
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-10, JAN 2021

108 | IJREAMV06I1070024 DOI : 10.35291/2454-9150.2021.0017 © 2021, IJREAM All Rights Reserved.

Ensemble Learning assisted Hadoop big data

optimization for application speed up
Nandita Yambem, Research Scholar,Dept of CSE ,VTU-RRC Bangalore, India,

nanditayambem@gmail.com

Dr A.N.Nandakumar, Professor ,Dept of CSE , City Engineering College ,Bangalore, India,

inandakumar53@gmail.com

Abstract— Hadoop has become a default platform for big data applications. Hadoop has many tunable parameters which

have very big influence on the performance of the map reduce applications. Finding the best value for these tunable

parameters has been an important research area. Many heuristic solutions have been proposed for tuning these

performance parameters. Most of the heuristics solutions are based on the exploiting linear relationship based on

intermediate data generated alone without consideration for the environment and application nature. Thus a adaptive

learning based solution is needed to fine tune the Hadoop parameters. In this work, we apply adaptive ensemble of

machine learning techniques to fine tune the Hadoop configuration parameters based on the past history of execution of

the jobs.

Keywords: Hadoop , SVM , KNN ,Neural Network , Regression .

I. INTRODUCTION

Hadoop is becoming a popular platform for big data

applications. Hadoop is based on map reduce architecture.

The data to be processed in kept in Hadoop distributed file

system. Applications are written in form of Map and Reduce.

Map processes the input data and generates intermediate data

of key and value pairs. The reduce job process aggregates the

intermediate data based on keys and generates the results in

form of key value pairs. Hadoop framework executes

multiple map reduce instances in parallel by mapping them

to threads in the OS. Hadoop is becoming a popular platform

for big data applications. Hadoop is based on map reduce

architecture. The data to be processed in kept in Hadoop

distributed file system. Applications are written in form of

Map and Reduce.

Intermediate data volume has been used as a important

criteria for deciding the number of maps and number of

reduce in many previous works as discussed in literature

review. All these works are based on the observation that

without sufficient number of reduces tasks, the volume of

intermediate data grows high and it may result in system

crash. So by increasing the number of reduce tasks in

proportion to intermediate volume, the system crash due to

insufficient memory could be avoided. The relation between

the intermediate data volume and the number of reduce tasks

is modeled as linear relation in many previous works. But

considering the nature of applications, this linear relation

does not hold good. Especially in a heterogeneous

environment, linear relationship between intermediate data

and number of reduce tasks is no longer valid. To mitigate

intermediate memory build surge, the number of maps are

controlled in these approaches which results in slow down of

applications. In this work, we explore the use of machine

learning models to optimize the Hadoop configuration

parameters and solve the issues in linear modeling based on

intermediate data volume. Adaptive Ensemble of machine

learning models is used for fine tuning the Hadoop

configuration parameters. Hadoop jobs are profiled to collect

the execution profile of map and reduce tasks, average rate

of intermediate data processed etc and based on these

parameters, machine learning models are built to predict the

number of maps and reduce. The predicted values are

configured in Hadoop run time system to increase the

application performance.

II. SURVEY

Authors in [1] proposed solution for increasing the efficiency

of Hadoop Distributed File System (HDFS) to improve the

application speedup in Hadoop. By increasing the efficiency

of HDFS, the data access concurrency between the parallel

execution of map and reduce tasks is improved and this

results in application speedup. The validity of this solution

was tested in Grid’5000 dataset. But the gain received is

comparatively lower (less than 5%) than the optimizing

Hadoop configuration parameters. Authors in [2] used data

compression as a strategy for improving Hadoop

performance. The data movement between HDFS and the

applications is done in a compressed way, so that the net

bandwidth between the data intensive applications and

HDFS is reduced. The validity of this approach was tested

mailto:inandakumar53@gmail.com

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-10, JAN 2021

109 | IJREAMV06I1070024 DOI : 10.35291/2454-9150.2021.0017 © 2021, IJREAM All Rights Reserved.

against HTRC word counting task in XSEDE resources. Data

compression strategy is not suitable for all kinds of

applications and performance gain is less than 5%. Authors

in [3] proposed a scheduling algorithm called, Longest

Approximate Time to End (LATE) to increase the

performance of Hadoop. Finish time of the jobs are estimated

and job which hurts the response time the most is executed

first. By this way lingering jobs are cleared and their impact

on application slowdown due to memory occupancy is

cleared. Estimating the finish time accurately is a challenge

in heterogeneous environment. A phase level scheduling

algorithm is proposed in [4] to increase the application

speedup. The jobs are divided to phases at a fine-grained

level and phase level scheduling is done. By this way

parallelism is increased. The validity of this solution was

tested against a 10 node Hadoop cluster and phase level

scheduler was able to increase the performance by 1.3 times.

A major problem in this approach is that not all applications

are suitable for phase level scheduling and gain is lower

considering the resource concurrency. Authors in [5] applied

data locality to increase the application speedup. Data

locality reduces the cross-switch network traffic. By this

performance degradation due to communication can be

reduced. Various data locality models were explored in this

work for single cluster and cross cluster environment. For

efficient data locality the communication between the tasks

must be known in advance, which is not possible for all kinds

of applications. Authors in [6] used intermediate data

compression as a strategy to increase the application

speedup. Due to compression of intermediate data, the

shuffling overhead is reduced and computational cycles

saved in shuffling overhead can be used for applications.

Authors also proposed a lossless compression scheme for

intermediate data which is able to reduce the intermediate

data volume by five times. But the overhead in

decompressing and using the data in reduce operations make

this approach not suitable for all the applications. Authors in

[7] proposed a strategy to decide when to compress the

intermediate data. A decision algorithm is developed which

helps the users to decide when to use compression. A

significant achievement in this solution is that it is able to

achieve 60% energy saving. Authors in [8] proposed a

efficient data shuffling algorithm to increase the application

speedup in Hadoop. Data movement is made effective using

the proposed shuffling algorithm, thereby reducing the

power consumption and extra computing cycles needed for

shuffling. These extra computing cycles can be used for

applications for increasing the speedup. But the performance

gain is less than 10%. Authors in [9] used data compression

to reduce the bandwidth need for applications in fetching the

data. The validity of the solution was tested against HTRC

word counting task and large scale medical image dataset.

The application speed up is less than 5%, but there is a

significant reduction in network bandwidth and energy

consumption due to data compression. Authors in [10]

modified the vanilla version of Hadoop with a fast

intermediate layer to increase the application speedup. This

intermediate layer is fault tolerant and optimized for

concurrency. By reducing the read/write time for

intermediate data, the overall execution time of jobs in

increased. But the gain is lower than 10%. Authors in [11]

optimized memory allocation, overhead in garbage

collection, in-memory increase to increase the application

speedup. Memory optimizations are able to increase the

speed up by 2 times. Intermediate data access is reduced by

moving to in-memory instead of disk, thereby increasing the

application speedup but the resource cost is very high in this

approach. Authors in [12] classified the Hadoop

optimization parameters. The parameters are classified to

different categories of IO-tuning, CPU-tuning, both-tuning

and none. Depending on the application nature of CPU

intensive or IO intensive, the corresponding set of

parameters to be optimized is selected. For CPU intensive

applications, CPU-tuning parameters are selected. For IO

intensive applications, IO-tuning parameters are selected.

Though the work identified the parameters to be tuned based

on application nature, it did not propose any method to

optimize the corresponding parameters. Authors in [13]

proposed application collocation as a strategy to increase the

application speedup. Through way of collocation, the

unnecessary network overhead and the energy consumption

due to it can be reduced. Co-location is able to increase the

speed-up by 8%. Authors in [14] increased the speed up for

failed tasks in Hadoop by task failure resilience. The failed

tasks are executed from last known execution point instead

of execution from start. Though it results in overhead for

check pointing, the speed up is increased. Authors in [15]

used genetic algorithm based search to identify the parameter

settings to achieve near optimal execution time. The

approach is complex when applied to real world environment

as the multiple parameters interaction is not considered in

this work. Authors in [16] proposed a memory model for

application speedup. Based on the history of job executions,

the total memory required for the task is pre-allocated. But

the solution has reduced throughput. Authors in [17]

proposed a noisy gradient approach for fine tuning the

Hadoop configuration parameters. The approach is not

adaptive.

III. RESEARCH GAP

The current solution for increasing the application speed up

in Hadoop platform can be categorized as

1. Data compression

2. Memory allocation

3. Hadoop configuration parameter tuning

The gain is low in case of data compression and memory

allocation based approaches. Hadoop configuration

parameter tuning approaches provides higher performance

gains. But following are some of the problems in the existing

Hadoop configuration tuning approaches

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-10, JAN 2021

110 | IJREAMV06I1070024 DOI : 10.35291/2454-9150.2021.0017 © 2021, IJREAM All Rights Reserved.

1. There are not adaptive to application nature

2. They consider many parameter to optimize and they

don’t consider the interaction due to it

3. They are mostly based on linear relationship of

intermediate data and execution time which does

not apply in heterogeneous environment.

This work addresses the above three challenges.

IV. PROPOSED SOLUTION

The proposed solution uses adaptive ensemble of machine

learning to solve the three problems identified in the existing

Hadoop configuration tuning approaches. The proposed

model uses three different machine learning models of

1. SVM Regression

2. KNN

3. Neural Network

These three models predict the optimal number of reduce and

map needed for execution of the job. The results of each of

above classifiers are ensembled in a adaptive weighted

manner. The weights for ensembling is learnt dynamically to

suit for different application needs.

A. Profiling

Jobs are executed in Hadoop by varying the number of maps

and number of reduce and following parameters are

collected.

1. Job completion time (P1)

2. Intermediate data size (P2)

3. Average map execution time in a slot(P3)

4. Average reduce execution time in a slot(P4)

5. Average IO wait time(P5)

6. Number of maps (P6)

7. Number of reduces (P7)

8. Average Intermediate data build up rate(P8)

 Figure 1: Proposed Architecture

Figure 2 : Adaptive weighted ensemble model

B. SVM Regression

Two SVM regression model is constructed with one model

for predicting number of maps and another for predicting

number of reduces. The SVM regression model for

prediction of number of maps takes – job completion time,

intermediate data, average map execution time in a slot,

average reduce execution time in a slot , average IO wait time

as input and number of maps as output. The SVM regression

model for prediction of number of reduce takes – job

completion time, intermediate data, average map execution

time in a slot, average reduce execution time in a slot ,

Hadoop Run time

Enviornment

Profiler

Job configuration

Adaptive Weighted

Ensemble

Job execution profile

Job Configuration Job and Data

Job/Data/ Optimum Job Configuration

Job profile data

 (Job completion time (P1)

 Intermediate data size (P2)

 Average map execution time in a slot(P3)

 Average reduce execution time in a slot(P4)

 Average IO wait time(P5)

Number of maps (P6)

Number of reduces (P7)

 Average Intermediate data build up rate(P8))

SVM Regression KNN Neural Network

Adaptive Weighted Ensemble

Number of Map

Number of Reduce

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-10, JAN 2021

111 | IJREAMV06I1070024 DOI : 10.35291/2454-9150.2021.0017 © 2021, IJREAM All Rights Reserved.

average IO wait time as input and number of reduce as

output.

C. KNN

Taking 80% of the profiled data as training data, KNN model

is built for predicting the number of maps and reduce. The

optimum value of K is found using elbow method. In elbow

method a cost function is defined and the value of it for

various values of K is found and plotted. The value of K at

which a elbow is created in the cost is decided as the optimal

value of cost. The cost function is calculated as average of

distance of each point in cluster to its cluster centroid. It is

calculated as

𝑐𝑜𝑠𝑡 =
∑ ∑ |𝑗 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑗 |

|𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖|
𝑗=1

𝑘
𝑖=1

𝐾

Where K is the total number of clusters.

The cost is plotted for various value of K

Figure 3: Elbow results

Elbow is created at k=3, so the optimal value for k is decided

as 3.

D. Neural Network

Two neural network (NN) model is constructed for

prediction of number of maps and reduces. The neural

network for prediction of number of maps is constructed with

following parameters

Parameters Values

Inputs P1,P2,P3,P4,P5,P8

Ouput P6

Number of layers in neural network 3

Number of neuron is layer 1 6

Number of neurons in layer 2 15

Number of neuron in layer 3 1

Activation function Relu

Table 1 : Neural Network for Map

The neural network for prediction of number of reduce is

constructed with following parameters

Parameters Values

Inputs P1,P2,P3,P4,P5,P8

Output P7

Number of layers in neural network 3

Number of neuron is layer 1 6

Number of neurons in layer 2 15

Number of neuron in layer 3 1

Activation function Relu

Table 2: Neural Network for Reduce

The neural network is learnt with back propagation learning

algorithm. The accuracy of the neural network for the

training and validation is as given below.

Figure 4: Neural Network accuracy

E. Adaptive weighted Ensemble

An Ensemble of the results of SVM regression, KNN and

Neural Network classifier is done using Weighted Ensemble

to predict the number of map and number of reduce. The

weighted ensemble to predict the number of maps is

𝑁𝑃 = 𝑤1𝑁𝑃𝑆𝑉𝑀 + 𝑤2𝑁𝑃𝐾𝑁𝑁 + 𝑤3𝑁𝑃𝑁𝑁

Where

𝑁𝑃𝑆𝑉𝑀 is the prediction result from SVM classifier

𝑁𝑃𝐾𝑁𝑁 is the prediction result from the KNN classifer

𝑁𝑃𝑁𝑁 is the prediction result from the Neural network

classifier.

The weight values are calculated as

𝑤𝑖 = log
1 − 𝑒𝑟𝑟𝑜𝑟(𝐶𝑖)

𝑒𝑟𝑟𝑜𝑟(𝐶𝑖)
, 1 ≤ 𝐶𝑖 ≤ 3

Where 𝐶𝑖 is the corresponding classifier used for prediction

of number of maps. Error of the classifier is calculated in

terms of root mean square between the actual and the

predicted number of maps. It is calculated as

𝑒𝑟𝑟𝑜𝑟(𝐶𝑖) = √(𝑁𝑃𝐶𝑖
− 𝑁𝑃𝑎𝑐𝑡𝑢𝑎𝑙)

Where

𝑁𝑃𝐶𝑖
 is the predicted value of number of maps by the

classifier 𝐶𝑖 and 𝑁𝑃𝑎𝑐𝑡𝑢𝑎𝑙 is the actual value.

The Hadoop profiled data is split to 80:20 ratio. Each of the

SVM, KNN and NN classifiers are trained to predict the

number of maps. Testing is done with 20% test data to

calculate the weight values.

The above procedure is repeated for finding the adaptive

weighted model for number of reduce. It is given as

𝑁𝑅 = 𝑤1𝑁𝑅𝑆𝑉𝑀 + 𝑤2𝑁𝑅𝐾𝑁𝑁 + 𝑤3𝑁𝑅𝑁𝑁

Where

𝑁𝑅𝑆𝑉𝑀 is the prediction result from SVM classifier

𝑁𝑅𝐾𝑁𝑁 is the prediction result from the KNN classifer

𝑁𝑅𝑁𝑁 is the prediction result from the Neural network

classifier.

V. NOVELTY IN THE PROPOSED SOLUTION

The overall architecture of the proposed solution is given in

Figure 1 and the adaptive weighted ensemble model is given

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-10, JAN 2021

112 | IJREAMV06I1070024 DOI : 10.35291/2454-9150.2021.0017 © 2021, IJREAM All Rights Reserved.

in Figure 2. Following are the important contribution in this

work

1. Different from previous model based only on

intermediate data, this work considers tasks specific

computation and IO parameters, rate of change in

intermediate data also in modeling the number of

maps and number of reduce.

2. The solution is adaptive to different applications, as

the weights are learnt dynamically based on past

performance.

3. No assumption on linearity on intermediate data

and relation is modeled using adaptive ensemble

machine learning model.

4. The dynamics in intermediate volume is not

considered in the previous work but the proposed

solution considers it in prediction.

VI. RESULTS

The performance of the proposed solution is tested against

PUMA dataset [18] in Hadoop environment. The

performance of the proposed solution is compared for word

count and k-means for different volume of datasets. The

performance is compared with the solution proposed in [12]

and default parameters of Hadoop. The solution [12] has

proposed guidelines for selection of various configuration

parameters.

The performance is compared in terms of Execution time.

The execution time is measured for different volume of the

data and the result is given below

Data volume

(MB)

Proposed

ensemble

[12] Default

Hadoop

128 50 60 100

256 84 100 170

512 112 150 240

1024 202 270 430

2048 470 510 840

Table 3 :Execution time for different volume

 Figure 5 : Comparison of Execution time

The average execution time in the proposed solution is less

than [12] by 19.12% and 94.53% compared to Default

Hadoop. The results show that the proposed solution is above

to provide a better value for number of maps and number of

reduce compared to existing solutions.

The execution time is measured for different number of

iterations for the same volume (128MB) of dataset and the

result is given below.

Figure 6 : Execution time over iterations

The execution time is learnt in adaptive manner in the

proposed solution compared to [12]. Over the 5 iterations,

the standard deviation in the proposed ensemble based

solution is 6.05 minutes compared to standard deviation of

2.34 minutes in the solution [12]. The proposed solution has

61.3% more adaptability compared to [12].

The difference between the actual and prediction value is

measured in terms of RMSE for different volume of dataset

in the proposed ensemble model and the result is given below

Table 4 : RMSE in Proposed Solution

Data volume

(MB)

RMSE for number of

Maps

RMSE for number of

reduce

128 1.73 2

256 3.16 3.74

512 4.6 4.7

1024 3.2 3.8

2048 4.4 4.3

Figure 7 : RMSE for different data volume

RMSE value for number of map has a standard deviation of

1.153 and RMSE value of number of reduce has a standard

deviation of 1.03. This implies irrespective of volume of

data, the proposed model has good accuracy in predicting the

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-06, Issue-10, JAN 2021

113 | IJREAMV06I1070024 DOI : 10.35291/2454-9150.2021.0017 © 2021, IJREAM All Rights Reserved.

number of maps and number of reduce. Also the average

RMSE value for map is 3.4 and for reduce is 3.7, which

means the prediction is very close to the actual value.

VI. CONCLUSION

An adaptive ensemble model for Hadoop parameter

optimization is proposed in this work. The proposed model

is based on multiple Hadoop execution parameters compared

to most solution based on intermediate data volume alone.

Different from previous solutions, this work also considers

dynamics in intermediate volume. The weights for

ensembling is adaptive to past performance predictions ,

thereby the proposed solution can adapt to different types of

applications like CPU and IO intensive. Through

performance results, the proposed solution is found to have

95.53% speedup compared to default Hadoop.

REFERENCES

[1] B. Nicolae, D. Moise, G. Antoniu, and al. BlobSeer:
Bringing high throughput under heavy concurrency to
Hadoop Map/Reduce applications. In Procs of the 24th
IPDPS 2010, 2010. In press

[2] A. Verma, L. Cherkasova, and R. Campbell. Resource
Provisioning Framework for MapReduce Jobs with
Performance Goals. ACM/IFIP/USENIX Middleware,
pages 165–186, 2011.

[3] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz,
and I. Stoica. Improving mapreduce performance in
heterogeneous environments. In USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), volume 8, page 7, 2008

[4] Qi Zhang, “PRISM: Fine-Grained Resource-Aware
Scheduling for MapReduce”, 2015 IEEE

[5] Zhenhua Guo , Geoffrey Fox , Mo Zhou, Investigation
of Data Locality in MapReduce, Proceedings of the
2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (ccgrid 2012),
p.419-426, May 13-16,
2012 [doi>10.1109/CCGrid.2012.42]

[6] Adam Crume , Joe Buck , Carlos Maltzahn , Scott
Brandt, Compressing Intermediate Keys between
Mappers and Reducers in SciHadoop, Proceedings of
the 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis, p.7-12,
November 10-16,
2012 [doi>10.1109/SC.Companion.2012.12]

[7] Y. Chen, A. Ganapathi, and R. H. Katz, “To compress
or not to compress-compute vs. io tradeoffs for
mapreduce energy efficiency,” in Proceedings of the
first ACM SIGCOMM workshop on Green networking.
ACM, 2010, pp. 23–28.

[8] W. Yu, Y. Wang, X. Que, and C. Xu, “Virtual shuffling
for efficient data movement in mapreduce,” IEEE
Transactions on Computers, vol. 64, no. 2, pp. 556–568,
2015

[9] G. Ruan, H. Zhang, and B. Plale, “Exploiting mapreduce

and data compression for data-intensive applications,”
in Proceedings of the Conference on Extreme Science
and Engineering Discovery Environment: Gateway to
Discovery. ACM, 2013, pp. 1–8

[10] D. Moise, T.-T.-L. Trieu, L. Boug´e, and G.
Antoniu, “Optimizing intermediate data management in
mapreduce computations,” in Proceedings of the first
international workshop on cloud computing platforms.
ACM, 2011, pp. 1–7 .

[11] Veiga, Jorge & Expósito, Roberto & Taboada,
Guillermo & Touriño, Juan. (2018). Enhancing in-
memory efficiency for MapReduce-based data
processing. Journal of Parallel and Distributed
Computing. 120. 10.1016/j.jpdc.2018.04.001.

[12] Chen, Xiang & Liang, Yi & Li, Guang-Rui & Chen,
Cheng & Liu, Si-Yu. (2017). Optimizing Performance
of Hadoop with Parameter Tuning. ITM Web of
Conferences. 12. 03040.
10.1051/itmconf/20171203040.

[13] Maria Malik, Hassan Ghasemzadeh, Tinoosh
Mohsenin, Rosario Cammarota, Liang Zhao, Avesta
Sasan, Houman Homayoun, and Setareh Rafatirad.
2019. ECoST: Energy-Efficient Co-Locating and Self-
Tuning MapReduce Applications. In Proceedings of the
48th International Conference on Parallel Processing
(ICPP 2019).

[14] C, K. and X, A. (2020), Task failure resilience
technique for improving the performance of MapReduce
in Hadoop. ETRI Journal, 42: 748-
760. https://doi.org/10.4218/etrij.2018-0265

[15] Liao G., Datta K., Willke T.L. (2013) Gunther:
Search-Based Auto-Tuning of MapReduce. In: Wolf F.,
Mohr B., an Mey D. (eds) Euro-Par 2013 Parallel
Processing. Euro-Par 2013. Lecture Notes in Computer
Science, vol 8097. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-40047-6_42

[16] Bhaskar, Archana & Ranjan, Rajeev. (2019).
Optimized memory model for hadoop map reduce
framework. International Journal of Electrical and
Computer Engineering (IJECE). 9. 4396.
10.11591/ijece.v9i5.pp4396-4407.

[17] S. Kumar, S. Padakandla, L. Chandrashekar, P.
Parihar, K. Gopinath and S. Bhatnagar, "Scalable
Performance Tuning of Hadoop MapReduce: A Noisy
Gradient Approach," 2017 IEEE 10th International
Conference on Cloud Computing (CLOUD), Honolulu,
CA, 2017, pp. 375-382, doi: 10.1109/CLOUD.2017.55

[18] https://engineering.purdue.edu/~puma/datasets.ht
m

http://dl.acm.org/citation.cfm?id=2310222&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2310222&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2310222&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2310222&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2310222&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2310222&CFID=932394217&CFTOKEN=12115692
http://dx.doi.org/10.1109/CCGrid.2012.42
http://dl.acm.org/citation.cfm?id=2477058&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2477058&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2477058&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2477058&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2477058&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2477058&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2477058&CFID=932394217&CFTOKEN=12115692
http://dx.doi.org/10.1109/SC.Companion.2012.12
https://doi.org/10.4218/etrij.2018-0265

