices of an
equilateral triangle. In last three decades a series of works
have been performed by different authors with different
perturbations in the circular and elliptic restricted three-
body and four-body problem but nobody established the
proper mathematical model of the Restricted Four-body
Problem (R4BP).

Recently Ceccaroni and Biggs [7] studied the autonomous
coplanar CR4BP with an extension to low-thrust propulsion
for application to the future science mission. In their
problem they also studied the stability region of the
artificial and natural equilibrium points in the Sun-Jupiter
Trojan Asteroid-Spacecraft system. Using the concept of
Ceccaroni and Biggs [7] and the method of Hassan [1,2],
we have proposed to study the existence of periodic orbits
of the first kind in the autonomous restricted four — body
problem (R4BP) by considering the second and third
primaries are triaxial rigid bodies.

I1. EQUATIONS OF MOTION

Let R(i=123) be the three primaries of masses
m, (j=12,3)

problem is the restricted four-body problem so the fourth

respectively, wherem >m, >m,. The
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body P of infinitesimal mass m is assumed to be so small
that it can’t influence the motion of the primaries but the
motion of P(m) is influenced by them. In addition, we
assumed that the mass m, (mass of the third primary placed
at L, of the R3BP) is small enough so that it can’t influence
the motion of the two dominating primaries B and P, but
can influence the motion of the infinitesimal body P(m).
Thus, the centre of mass (i.e. the bary-centre) i.e. the centre
of rotation of the system remains at the bary-centre O of
the two primariesP, andP,. Also, all the primaries
B, P,and P, are moving in the same plane of motion in
OR,,OP, and OR,
respectively around the bary-centre O with the same
angular velocity @ . Considering (O,XY) as an inertial

different circular orbits of radii

frame in such a way that the XY — plane coincides with the
plane of motion of the primaries and origin coincides with
O . Initially let the principal axes of the second primary P,

are parallel to the synodic axes (Oxy) and its axis of

symmetry is perpendicular to the plane of motion. Since the
primaries are revolving without rotation about O with the
same angular velocity as that of the synodic axes hence, the
principal axes of P, will remain parallel to the co-ordinate

axes throughout the motion.
Let at any time t, R, (&,0)and P, (&,,0) be the positions

of two dominating primaries on the x—axis of the rotating
(synodic) co-ordinate system and P,(&;,7,) be the third

primary placed at the equilibrium point L, of B and P, . Let
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r,r,andr, be the displacements of B, P, and P, relative to

P and F be the position vector of P(x,y), then

:(x—cfl)f+yi=

(x=&)i+yi= o O
( ~&)i +y(y 773)J RP,

7'=Xl+yj=

)

Nyl
Il

¥ P (x,5)
2 (- Y5.3/2)

AP,A"' =125,
BP,B'=2b,,
CP,C'=2b,.
c

q B

X A 0(0,0)

P:I.(l'l = ]10)

P (1,0)
Figure 1. Configuration of CR4BP when Second and Third
Primaries are Triaxial Rigid bodies

Let F,F,andF, be the gravitational forces exerted by
the primaries B, P, and P, respectively on the infinitesimal

mass m at P(x,y), then

.G
F=- Ir:ml{( —&)i+ i} 0)

Let a,a, anda, be the lengths of the semi-axes of the

second primary P,(&,,0) and c,,c,,c, be the semi-axes of

the third primary P,(&;,7,), then then the gravitational

force exerted by P,(&,,0) and Py(&.7,) on P(xY)

respectively are given by

- Gmm, , 3Gmm,(2b’-bZ-bl),

FZ == 3 I’2 - 4 2 rZ
r, 2r, 5R

, 15Gmm, [bl —b? ]y :

©)

2rf 5R?
and
- Gmm,, 3Gmm,(2c’-ci-c),
F3 == 3 r3 - 4 2 r3
r 2r, 5R

15Gmm, ( ¢? —c2 2,
+—3[5T22](y—773) fy

2rf

4)
b? —b; by b

Let o, 5R23 o, = 25R2 ;
2

G -G _6 G

DT TeRz 72T TERE

®)

then
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2 12 R 2 12
(m]=201—o-zand(bl b2j=crl—az,

5R? 5R?
2¢t —cZ —c? o ¢’ -c; L
(# =20‘1—0'2and WZZ =0, —0,,
Here f, is the wunit vector along 1, ie,
c B _(x=&)i+yi
" el 2

and f, is the unit wvector along [, ie,

iz(x_é)f"'(y_%)i

- F, =—-Gmm, HX_;EZ + 3(20,20:)(x-4)

r 2r;

r; 2r;
15(0'1'—0"2) sl -
‘T(y—ﬂa) J

Total gravitational force exerted by the three primaries
on the infinitesimal mass is given by

FoF+F+F
:_GmHml(Xs_‘fl)_'_ mz(X;§2)+ ma(xs_éga)
I A fy
+3m2(201—o-2)(x—§2)+3m3<20'1'—o"2)(x—§3)
2ry 2r;
15m, (o, -0, )(x—&,) ,
- 2r27 (y_n3)
_15m2(0-1_02)(x_§2)y2 P (6)
2r)

+{”H_g+m+v+ms<v3—n3)+3mz<za;—oz>y
I r I 2r2

15m,(0,-0,) , 3m3(2a;—a'2)(

2r) v 2r; y=1s)
15m3<0'l'—0"2> sl -
_T(y_ns) J
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The equation of motion of infinitesimal mass in the
gravitational field of the three primaries B,P,and P, is

given by

2

2= = —
m E 25 T 199 ¢ 4 o (@xr) |=F, )
ot ot ot
ol P . .
where —- = Xi + ] = relative acceleration,
ot

a oo WA - - -
X r =—nyi + nxj = coriolis acceleration,

. 0D _( . .
Euler's acceleration = ) xT (as @ = nk is a constant vector)
— — - _ 2 & 2 2 _ - -
@x(&xF)=-n’xi —n”y] = centrifugal acceleration.

From Equations (3) and (4), we get

m[(X'—Zny—nzx)l +(y+2n)'(—n2y)1]
:_Gm|:{ml(xs_§1)+mz(xs_fz)_’_mz(x_fa,)

3
rl r2 r3

4 3m, (20'1 _O'z)(x_fz) + 3m3(20-i _GIZ)(X_Q)

2r; 2r;
_15m3(01' —aé)(X—fs)(y_ )z
2r] 773
15m, (o, -0, )(x—&,) z}p
— - ye
2r,

3 3 3 5
1 r2 r3 2 r2

+{m1y+mzy+ma(y_773)+3m2(201_0-2)

3m,(20,-0,)  15m,(20,-0;) ,
’ 2r; - 2r) (y=m)
15m, ((f1 —02) 3| =
2r, b

By equating the coefficients of I and | from both sides,
we get the equations of motion of the infinitesimal mass as
m(x—¢&) m,(x—4&,)

3 +

n ry

5<'2nyn2x=G[

+ma(x—§3)+3m2(201—o-2)(x—§2)

r33 2I’25 (8)
_15m2(0'1—0'2)(x—§2)y2
2r)
+3m3(20'1'70"2)(x7§3)
2r;
15m3<0'1'—o"2)(x_§3) )
- 2r) (y=m)" |,
m _
y+2nx—n’y =-G ml—3y+m43y+M
1 r, r3
+3m2(20;—02)y_15m2(al7—02) , )
2r, 2r,
3m, (20, - ;) 15m, (o} - o;) .
Lo B\E TP )y TP\ P12 )
2|’35 (y 773) 2[‘37 (y 773)
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Let V=vi+v,] be the linear velocity of the
infinitesimal mass at P(x,y) then

dr _or , [

" ~ d o0 .
V=—=—+a&xT as —=—+ox
dt ot

dt ot
=(X=ny)T+(y+nX) J =Vl +V, ]

where v, = X—ny,Vv, = y+nX

.". Kinetic energy of the infinitesimal mass is given by

T= %|\7|2 for unit mass of the infinitesimal body.

:%()’(2+y2)+n(xy—>'<y)+n?(x2+y2). (10)

where the mean motion of the synodic frame is given by

3 3.,
n? :1+§(201—o'2)+5(201—0'2), (11)
where o,,0,,0,,0, are given in Equation (2.2).

Let p, and p, be the momenta corresponding to the co-

ordinates xand y respectively then p, = Z;—T p, = %
X

= p=X-ny=v,and p, =y+nx=yv,
1
Thus Tzz(pf+p§).

Let V, =(i=12,3) be the gravitational potential of the

primaries of masses m (i =1,2,3) at any point outside of

P(x,y), then
Gm
V=2,
T,
Gm, Gm,(20,-0,) 3Gm,(c,-0,) ,
V, =- = 3 + = ,
r, 2r, 2r,

Gm, Gm, (20'1' —0"2) . 3Gm, (al' —0"2)

V,=— (y_773)2-

r, 2r; 2r;
. Total potential at any point outside of P(x,y) due to

three primaries P,(&,0), P,(&,,0),R(&.7,) is given by

VoSV, :,G[ﬂ+ﬁ+&],w
ey n 2r,

r2 r3
+3Gm2 (62.—02) » 7Gm3(20-1‘70;2) (12)
2ry 2r}
N 3Gm, (O'; —o"z)
2r,
The Lagrangian of the infinitesimal mass is given by
L=T-V

—;(pf+p§)+6{

(y*773)2-

ml+mz+m3j+ GmZ(ZG;—O'Z)
rl I’2 r3 2r2
S 13
_3Gm2(01—o-2)y2+Gm3(20'1—0'2) (13)
2r; 2r}
3Gm3(0'1' —0"2)
2r;
The Hamiltonian of the infinitesimal body of unit mass is
given by

(y_773)2-
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H :Zp)’(—Lz(pl>'(+ sz)_L’

1 m, m
H=2(pi+p;)+n(py- pZX)—G{ﬂ+—Z+—3j
rl rZ r3

_Gm, (20,-0,) . 3Gm, (0, -0,) ,

2r} 2r; y (14)
_Gm3(20'i—0"2)+3Gm3(0'1'—o"2)(y_ )2

2r} 2r? )
= C = Constant.

Assuming x as the mass ratio of m, and ¢ as the mass
ratio of m, to the total mass of the dominating primaries

m m
PandP, then u=—-2=*—ande=—"3—. Also
m, +m, m, +m,

assuming m +m, =1 then m, =4 m =1-gandm,=¢.
From the definition of the centre of mass of m, and m, we
have m¢& +m,&, =0 which implies & =4, &, =u-1

&= ,u—%and = ? Thus the co-ordinates of the three
1 48
2

primaries B,P,and P, are (z,0),(x«—-10)and [u—i,

respectively, which confirms IPlPZI:‘P?%Iziaaizl

i.e. BR,P, is an equilateral triangle of sides of unit length.

Now choosing unit of time in such a way that G =1 and
taking x=x, and y =x,, then the reduced Hamiltonian is
given by

1 1- &
H :E(p12+ p§)+n(plxz_ pz&)_Tﬂ_g_E

ﬂ(201;02)+3ﬂ(0_15_02)X§_‘9(20—1'3_0:2) (15)
2r, 2r, 2r,

3¢(0, -0,
+¥(Xz ./ )2 =C = constant.
2r,
The Hamiltonian — Canonical equations are
dx, oH

dt  op,
d oH (16)
®__ (i=12)

dt o
The energy integral of the infinitesimal mass is

1()’(eryz):lnz(xz+y2)+1_—’u+ﬁ+£

2 2 [ AR

ﬂ(201—02)_3/1(01—02)
2r; 2r;

5(20'1'—0'2) 35(0'1'—0'2)
2r; 2r;

+ X (17)

+ (X2_773)2-

I1l. REGULARIZATION

In our Hamiltonian given in Equation (15), there are three
singularities r, =r, =r, =0, so to examine the existence of
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periodic orbits around the first primary, we have to
eliminate the singularity r, =0 from the Hamiltonian in

Equation (15). For this, let us define an extended generating
function S by

S=(u+q —a) p,+29,0,Pp, (18)
where Q (i=1,2) are momenta associated with new co-

. . oS 0S
ordinates ¢, (i=1,2) andx, =—,Q =—.

4(i=12) oy, © o
Clearly,
0S 2 2 oS

N + — s X, =—= 2 y 19
X n HFO -0, 2 o, 4,9, (19)
Q=2(pt+P%),  Q=2(P,%—Pa,) (20)

2

6= (% —u) +3¢ = (o~ ) +4q2q? = (o2 +2)

=0 +0;,

rp =1+ +2(qf —a3), (21)
it =1+17 +(qf - o ) - 24/30,,.

From Equation (20), we have

1
P, = Z_Q(qul -Q,0, )v

1
p, = Z_rl(quz +qu1)-
(22)

1
P+ = (QF+ Q7). (23)
n

n( p1X2 - pzxi) = g(Q1q2 _qul)—g—f(quz +Q2q1)- (24)

The combination of Equations (14), (23) and (24) gives
the Hamiltonian H in terms of new variables

0.Q (i=12) as

1 2 2 1
H :8_I’1(Q1 +Q, )+En(Q1qz _qul)

n 1- £
__#(querqul)_ £_E£_2
2r, L L n (25)
_,u(20'1—0'2)+6,u(0'1—0'2)q2q2
2rf ry 1
_8(20‘1'—0"2)+38(c71'—o-'2) 2ag _ﬁ z:C
2r} 2r? 2 '

Let us introduce pseudo time = by the equation
dt=rdz (z=0whent=0) (26)

The Canonical equations of motion corresponding to the
regularized Hamiltonian K are given by

dq. _ oK

dr Q'

dQ.

99K i1z
dr 0oq;

(27)

where the regularized Hamiltonian K is given by
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K=r(H-C)=0,

= %(le + Q22)+ lm‘l(quz _qu1) _%U(quz + qul)

pr e, uh(20,-0y)

l-py)-~—2-=21 22 2/ 28
~(t-4) r, 2r} (28)
+6[u[i(gl—(72) SIE(ZGi—GIZ)

ry 2r}

3er, (o, -0, NG 2
+M(2qlq2_7] =0.

2r;

4/, —nC -

Since ¢ is very-very small in comparison of the masses
of the dominating primaries hence Ve €0, 1] , we can take
e=pug, and C=C,+uC, +u°C,+4°Cy+..... Let us
write K = K, + K, =0 then from Equation (28), we have

1
:g(Q12+Q§)+ n[n(Qa, -Q,a,)-2C, -1 29)
=—A(say).
n 1 ¢ A A
Klzl_E(quz+Q2q1)_r1{cl+r—+r—o+—3+r—3
2 3 2 3
. 2 (30)
_Bge B[y, B
r25 r35 112 2 ’
where
1
A=3(20-c;).  B=6(0;-c,),
31
D Eofm D Be, . (31)
A =?(20'1—0'2), B =7(0'1_0'2)-

V. GENERATING SOLUTION

For generating solution, we shall choose K, for our

Hamiltonian function, so in order to solve the Hamilton —
Jacobi equation associated with K;, let us write

Q= %(I =1,2) and 1-A=a>0 arbitrary constant.
Since t is not involved explicitly in K, hence the Hamilton
— Jacobi equation may be written as

Ufaw ) (aw )| L] (oW oW o
g/l oa ) \a,) |2\ %o Moq, ) ) @2

=Q.

Putting g, = pcose, q, = psing
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(SR -3 5)
o aq, op) p*op
ow oW oW
o, ou, Op
Thus the Equation (32) reduces to
This is a partial differential equation of second degree, so
by the method of variable separable, the solution of
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and g, — -0, —=———
1(owY) 1(owY | 1 oW
SN ==| +=| =—| [+Zp*|-nT=-2C,|=a. (35)
8|\ op P\ Op 2 o
Equation (35) may be written as

W =U(p)+2Gy,
(36)
where G is an arbitrary constant.

Now introducing a new variable z by r, = p° =z then
E = 2p,
dp
LW _oU_du_du &z, dy
Top op dp dz dp pdz’
e, W_p,d0 W _og

op dz d(p

@37)

Introducing Equation (37) in Equation (36), we get

1(, du) 1 1
g{[ZpE] +?(2G)2:|+§p2 [-n.2G -2C,]=

[ j } P0G +C,)=a

( J G——22[nG+C] 2a,

(d—J ——+22[nG+C]+2a

2 2
(d_UJ =—G—+2[nG+C ]+—

dz z z

_2nG+C)[ . ez G

2’ nG+C, 2(nG+GC,)|
1

du 2(nG+C,) 2
e e Sl 2 SY PN I 38
|- Se )

az 2

where F(z)=-2°- + is a quadratic
2 2, 2 af 9 (33) nG +C, Z(I’IG + CO)
then p°=q +q, =1, and p=tan™| = |.
0, expression in z.
Now W =W(q1,q2)=W(,0, (p) Introducing the parameters a,e,| as in Hassan [1, 2],
W oW W sing F(z) can be written as
=>Q =—=—C0sp——.——
o9, Op op p (34) F(z)=n’a’’sin’l.
andQ2 :ﬂ:%sin +ﬂw (39)
aq, op dp p The  Hamilton-Canonical ~ equation  of  motion
corresponding to the Hamiltonian K, are given by
95 | IIREAMV0610767034 DOI : 10.35291/2454-9150.2020.0642 © 2020, IJREAM All Rights Reserved.



dg, oK, dg, oK,

dr oQ ' dr Q,’
dQ oK, dQ, K,

dr aq, dr o,

(40)
1 1
where K, :_(Qf +Q22)+E,o2 [n(Qa,-Q,q,)-2C, |-1.
K, 11
=oq 2% e
oK, 1 1
—2=-Q,-=p’nq,.
Q, 47 2
Thus g, = 2Q, +2 p*n,,
4 2
(41)
1 1
4Qz -5 P nql'
where (') denotes the differentiation with respect to 7 .
Now p* =¢f +0 =z,
dp dg, dg, dz
2p—L =20 —L+2q, —2 =—,
T T TR Tar
. . . dz
= 2pp =2(0,0 +G,0,) = (42)
, , 1 1 1 1
But q,q; + 0,0, :q1(ZQ1+§p2nqzj+qz (ZQz —Epznqu,
1
:Z(q1Q1+q2Qz)'
: Z, I dz
Thus 20p ZZZQiqi =EZQiQi :d_
i=1 i=1

(43)
Also Zqui =0,Q, +0,Q,,

o[, o (W
"(og, ) "leg, )

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Mol-06, Issue-07, OCT 2020

From the last relation of Equation (45), we have
dz
g :\/—Z(nG +Co)\/F (2)

= SZZ - J~2(nG +C, )dr
.[\/: ,/ nG +C,) Idr where 7=z, =1=0,z=1,

%o

 [ralsinldl_ GG, (7o), [Hassan]

o halsinl

=1=[-2(nG+C )} (r-1,),

I_Iﬁ

Again, from Equation (45),

%3—; = \/—2(nG +c0)\/|: (z)

%rl =\/—2(nG +co)\/|:(z)

- z%z\/—Z(nGJrCO)\/F(z)

[-2(nG+C )] (t-17,). (46)

1 zdz
=dt= - ,
[-2(nG+C,) ] VF (2)
= ldt: 1 j-an(l—ecosl?alnesinldll
o [_z(nGJrCO)]z 0 anesin
t-1 =Ll(l—esinl),

[—Z(Hg +C, )]E
(47)
where t, is a constant.

Now taking LandG as arbitrary constants in line of
a & ¢ and the solutions may be given by the relations

oW 6U [

_pcos¢)(cos¢%_m%} aL a
op p Op (48)
( W, cosg 6Wj w_u +2p=40.
6/3 p 0p .
From Equation (38),
=p ow [using Equation (34)] 1
=P Lo dz
op U(z,G,L)=[-2(nG+C,)]? [JF(z2)—=
S 3 (2.6.1)=[-2(n0+C,) [ {F(2) S
= ing Equati 7
dz [usmg quation ( )] Differentiating partially with respectto G, we get
=27—, _
™ Gg aGN (G +C,) )
du
quQ _Zz(dzj (44) U nyLP-G’sinl
Following Hassan [1,2] and using Equations (43) and oG 2(nG+C )
44), we have
(“44) where f =+1-e _[ (e=1) (49)
1 oW : 2, 13 (1- ecosl
SP=—=12pp =23.0,0,=->.4Q,
2" op i=1 273 From Equation (48),
du d (*49)
z
—z—— -2(nG+C,)F =—.
26+ C)F (2] = -
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g=—+2p,
7 _G2qi
:gzz(p.f_w_fl (50)
2(nG+C,)
:>¢)=l(g+f)—n—Msinl
2 4(nG +C,)

and (p:ig— nL sinl

27 4c,

(51)
where (e21,G =0, f #0),(e=1,G=0, f =0).

Now let us find the value of K, intermsof I,g,L,G, we
have

K, = 2(Q +Q2)+ £ [n(Q, ~Q.4)-26, ]
K, =L[2(nG+C,)] -1 52)

Therefore, for the problem generated by the Hamiltonian
K, . the equations of motion are

d_L: oK, =0= L =constant = L,
dr ol
d—G:%:O:G:constant:go,
dr ag
dl oK L (53)
= =[2G+ c)] = . (say)
=l=nr+l,,
d oK L
e W)
[-2(nG+C,) 2
=g =7,7+J,.
Further we are to express g, and Q, (i =1,2) in terms of

canonical elements |, g,L,¢. From Equation (34),

Ql:@W :Cowaw _sm;an’
p Op

oq; op
_ cos¢2pd—ufsm¢ oW ,
dz P Op

- [{—Z(HG+Co)}%ﬁ-cosw—esinw}

1
[na{—Z(nG +C,)}2 esinlcosp—Gsin ¢7:|,

I
H+

Sl &

+

eLsinlcosp—Gsin (p:|

e, Q =2
he Q { i\/na(l—ecosl)

Thus,
2[eLsinlcosp—Gsin
Q== [ ? (ﬂ]
na(1-ecosl)
2[eLsinlcosg+Gsin
Qz == [ v (D]

\/na(l— ecosl) (54)

1
q, =+[ na(1-ecosl) |2 cosg,

1
q, =+[ na(1-ecosl) |?sing,
where ¢ is given by the first equation of (51).
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Where e=1,G=0,f =0, then the variables q;,Q (i=12)
can be expressed in terms of canonical elements (1,g,L,G)

as

g, = ++/2ansin IEcos;o

q,= +2ansin IEsin 1)

| (55)
Q, =+—=cC0s—cos
' 2an 2 v
4L I .
Q, == c0s—sin
? 2an 2 v

where ¢ is given by the second equation of (51).

The original synodic cartesian co-ordinates in a
uniformly rotating (synodic) system are obtained from the
Equations (19) and (22) when x=0,

X =05 — 0,
1
p, = E(qul _quz ): (56)

X, = 2q1q2,

1
P = 2-(Q.4 Q).

The sidereal cartesian co-ordinates are obtained by
considering the transformation
X, =X, cosnt —x, sinnt
)fz =X sinnt+Xx, cc?snt (57)
X, = p,cosnt — p, sinnt
X, = p,sinnt+ p, cosnt
where t is given by the Equation (47).
Now let us express K, in terms of the canonical elements

l,g9,L,G. From Equation (30),

1
K1 = 1_§n(Q1QZ +Q2q1)

242 ' ' 2
_{Cﬁgﬁi_mi_z[m_ﬁ] }
I

3
2 3 I'-2 I'-2 r3
Now,

QQ, +Q,q, = psin %+ cos W
A7) b0 =P @aql P ¢7an1

. { oW sin(p[ﬂW}
= psing| cOSp—— — ———
op  p Op

{ oW COS(/)@W}
+ pCose|sing—+ —
op p Op

ow

. oW
= p——Sin2¢p +——C0S2¢,
op op

=21f—2(nG +C,)F(2)sin2¢ + 2G cos2¢,

1
= 2ane[ -2(nG +C, ) |2 esinlsin 2+ 2G cos ¢, [using Eqn (39)]
= 2eLsinlsin2¢ + 2G cos2¢,

[using Eqn (34)]

[using Eqn (45)]

Q,0, +Q,0, = 2[eLsinlsin 2¢ + 2G cos 2¢],
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g(quz +Q,0,) = n[eLsinlsin2¢p + 2G cos 2¢],

2
202 = p?cos? pp?sin® g = p* (singcos )’ = %sin2 2¢.
Thus,
2

K, =1-n(eLsinlsin2¢p+Gcos2¢)— {C +1+—
r

2 r3

. 2 (58)
A Bz’sin2p A B NE)
S st | Zsin2p——
r, 4r, Lo 2

where
=na(l-ecosl)=z,  r}=1+2z"+2zc0s2¢p,
r? =1+ 22 + 2cos 29 —+[3zsin 2¢.

By neglecting the higher order terms of e, let the co-
efficient of x be denoted by R then the complete
Hamiltonian in terms of canonical variables I,g,L,G is

given by
1
K=L[-2(nG+C,)]? -1+ uR.

". The equations of motion for the complete Hamiltonian
are
dL _ dK oR

dr _ar Y

dG _dK _ R

dr dg ”ag

di dK oR
— =—[2(nG+Cy) |2 —pu==
dr [-2(nG+ )] Har
dg _ dK nL 4R
(59)

where

R=1- n(eLsmIsm2(p+Gc052¢)—z{G+—+—

PR

Ba’n?(1—2ecosl)sin? 2 '
A ( ) ¢ A

5 3
r, 4r, r,

_%{na(l—ecosl)sin 2@—?}2}.

3

3

The Equation (59) forms the basis of a general
perturbation theory for the problem in question. The
solution given in Equations (54) and (55) are periodic if
land g have commensurable frequencies that is, if
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V. EXISTENCE OF PERIODIC ORBITS

Here we shall follow the method used by Choudhary [8]
to prove the existence of periodic orbits when = 0. When

u =0, the Equations (59) become

ook,
dz o
dG _ G, _
dr ag o
d oK, 1 (61)
P :—[—Z(nG+CO)]2 =n,(0), say
g_g %KG - —=n,(0). say
4 [—2 nG +C )}5

Let x =L, x,=G, y,=landy, =g then
dx, _ dx

= —2 = O,

dr dr
dy1
dr _771( )
dy,
—==n,(0).
dz 772( )

Thus, the Equation (61) can be written as
dx;.

=0and%=77i (0)

T dz
=x=a,y, =7(0)r+aw (i=12) (62)
These are generating solutions of the two-body problem.
Here a,,7; are constants given by

oK, ek,
oGl o8] @

The generating solutions will be periodic with the period
7, if
X; (To)_ X; (0) =0,
Yi (To)_yi (0)277i (O)‘[: 27x,, (i :LZ)

Here «(i=12) are integers, so that (o) are

(64)

commensurable.
Let the general solution in the neighbourhood of the
generating solution be periodic with the period

7, +ar, =(1+a)7,, a is negligible quantity of the order

of u . Let us introduce new independent variable ¢ by the

ml| 2|nG +c0| p equation ¢ = ﬁ. The period of the general solution will
ng L q T
(60) be ¢, +ag, =(1+a)g, :(1+az)ﬁ:z-0 which is same
where pandq are integers. as the period of the generating solution. The Equation (59)

. A A . now can be written as
The periods of g,Q are —and—, so that in case of d
mon, )X

commensurability, the period of the solution is dg o, (65)
4rp 4rq %:—(1-}“)%
—and —. d x

77I 779 g i
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Following Poincare [9], the general solutions in the
neighbourhood of the generating solutions may be written
as
X =a+p+&5(s)

Yi =75 (O)§+a)i T+ (g):Ui(o)§+wi T+ (g)
The Equation (65) can be written in terms of new
variable &,7, as

dg oK'
dg 577i’

dm_ K i1
d¢ 04

(66)

where

K'(g,fi,ﬂi)=(1+a)K[ ca+p +§|177(0)§+a)i +7i +77i:|
~(1+a)K(s,a,n% +@ )+ 0+,

=(1+a){K (g,ai,ni(°’g+wi)+;(é Z—aKiwi %ﬂ

w08 +ng - (Lra)K (g% + o),
2 (K K e o
:(1+a)iz_1:[§i 6_8.i+77i a_a)iJ+771( )51 +17; )52

Now in order that the periodic solution may exist, the
necessary and sufficient conditions are written as
X (70) =% (0) = (%) =0, (67)
Vi (z,)-Y; (0) =27, =1, (0) =0. (68)
Restricting our solution only upto the first order
infinitesimals, the equations of motion (66) may be written
as

d& oK

d—ii:(l'i‘a’)%, (69)
d?]- oK (0)

0 1 = _

ac (+a)60), 7

(70)

Expanding K(g,ai +ﬂia77i(°)§+a’. +)/i) in ascending
powers of Sy, u, we find that Equation (69) may be

written as
dé _ 0 0
E—(lw)@K(g,ai +pnds+a+7),
0
:(1+a)£[Ko(g,ai +5)

k

+uKy(c.a +Bos o+ 7))

:(1+a)%Ko(g,ai+ﬁi)

k

0
+(1+a)#al<1(g7ai+ﬁi,f7§°)§+wi+7i)7
_,0 © i
—,u—K1<g,a + 8.7 g+a)i+;/i),[ay|sneglected]
0w,
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ldi—i () - %
—aa)k I:Kl(gvai'ni 54 ) Z(ﬂ aa),ﬂ

u dg
Neglecting higher order terms and integrating with
respect to ¢, we get

M_J’{ 22:,6'6 A ZJ/. } S

M i=1

:8_a)k-" Kldﬁzﬁi aw o, IKldg

i0

2 2

+§,%8 v .!Kdg'
§k(Tovﬁil7i-ﬂ)_ - 1] az[K]
uo Z Za 00,
_1% (0)
where [Kl]_r IKl(g,ai,ni g+a)|)dg.
fk(fo'ﬂi’%! 8[K 2 2
- T, 21: a, le 8 aa)
™ fk(To’ﬂi'Vi'ﬂ)za[K] ) [K] LB, [K]
HT, Ow, 0w,08, Ow,0a,
o lle, 2l
O, 0w, 0w,
N (6
§k(70118i17i1/‘): [K] ) [K] ny; 0 [Kl]
uz, dw, 'owoa ' ow,da,
62[K1] 62[K1]_
+716a)26w1+72 o =0

From Equation (70),

d?]- oK (0)
1 = = 1 —n! ,
dg ( +a)6ai '
df]l (0) oK
—_0_ —(1 —

=" ~(1+ a)é K(s.a+B.m"%+o+7),
. 0

= -7 —(1+ a)a[Ko(g,ai +5)

Ky (6.3 + Buns + @ +7,) |
= -(1+ a)% K, (s.a+ )

0 0
+uaKl(g,ai+ﬁi,m §+wi+7i),

2
=0 —(1ra) L Ky () + > Doy
A 2l ea) SA %
3 © 2, oK, oK
—ﬂa{Kl(&awm §+wi)+izl‘,ﬂia—a:+7ia—wil},
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a—|:K (ga)+ :|+0(,u)
Z'B 8a16a +O(y)
dn, _ o’K _ %K,
de « 861 .leaaﬁa._l 'Bz.zllaaiaa2 +o(#).
Integrating with respect to ¢, we get
m(s: Biri i Ky %K,
M ﬁl +5s
—7, aaiaa1 da,0a,
+0(ﬂ) =0, (72)
(s Bt k) _ Ko o 0Ky o°K,
e — +5 +5
-7, 6a2 oa,0a, da,oa,
+O(,u) =0.

By implicit function theorem, we may say that & can be
expressed in termsé,,n,,7,. So, we are left with the
equations involving five variables, viz g, 8,,n.,7,and .
Hence, two unknowns y, and & may be chosen arbitrarily.
Lety, =0anda = (u)#0. Further the choice of the
origin of time is arbitrary, so we may take @ =0. The
Equations (71) and (72) will give f,p,.», as analytic
function of u , reducing to zero with u , if the following
conditions of Duboshin [3] are satisfied for periodic orbits.
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K, K,
_ *[K,]| oaf  da,0m
°ow; | %K, 0K,
dada, 0al
R CIK K, 0K, (0K,
° 0w’ | 6l 0l |oada, ) |
Now,
1
Ko =a,[-2(na, +C,) 2 -1,
oK, i K
—2=a|-2(na,+Cy)| , —2=0,
*Ky -n
0a,0a, 3’

[-2(na, +C,)]

- Ky | _ n?
dada, ) —2(na,+C,)’
Y I e I
- % 8w 2(na,+C,) 2(na,+C;) 8t
n’zg o*[Ky]

J= . 76
2(na, +C,) oOw: (76)

. o[K ] o[K,] . .
oK . Now let us find —=,——== (i=1,2). Taking onl
—a[wl] —0, (i=12) (73) a om 0712 g ony
' zero-degree terms (i.e. for e=0, f =l =y,)
AR o (ic12) (74)
oa , : L=na=z,
r7 =1+n%a’ + 2nacos 2¢,
2 &mm) B . e " s
6(7/2’ﬂ1’ﬂ2) r;, =1+n°a” + nacos2¢—+/3nasin 2¢
where = f5 =y, =0, =1+n%a? +2nacos(2¢0+%j,
i.e., Equations (73) and (74) together will justify Equation —
. NyX —X
(73) . 20=y,+Y, - o ——siny,
From Equation (75), 2(nx, +Cy)
9g, om om Vi =n"s+a+r+m(s),
Oy, Oy, Oy,
y_|9& om om, Yo =105+ @, + 1,41, (),
oB OB OB X =a+p8+&(¢)
9¢, Om 9n, X2:6.2+,32+§2(g).
op, op, op, )
From Equations (71) and (72), s = _M(@]
o6 2K ey om o om oo R 0o
7, =0, =
or, 0w} o7, 97 nasin(2¢+”j
o, _O°[K]  om _ %K, on, _ %K, o 3)( 209 (i=12)
op, owoa  Of; ° oal ' op ° 0a,08, ' o, I ow, ’ '
ai: 82[K1] on, _ aZK on, __ aZKO
op, owoa, op, 6a16a2 ’ op; ° oa; [Kl] =1-nG cosZ(p—na{Cl -i-iﬂ-i-i-ﬁ3
0% [K,] n hL n
awZ O 0 2 (77)
2 Ba’n’sin’2p A B 3
JN il S i oK, e nasm2(p—7
" |ow,oa, ° faZ da,0a, 2 3 3
0% [K,] K, K,
dw,oa, aa._laa ° a2
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6

%sin Z(p.cosztha—(o _ S sin? 240%
r, ow, T, ow,
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where
(he_ n‘a® n’a’s, 3An’a’ 3An’a’
3 2r} r, 2r;
'N2,42 'N2,42
+1SBn7a sin2p + 15\/_Bna 3J§Aga
8r, 3 2r,

3n2a? 3B'n%a’ Bn’a® 2B'n’a’
—\/_ 80—\/_ = coS2¢ + +—

3 5 5
{ 3A‘+1SB'+58'n2azsin22¢ 5\/§B'nasin2¢J r, 215 2 2 £
1 6 6 -0 Py 'h343 4,4
o 4r I I ow, 158 n7a jSin2¢C052¢J+[5Bn7a sin 20
\3Bna 2Bn%a’? op ?rs . :
+ =——C0S2¢ — 5 sin2¢pcos2¢p 25 , 5B'n%‘a* . SﬁB n‘a*
3 3 d + —sin2¢p + o7 Cos 2¢
r-3 3
op na or, nag, or, 3Ana or, .
=nGsin2 203 = 2 543Bn’a® | .
(p( o) ] 70w, 1} dw 1, O —\/_27 sin” 2¢.
3
3
 Bra ( 2sin 2.c05 22— Op 53|n62go o, J o[K,] o[K.] .. . .
o, r, O Here a—:a—=0(| =1,2) if and only if N=0,
. w a,
3Ana 15Bna 5Bnd® . SJ_Bn o, ! '
+ ya— = s—sin 220+ ————"sin2¢p |—= o o0 .
s 4t s ry i because ~——and——(i=1,2) are not necessarily
J3Bna 2Bn’a® . o ! '
_( 5 C0s2¢ — 5 sin2pcos2¢ |2na—"=, simultaneously ~ zero. For making N =0, putting
2,2 2,2 N _T . . A K _1
_ 2§—¢){nGsin 20— n ? sin 20— n2a 350 sin2¢ cos2¢p=0i.e, 2¢p= 2 i.e., sin 2¢_1,S|n(2¢+ SJ_ 2
i 2 r3
fn a? an‘als, 3An%a? . Ba®n® . G , ,
C0S 20 — ——5——SIN 2¢> + ———SIN 29 C0S 2¢ s na’® n’a’g, 3An%a’ 3Aa2n2+158n2a2
2 2 T3 3 5 5 7
, , r 2r, r 2r, 8r.
SBn“a4 in?2 3Aa’n? . 5 33Aa’n? 5 2 [ 2 3 8
+ 7SI 29 ————sSIN2p———"7——C0S 29 5Bn‘a* oB'n*a’ S\EB n*a’
2 2r, 2r, " S A . -0.
2B'a’n 5Ba‘n’ ar; 2 2,
+—sm2¢cosZ(p+—73|n 2¢ - .
2r. 4 ,[1 38A 5Bn?a®> &, 15B
3 ie, G=na"| =+—-— + —
Sf Ba n? 15B'a’n’® . Lo 4] 21} 8 (80)
27 = sin? 2(pcos2¢7+Tsm2¢ +5«EB'na_SB'n2a2}_o
. 2r/ 2r] |
15«/_Ba n? J3B'an? s s
—7C052(p——7C052(p .
8r, I, Now for sin2¢p =1 and cos2¢p =0
3 i n2 2 AnZ 2 Bn4 4 n2a2 A'nZ 2
—MSIH22¢+5—aSIn2(pCOSZ(o} N =nG - ? _3 5a +5 7a - 380—3 5a
2r, 2r3 r, r, 4r, 2r, 2r,
: 2.2 a4 ‘23,3
a[Kl] o e n2a? nzazg0 3An%a’ +15IZn7a +582n7a _5\/§28;51 n ,
= ~ - - - I. I. I.
o, o, ry 2r} ry 3 3 3
s L s N _(3n2a2 _ 15An°a’ _SSBn“a“j ar,
_3An‘a’ 15Bn‘a jsinw{ls\@s?n a om, \ 17 s at )oa,
21, 8r, 8r, 3a’n’s, 15An’a’ 105B'n’a’ 35Bn‘a’
+ + —
NS «/§n2azgo \/§B'n2a2] 2r} 2r; 8r,’ 2r}
- CoS2¢
2r; 2r? N a3\ O,
333 '333 '333 (78) +35‘\/_Bna)6w2,
Bn"a® 2Bn°a® 15Bn°a’ | . -
+ s t———+ — |sin2¢cos2¢p oN dp [3n°a® 15An’a® 35Bn®a® 3a’n’s,
21, " 2%, 3 :_26 e o ar | ar
. .
5Bn‘*a* 5Bn‘a* ’ L . . ’
+| ———sin2p+———sin2¢p 15An’a® 105B'n’a’® 35B'n°a’ szBn
r, 2n, TTa 1er’ | an ar?
5y3Bn‘a’ 5y3Bn’a’ ) .
+f—7COSZ¢)—f—7 sin® 2 |, N _ ,0p|na (3r24+15Ar227358n2a2)
r, 2r, ow, ow, 4r2
n‘a’® : : : 81
- 8(£K1] :(265_40},\, o ﬁL@(lzgorg,4 L 60AT? —1058 —140Bn%a? (81
o o 79
alK +140+/3B'na
and [Ki] [2 a(pJN (i=12) )J
o3, o8, Now from Equation (77),
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N =N {as 299 :1}
ow,

oo (3 +15Ar7 —35Bn%a’) | (82)
2

3,53

4 a2
167 (12201, + 60AT;

—140B'n?a? +140ﬁB’na—1055)].

By putting suitable values of all the parameterg in the

0 [k,]

2
2

J #0 i.e., the conditions of the existence of periodic orbits
given by Duboshin [3] are satisfied. Thus the orbits of the
infinitesimal mass about any primary are periodic.

right hand side of Equation (90), we get #0 e,

V1. DiIscussIONS AND CONCLUSION

In order to prove the existence of periodic orbits of the
first kind in the Circular Restricted Four-body Problem, we
have discussed the problem into five sections starting with
introduction about the historical evolution of the topic. In
the second section, we established the equations of motion
of the infinitesimal mass under the perturbed gravitational
field of the three primaries. In the present problem, the
second and third primaries are tri-axial rigid bodies. All the
primaries are moving on circular orbits about the centre of
mass of the dominant primaries P, and P,. The primaries

P and P, are dominant in the sense that B and P, have
influence of attraction on the third primary P, and
infinitesimal mass P but P, and P have no influence of
attraction on the primaries P, and P, whereas P, has an

influence of attraction on the infinitesimal mass P only but
not on P, andP,. That’s the reason; the centre of mass

P, and P, didn’t change. The second section ended with the
energy integral of the infinitesimal mass at P(xl, xz).

The energy function H contains three singularities
L=0,r,=0andr,=0 so in Hamiltonian, mechanics to

keep the energy function H =constant, we need to
eliminate any singularity for the case of collision with the
corresponding primary. In the third section, we have
introduced a suitable generating function for regularization
of H to eliminate the singularity at r,=0. After

regularizing the Hamiltonian H =C, we have developed
the canonical equations of motion corresponding to the
regularized Hamiltonian K =0.

In fourth section, we have established the generating
solution i.e., the solutions of the equations of motion of the
infinitesimal mass by taking the first primary at the origin
i.e., at the centre of mass. On this consideration, we got
4 =0 and the Hamiltonian becomes K,. By taking K, as
our Hamiltonian, we get the solution of the equations of
motion, which is called generating solution. With the help

102 | IIREAMV0610767034

DOI : 10.35291/2454-9150.2020.0642

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Mol-06, Issue-07, OCT 2020

of generating solution and the method of analytic
continuation, we can find the general solution
corresponding to the complete Hamiltonian K =K, + uK;

where u#0.

In fifth section, we have examined the existence of
periodic orbits when =0 with the technique of

Chaudhary [8] applying to the conditions given by
Duboshin [3]. Since our consideration satisfied all the
conditions for periodic orbits given by Duboshin, hence we
conclude that the periodic orbits of the infinitesimal mass
around the first primary exist when suitable values of
u,o0,,0, are taken. By shifting the origin to the centre of

the other primaries also, the existence of periodic orbits can
be examined. Even by using “Mathematica”, we can show
the existence of periodic orbits of the infinitesimal mass
around other primaries also, by taking suitable values of the
parameters.
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