
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-09, DEC 2020

40 | IJREAMV06I0969013 DOI : 10.35291/2454-9150.2020.0704 © 2020, IJREAM All Rights Reserved.

Constructing an Effective and Dedicated SDN

Using Floodlight Controller
*Twasul Mukhtar Mahmoud, #Raeid Ibrahim Abbas

*,#Department of Electronics Engineering, Faculty of Engineering, University of Garden City,

Khartoum, Sudan. *tawasul.mukhtar@gmail.com, #raiedin2018@gmail.com

Abstract - SDN technology is an approach to network management that enables dynamic, programmatically efficient

network configuration in order to improve network performance and monitoring, making it more like cloud

computing.[1].The advanced in software defined network (SDN) technology around the globe design and management

added many merits and characteristics that facilitated complex operations on traditional network , the dependence

only on the controller to make the decision over the network, Which was performed through the controller to solve all

operations carried out by several devices to aggregate the functions of the firewall, router, switch, and servers devices

which are combined into software programs with different modules to be activated as needed inside the controller.

 In this paper we designed the network simulation with floodlight controller and applied different applications in

Network traffic Restricting and allocating which makes data transfer more professional and effective by controlling

Restricting and allocating data, which makes data transfer more professional and effective, by controlling and

assigning addresses the ports , IP addresses and Mac addresses of sources and destinations.

Key words: Software Defined Networks, controller, mininet Emulator, floodlight .

I. INTRODUCTION

Software-defined networking (SDN) is a new emerging

technology in the field of computer networks which is

evolved from the work done at Stanford University and

Berkeley University around 2008. It allows network

administrator to manage the network services through the

abstraction of lower level functionality, which is done by

separating the control layer (brain of network) from the

data layer (forwarding the packets). The centralized

architecture of SDN is the bottle neck for scalable and

dynamic nature of SDN.

II. SOFTWARE DEFINED NETWORK

SDN is the change in the underline of the network .this

change in the architecture lead to make SDN

programmable and flexible .SDN has two major

characteristics separating the control plan from the data

plan that and the centralized the control plan with the

controller which manages the entire network and its

components, such as OpenFlow switches, routers, and

other, via Application Programming Interfaces (API) the

SDN Controller uses a protocol called OpenFlow to

control switches and routers from the controller

Fig. 1. SDN infrastructure

III. SDN CONTROLLER

The OpenFlow controller provides a programmatic

interface to the OpenFlow switches. Using this

programmatic interface, network applications, referred to

as Net Apps, can be written to perform control and

management tasks and offer new functionalities.

 The control plane in SDN and OpenFlow in particular is

logically centralized and Net Apps are written as if the

network is a single system. While this simplifies the

https://en.wikipedia.org/wiki/Network_management
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Software-defined_networking#cite_note-ReferenceA-1

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-09, DEC 2020

41 | IJREAMV06I0969013 DOI : 10.35291/2454-9150.2020.0704 © 2020, IJREAM All Rights Reserved.

control, management, and policy enforcement tasks, the

bindings must be closely maintained between the

controller and OpenFlow switches.

The first important concern of this centralized control is

the scalability of the system and the second one is the

placement of controllers.

A recent study of the several OpenFlow controller

implementations. Recalling the operating system analogy,

an OpenFlow controller acts as a network operating

system and should implement at least two interfaces: a

southbound interface that allows OpenFlow switches to

communicate with the controller, and a northbound

interface that presents a programmable application

programming interface (API) to network control and

management applications. They are two type of the SDN

controller Centralized controller Provides a centralized

global view of the network which allows online reactivity

to spurious changes in network states and simplifies the

development of sophisticated functions and distribution

controller A distributed controller provides fault tolerance,

but requires an additional overhead to maintain the

network state consistent across all the controllers. Hence,

when the network state changes there will always be an

inconsistency period of time.

Fig. 2. SDN topology with centralized controller

IV. METHODOLOGY AND DESIGN

In this study we will implement the model using Mininet

emulator to simulate the network environment and virtual

BOX from oracle to handle the software’s. In the virtual

box we setup and run the controller (Floodlight) after

study the behavior of the controller We will study the

commands necessary to operate the controller in detail, in

addition to that applying some commands that make the

traffic dedicated and control the paths of the traffic

through the network.

 we try to find the suitable application for the controller to

achieve proper performance of the network.

First step to design the topology we start with the virtual

box as the coming follow.

4.1 Oracle VM Virtual Box

VM is a free, open source, cross-platform application for

creating, managing and running virtual machines (VMs).

Virtual machines are computers whose hardware

components are emulated by the host computer.

It was acquired by Sun Microsystems in 2008, which was

in turn acquired by Oracle in 2010.

It enables you to set up one or more virtual machines

(VMs) on a single physical machine, and use them

simultaneously, along with the actual machine. Each

virtual machine can execute its own operating system,

including versions of Microsoft Windows, Linux, BSD,

and MS-DOS. You can install and run as many virtual

machines as you like – the only practical limits are disk

space and memory.

 Fig.3. Oracle virtual Box interface

4.2 Mininet emulator

Mininet is an open-source network emulator which creates

a network of virtual hosts, switches, controllers, and links.

Mininet hosts run standard Linux network software, and its

switches support OpenFlow for highly flexible custom

routing and Software-Defined Networking.

It creates a simulated network that runs real software on

the components of the network so it can be used to

interactively test networking software. It helps in creating

complex custom scenarios using the Mininet Python API.

Mininet is a system that provides large networks for rapid

prototyping on a single computer. Using lightweight

virtualization mechanism it creates scalable software-

defined networks.

You can create a network with a single command. For

example,

sudo mn --switch ovs --controller ref --topo

tree,depth=2,fanout=8 --test pingall

starts a network with a tree topology of depth 2 and fanout

8 (i.e. 64 hosts connected to 9 switches), using Open

vSwitch switches under the control of the

OpenFlow/Stanford reference controller, and runs the

pingall test to check connectivity between every pair of

nodes. (This takes about 45 seconds on my laptop.)

https://en.wikipedia.org/wiki/Sun_Microsystems

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-09, DEC 2020

42 | IJREAMV06I0969013 DOI : 10.35291/2454-9150.2020.0704 © 2020, IJREAM All Rights Reserved.

to interacting with a Network Mininet’s CLI allows you to

control, and manage your entire virtual network from a

single console. For example, the CLI command

mininet> h2 ping h3

4.3 Setup and Running the Controller (Floodlight)

from CLI

Floodlight is open source based on Java, and one of the

most popular SDN controllers supporting physical and

virtual OpenFlow switches.

The Floodlight architecture is including device

management module, learning switch, counter module ,

load balancer, topology module, Web Graphical User

Interface (Web GUI) for web access. Floodlight Provider

module called as core module, handles I/O from network

devices and turns incoming OpenFlow messages into

Floodlight events. It uses LLDP protocol to discover

network topology floodlight presents a RESTful API

allowing some applications to learn and get the state of the

controller and network [10].and floodlight controller uses

event listeners for receive notifications.

 Floodlight provides reactive and proactive applications:

Java APIs for reactive and RESTful APIs for proactive

application style, can use the RESTful APIs to get

information about the network state. Floodlight RESTful

API uses the Restlet framework and includes a small web

server inside that allows external applications to

communicate with the SDN controller.

 Fig. 4. floodlight instruction

You can manually choose which openjfx version which

you tend to install and then hold it.

$ sudo apt install libopenjfx-java=8u161-b12-

1ubuntu2 libopenjfx-jni=8u161-b12-1ubuntu2

openjfx=8u161-b12-1ubuntu2

$ sudo apt-mark hold libopenjfx-java libopenjfx-jni

openjfx

$ cd floodlight

$ ant

After download the floodlight controller return to mininet

and execute the following commands to run the floodlight

cd Desktop/

cd floodlight/

java –jar target/floodlight.jar

to connect the network with the floodlight controller

Sudo mn command is to create the network

,Controller=remote is to connect the network with the

floodlight controller and determine the ip and the port

number, topo=tree depth=3,fanout=2 command its tree

topology consist of 7 switches and 8 hosts.

Fig. 5. tree topology

4.3 Running the Controller (Floodlight) from GUI

 This GUI provides a way for users to view the controller’s

state information, to connect switches via inter-switch

links and the hosts to the network, to monitor the flow

tables of the switches and the network topology.

Most of the statistics can be queried and displayed in an

easy-to-read and tabular fashion by using this web GUI.

Additionally, several modules of the Floodlight Controller

can be exposed to the end users via this web GUI.

For example, the Static Flow Pusher module has this GUI

to insert the flows easily [4].

Fig. 6. in this network administrators can monitor the

status, uptime, selected role of the controller, connected

switches count, connected hosts count, and the links

between the switches. the details about the controller’s

memory consumption, the storage tables, and all loaded

modules can be monitored. All of these parts of the GUI

uses the REST API calls of the Floodlight Controller.

 Figure .6. floodlight GUI home page

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-09, DEC 2020

43 | IJREAMV06I0969013 DOI : 10.35291/2454-9150.2020.0704 © 2020, IJREAM All Rights Reserved.

V. EXPERIMENTS RESULTS (DEDICATE THE

TRAFFIC)

In the practical side of this study, after running the

controller and creating and designing the network , take

the benefit from what SDN technology has made possible

to manage and control any part of the network through

the controller .

An efficient and fully functioning in network

management is dedicating the path of the traffic from

specific source to specific destination that can enable the

network administrator to securing and optimizing the

network infrastructure, and this was done using three

different methods, which will be detailed in the following

in the beginning stop the forward module

by using the flowing command .

Sudo mn –controllernon –topo single

 That mean the icmp will felt there is no reachability with

hosts .

Fig.7. ICMP command

5.1 Dedicate the traffic base on switch port

A specific data path was specified based on the port

number This method allowed not to send or receive from

any other connected device on the same network, which

guarantees to the network manager that the device

connected to the specified port has no access except for

the device specified for him in the aforementioned port.

 It is also possible to allow data to be sent only without

receiving it and by implementing the Only the first

command to allow posting.

$ sudo ovs-ofctl -O Openflow13 add-flow s1

in_port=1,actions=output:2

$ sudo ovs-ofctl -O Openflow13 add-flow s1

in_port=2,actions=output:1

in the following commands we dedicate the traffic to pass

through the port one and transmit data only to the port

two only without communicate to any other hosts that

connecting with him in the network . and the second

command to transmit data on the opposite side from host

(2) via port(2) to host (1)via port (1) .

5.2 Dedicate the traffic base on IP Address

In the following command, the data was controlled

depending on the IP address, which allowed

communication at the networks layer, and this is one of

the advantages of the SDN and open flow protocol that

it works on all layers.

 using a simple topology that was shown in fig (5)

host1 with (IP = 10.0.0.1) connect and send packet only

to host 4 (IP = 10.0.0.4).

$ sudo ovs-ofctl -O Openflow13 add-flow s1 in

arp,nw_src=10.0.0.3,actions=output:4

$ sudo ovs-ofctl -O Openflow13 add-flow s1 in

arp,nw_src=10.0.0.4,actions=output:3

Fig.8. Dedicate the traffic base IP address

5.3 Flow entry base on MAC Address

 In this part, the data path has been allocated depending

on the mac, where the controller deals with the data link

layer by recognizing the mac address of the source and the

mac address of the destination.

 Here the mac address of the first host

(00:00:00:00:00:03) which will send and receive the traffic

from and to the second host with mac address

(00:00:00:00:00:04)

$ sudo ovs-ofctl -O Openflow13 add-flow s1

dl_src=00:00:00:00:00:03,actions=output:4

$ sudo ovs-ofctl -O Openflow13 add-flow s1

dl_dst=00:00:00:00:00:04,actions=output:3

Fig.9. Dedicate the traffic base MAC address

after applied the all rules the hosts can connecting to

gather and the ping command is reachable

Pingall command by using this command will making

all network hosts transmit ping packets onto other in

order to confirm the communication between them then

the reachability. making utilizing the Internet Control

Message Protocol.

Fig. 10. ICMP command after applying flow entry rules

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-09, DEC 2020

44 | IJREAMV06I0969013 DOI : 10.35291/2454-9150.2020.0704 © 2020, IJREAM All Rights Reserved.

VI. CONCLUSION AND FUTURE SCOPE

The use of SDN technology allowed maximum

effectiveness in performance and the controller contributed

to creating an ideal environment in determining the type of

service and the beneficiary of it,

The Floodlight controller and GUI provide many useful

tools and a programmable network framework.

As in this paper we have provided the clear idea how to

create experimental test bed with steps of configuring and

managing software define network via floodlight

controller and a specific data path was also allocated

depending on the port number, IP address, and mac

address which gives the network privacy and more

security to each host.

Further, we will come up with few more papers on

implementation of other SDN controllers like ONOS and

RYU in the coming future. we also has planned to

compare the quality of services between different

controllers of SDN, and we will try to apply high

availability and load balancing by using multi controllers

on SDN topology .

REFERENCES

[1] Benzekki, Kamal; El Fergougui, Abdeslam; Elbelrhiti

Elalaoui, Abdelbaki (2016). "Software-defined networking

(SDN): A survey". Security and Communication

Networks. 9 (18): 5803–5833. doi:10.1002/sec.1737.

[2] Zhang, H., Cai, Z., Liu, Q., Xiao, Q., Li, Y., & Cheang,

C. F. (2018). A survey on security-aware measurement in

SDN. Security and Communication Networks, 2018.

 [3] K. Ahokas, Software-defined networking, Aalto

University CSE-E4430 Methods and Tools for Network

Systems, Finland, Autumn 2014.

[4] R. Izard (administrator), H. Akcay (GUI developer),

(2017). Floodlight WEB GUI. [online]

Floodlight.atlassian.net. Available at:

https://floodlight.atlassian.net/wiki/spaces/

[5] Pooja, M. Sood, SDN and Mininet: Some Basic

Concepts, Int. J. Advanced Networking and Applications,

07(02), 2015, 2690-2693.

[6] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K.

Obraczka and T. Turletti, A Survey of SoftwareDefined

Networking: Past, Present, and Future of Programmable

Networks, IEEE Communications Surveys & Tutorials,

16(3), 1617-1634.

[7] OpenFlow Switch Specification, Version 1.1.0

Implemented (Wire Protocol 0x02). [Online]. Available:

http://www.openflow. org/documents/openflow- spec-

v1.1.0.pdf

[8] Shi, Lei, Bin Liu, Changhua Sun, Zhengyu Yin, Laxmi

Bhuyan, and H. Jonathan Chao. "Load-balancing multipath

switching system with flow slice." Computers, IEEE

Transactions on 61, no. 3 (2012): 350-365.

[9] Prete, Luca, Fabio Farina, Mauro Campanella, and

Andrea Biancini. "Energy efficient minimum spanning tree

in OpenFlow networks." In Software Defined Networking

(EWSDN), 2012 European Workshop on, pp. 36-41.

IEEE, 2012.

[10] Dixit, Advait, Fang Hao, Sarit Mukherjee, T. V.

Lakshman, and Ramana Kompella. "Towards an elastic

distributed SDN controller." In ACM SIGCOMM

Computer Communication Review, vol. 43, no. 4, pp. 7-

12. ACM, 2013.

[11] Kim, Hyojoon, J. R. Santos, Y. Turner, M.

Schlansker, J. Tourrilhes, and Nick Feamster. "Coronet:

Fault tolerance forsoftware defined networks." In Network

Protocols (ICNP), 2012 20th IEEE International

Conference on, pp. 1-2. IEEE, 2012.

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1002%2Fsec.1737

