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Abstract— Hadoop has become a default platform for big data applications. Hadoop has many tunable parameters which 

have very big influence on the performance of the map reduce applications. Finding the best value for these tunable 

parameters has been an important research area. Many heuristic solutions have been proposed for tuning these 

performance parameters. Most of the heuristics solutions are based on the exploiting linear relationship based on 

intermediate data generated alone without consideration for the environment and application nature. Thus a adaptive 

learning based solution is needed to fine tune the Hadoop parameters. In this work, we apply adaptive ensemble of 

machine learning techniques to fine tune the Hadoop configuration parameters based on the past history of execution of 

the jobs. 
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I. INTRODUCTION 

Hadoop is becoming a popular platform for big data 

applications. Hadoop is based on map reduce architecture. 

The data to be processed in kept in Hadoop distributed file 

system. Applications are written in form of Map and Reduce. 

Map processes the input data and generates intermediate data 

of key and value pairs. The reduce job process aggregates the 

intermediate data based on keys and generates the results in 

form of key value pairs. Hadoop framework executes 

multiple map reduce instances in parallel by mapping them 

to threads in the OS. Hadoop is becoming a popular platform 

for big data applications. Hadoop is based on map reduce 

architecture. The data to be processed in kept in Hadoop 

distributed file system. Applications are written in form of 

Map and Reduce. 

Intermediate data volume has been used as a important 

criteria for deciding the number of maps and number of 

reduce in many previous works as discussed in literature 

review. All these works are based on the observation that 

without sufficient number of reduces tasks, the volume of 

intermediate data grows high and it may result in system 

crash. So by increasing the number of reduce tasks in 

proportion to intermediate volume, the system crash due to 

insufficient memory could be avoided. The relation between 

the intermediate data volume and the number of reduce tasks 

is modeled as linear relation in many previous works. But 

considering the nature of applications, this linear relation 

does not hold good. Especially in a heterogeneous 

environment, linear relationship between intermediate data 

and number of reduce tasks is no longer valid. To mitigate 

intermediate memory build surge, the number of maps are 

controlled in these approaches which results in slow down of 

applications. In this work, we explore the use of machine 

learning models to optimize the Hadoop configuration 

parameters and solve the issues in linear modeling based on 

intermediate data volume. Adaptive Ensemble of machine 

learning models is used for fine tuning the Hadoop 

configuration parameters. Hadoop jobs are profiled to collect 

the execution profile of map and reduce tasks, average rate 

of intermediate data processed etc and based on these 

parameters, machine learning models are built to predict the 

number of maps and reduce. The predicted values are 

configured in Hadoop run time system to increase the 

application performance.              

II. SURVEY 

Authors in [1] proposed solution for increasing the efficiency 

of Hadoop Distributed File System (HDFS) to improve the 

application speedup in Hadoop. By increasing the efficiency 

of HDFS, the data access concurrency between the parallel 

execution of map and reduce tasks is improved and this 

results in application speedup. The validity of this solution 

was tested in Grid’5000 dataset. But the gain received is 

comparatively lower (less than 5%) than the optimizing 

Hadoop configuration parameters. Authors in [2] used data 

compression as a strategy for improving Hadoop 

performance. The data movement between HDFS and the 

applications is done in a compressed way, so that the net 

bandwidth between the data intensive applications and 

HDFS is reduced. The validity of this approach was tested 
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against HTRC word counting task in XSEDE resources. Data 

compression strategy is not suitable for all kinds of 

applications and performance gain is less than 5%. Authors 

in [3] proposed a scheduling algorithm called, Longest 

Approximate Time to End (LATE) to increase the 

performance of Hadoop. Finish time of the jobs are estimated 

and job which hurts the response time the most is executed 

first. By this way lingering jobs are cleared and their impact 

on application slowdown due to memory occupancy is 

cleared. Estimating the finish time accurately is a challenge 

in heterogeneous environment. A phase level scheduling 

algorithm is proposed in [4] to increase the application 

speedup. The jobs are divided to phases at a fine-grained 

level and phase level scheduling is done. By this way 

parallelism is increased. The validity of this solution was 

tested against a 10 node Hadoop cluster and phase level 

scheduler was able to increase the performance by 1.3 times. 

A major problem in this approach is that not all applications 

are suitable for phase level scheduling and gain is lower 

considering the resource concurrency. Authors in [5] applied 

data locality to increase the application speedup. Data 

locality reduces the cross-switch network traffic. By this 

performance degradation due to communication can be 

reduced. Various data locality models were explored in this 

work for single cluster and cross cluster environment. For 

efficient data locality the communication between the tasks 

must be known in advance, which is not possible for all kinds 

of applications. Authors in [6] used intermediate data 

compression as a strategy to increase the application 

speedup. Due to compression of intermediate data, the 

shuffling overhead is reduced and computational cycles 

saved in shuffling overhead can be used for applications. 

Authors also proposed a lossless compression scheme for 

intermediate data which is able to reduce the intermediate 

data volume by five times. But the overhead in 

decompressing and using the data in reduce operations make 

this approach not suitable for all the applications. Authors in 

[7] proposed a strategy to decide when to compress the 

intermediate data. A decision algorithm is developed which 

helps the users to decide when to use compression. A 

significant achievement in this solution is that it is able to 

achieve 60% energy saving. Authors in [8] proposed a 

efficient data shuffling algorithm to increase the application 

speedup in Hadoop. Data movement is made effective using 

the proposed shuffling algorithm, thereby reducing the 

power consumption and extra computing cycles needed for 

shuffling. These extra computing cycles can be used for 

applications for increasing the speedup. But the performance 

gain is less than 10%. Authors in [9] used data compression 

to reduce the bandwidth need for applications in fetching the 

data. The validity of the solution was tested against HTRC 

word counting task and large scale medical image dataset. 

The application speed up is less than 5%, but there is a 

significant reduction in network bandwidth and energy 

consumption due to data compression. Authors in [10] 

modified the vanilla version of Hadoop with a fast 

intermediate layer to increase the application speedup. This 

intermediate layer is fault tolerant and optimized for 

concurrency. By reducing the read/write time for 

intermediate data, the overall execution time of jobs in 

increased. But the gain is lower than 10%. Authors in [11] 

optimized memory allocation, overhead in garbage 

collection, in-memory increase to increase the application 

speedup. Memory optimizations are able to increase the 

speed up by 2 times. Intermediate data access is reduced by 

moving to in-memory instead of disk, thereby increasing the 

application speedup but the resource cost is very high in this 

approach. Authors in [12] classified the Hadoop 

optimization parameters. The parameters are classified to 

different categories of IO-tuning, CPU-tuning, both-tuning 

and none. Depending on the application nature of CPU 

intensive or IO intensive, the corresponding set of 

parameters to be optimized is selected. For CPU intensive 

applications, CPU-tuning parameters are selected. For IO 

intensive applications, IO-tuning parameters are selected. 

Though the work identified the parameters to be tuned based 

on application nature, it did not propose any method to 

optimize the corresponding parameters. Authors in [13] 

proposed application collocation as a strategy to increase the 

application speedup. Through way of collocation, the 

unnecessary network overhead and the energy consumption 

due to it can be reduced. Co-location is able to increase the 

speed-up by 8%. Authors in [14] increased the speed up for 

failed tasks in Hadoop by task failure resilience. The failed 

tasks are executed from last known execution point instead 

of execution from start. Though it results in overhead for 

check pointing, the speed up is increased. Authors in [15] 

used genetic algorithm based search to identify the parameter 

settings to achieve near optimal execution time. The 

approach is complex when applied to real world environment 

as the multiple parameters interaction is not considered in 

this work. Authors in [16] proposed a memory model for 

application speedup. Based on the history of job executions, 

the total memory required for the task is pre-allocated. But 

the solution has reduced throughput. Authors in [17] 

proposed a noisy gradient approach for fine tuning the 

Hadoop configuration parameters. The approach is not 

adaptive.     

III. RESEARCH GAP 

The current solution for increasing the application speed up 

in Hadoop platform can be categorized as  

1. Data compression 

2. Memory allocation  

3. Hadoop configuration parameter tuning 

The gain is low in case of data compression and memory 

allocation based approaches.  Hadoop configuration 

parameter tuning approaches provides higher performance 

gains. But following are some of the problems in the existing 

Hadoop configuration tuning approaches  
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1. There are not adaptive to application nature 

2. They consider many parameter to optimize and they 

don’t consider the interaction due to it  

3. They are mostly based on linear relationship of 

intermediate data and execution time which does 

not apply in heterogeneous environment. 

This work addresses the above three challenges. 

IV. PROPOSED SOLUTION 

The proposed solution uses adaptive ensemble of machine 

learning to solve the three problems identified in the existing 

Hadoop configuration tuning approaches. The proposed 

model uses three different machine learning models of  

1. SVM Regression  

2. KNN 

3. Neural Network  

These three models predict the optimal number of reduce and 

map needed for execution of the job. The results of each of 

above classifiers are ensembled in a adaptive weighted 

manner. The weights for ensembling is learnt dynamically to 

suit for different application needs.  

A. Profiling 

Jobs are executed in Hadoop by varying the number of maps 

and number of reduce and following parameters are 

collected.  

1. Job completion time (P1) 

2. Intermediate data size (P2) 

3. Average map execution time in a slot(P3) 

4. Average reduce execution time in a slot(P4) 

5. Average IO wait time(P5) 

6. Number of maps (P6) 

7. Number of reduces (P7) 

8. Average Intermediate data build up rate(P8) 

 

 

 Figure 1: Proposed Architecture 

 

 

 

 

 

 

Figure 2 : Adaptive weighted ensemble model 

 

B. SVM Regression 

Two SVM regression model is constructed with one model 

for predicting number of maps and another for predicting 

number of reduces. The SVM regression model for 

prediction of number of maps takes – job completion time, 

intermediate data, average map execution time in a slot, 

average reduce execution time in a slot , average IO wait time 

as input and number of maps as output. The SVM regression 

model for prediction of number of reduce takes – job 

completion time, intermediate data, average map execution 

time in a slot, average reduce execution time in a slot , 
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average IO wait time as input and number of reduce as 

output. 

C. KNN   

Taking 80% of the profiled data as training data, KNN model 

is built for predicting the number of maps and reduce. The 

optimum value of K is found using elbow method. In elbow 

method a cost function is defined and the value of it for 

various values of K is found and plotted. The value of K at 

which a elbow is created in the cost is decided as the optimal 

value of cost. The cost function is calculated as average of 

distance of each point in cluster to its cluster centroid. It is 

calculated as  

𝑐𝑜𝑠𝑡 =  
∑ ∑ |𝑗 −  𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑗  |

|𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖|
𝑗=1

𝑘
𝑖=1

𝐾
 

Where K is the total number of clusters.  

The cost is plotted for various value of K 

 

Figure 3: Elbow results 

Elbow is created at k=3, so the optimal value for k is decided 

as 3. 

D. Neural Network 

Two neural network (NN) model is constructed  for 

prediction of number of maps and reduces. The neural 

network for prediction of number of maps is constructed with 

following parameters 

Parameters Values 

Inputs P1,P2,P3,P4,P5,P8 

Ouput P6 

Number of layers in neural network 3 

Number of neuron is layer 1 6 

Number of neurons in layer 2 15 

Number of neuron in layer 3 1 

Activation function Relu  

Table 1 : Neural Network for Map 

The neural network for prediction of number of reduce is 

constructed with following parameters 

Parameters Values 

Inputs P1,P2,P3,P4,P5,P8 

Output P7 

Number of layers in neural network 3 

Number of neuron is layer 1 6 

Number of neurons in layer 2 15 

Number of neuron in layer 3 1 

Activation function Relu  

Table 2: Neural Network for Reduce 

The neural network is learnt with back propagation learning 

algorithm. The accuracy of the neural network for the 

training and validation is as given below.  

 

Figure 4:  Neural Network accuracy 

E. Adaptive weighted Ensemble  

An Ensemble of the results of SVM regression, KNN and 

Neural Network classifier is done using Weighted Ensemble 

to predict the number of map and number of reduce. The 

weighted ensemble to predict the number of maps is 

𝑁𝑃 = 𝑤1𝑁𝑃𝑆𝑉𝑀 + 𝑤2𝑁𝑃𝐾𝑁𝑁 +  𝑤3𝑁𝑃𝑁𝑁    

Where 

𝑁𝑃𝑆𝑉𝑀 is the prediction result from SVM classifier 

𝑁𝑃𝐾𝑁𝑁  is the prediction result from the KNN classifer 

𝑁𝑃𝑁𝑁    is the prediction result from the Neural network 

classifier.  

The weight values are calculated as  

𝑤𝑖 = log
1 − 𝑒𝑟𝑟𝑜𝑟(𝐶𝑖)

𝑒𝑟𝑟𝑜𝑟(𝐶𝑖)
, 1 ≤ 𝐶𝑖 ≤ 3 

Where 𝐶𝑖 is the corresponding classifier used for prediction 

of number of maps.  Error of the classifier is calculated in 

terms of root mean square between the actual and the 

predicted number of maps. It is calculated as  

𝑒𝑟𝑟𝑜𝑟(𝐶𝑖) =  √(𝑁𝑃𝐶𝑖
− 𝑁𝑃𝑎𝑐𝑡𝑢𝑎𝑙) 

Where  

𝑁𝑃𝐶𝑖
 is the predicted value of number of maps by the 

classifier 𝐶𝑖 and 𝑁𝑃𝑎𝑐𝑡𝑢𝑎𝑙  is the actual value. 

The Hadoop profiled data is split to 80:20 ratio. Each of the 

SVM, KNN and NN classifiers are trained to predict the 

number of maps. Testing is done with 20% test data to 

calculate the weight values.  

The above procedure is repeated for finding the adaptive 

weighted model for number of reduce. It is given as  

𝑁𝑅 = 𝑤1𝑁𝑅𝑆𝑉𝑀 + 𝑤2𝑁𝑅𝐾𝑁𝑁 + 𝑤3𝑁𝑅𝑁𝑁    

Where 

𝑁𝑅𝑆𝑉𝑀 is the prediction result from SVM classifier 

𝑁𝑅𝐾𝑁𝑁 is the prediction result from the KNN classifer 

𝑁𝑅𝑁𝑁   is the prediction result from the Neural network 

classifier.  

V. NOVELTY IN THE PROPOSED SOLUTION 

The overall architecture of the proposed solution is given in 

Figure 1 and the adaptive weighted ensemble model is given 
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in Figure 2. Following are the important contribution in this 

work 

1. Different from previous model based only on 

intermediate data, this work considers tasks specific 

computation and IO parameters, rate of change in 

intermediate data also in modeling the number of 

maps and number of reduce. 

2. The solution is adaptive to different applications, as 

the weights are learnt dynamically based on past 

performance. 

3. No assumption on linearity on intermediate data 

and relation is modeled using adaptive ensemble 

machine learning model. 

4. The dynamics in intermediate volume is not 

considered in the previous work but the proposed 

solution considers it in prediction.  

VI. RESULTS 

The performance of the proposed solution is tested against 

PUMA dataset [18] in Hadoop environment. The 

performance of the proposed solution is compared for word 

count and k-means for different volume of datasets.  The 

performance is compared with the solution proposed in [12] 

and default parameters of Hadoop. The solution [12] has 

proposed guidelines for selection of various configuration 

parameters. 

The performance is compared in terms of Execution time. 

The execution time is measured for different volume of the 

data and the result is given below 

Data volume 

(MB) 

Proposed 

ensemble  

[12] Default 

Hadoop 

128 50 60 100 

256 84 100 170 

512 112 150 240 

1024 202 270 430 

2048 470 510 840 

Table 3 :Execution time for different volume 

 
             Figure 5 : Comparison of Execution time 

The average execution time in the proposed solution is less 

than [12] by 19.12% and 94.53% compared to Default 

Hadoop. The results show that the proposed solution is above 

to provide a better value for number of maps and number of 

reduce compared to existing solutions.  

The execution time is measured for different number of 

iterations for the same volume (128MB) of dataset and the 

result is given below. 

 

Figure 6 : Execution time over iterations 

The execution time is learnt in adaptive manner in the 

proposed solution compared to [12].  Over the 5 iterations, 

the standard deviation in the proposed ensemble based 

solution is 6.05 minutes compared to standard deviation of 

2.34 minutes in the solution [12]. The proposed solution has 

61.3% more adaptability compared to [12].  

The difference between the actual and prediction value is 

measured in terms of RMSE for different volume of dataset 

in the proposed ensemble model and the result is given below 

Table 4 : RMSE in Proposed Solution 

Data volume 

(MB) 

RMSE for number of 

Maps 

RMSE for number of 

reduce 

128 1.73 2 

256 3.16 3.74 

512 4.6 4.7 

1024 3.2 3.8 

2048 4.4 4.3 

 

Figure 7 : RMSE for different data volume 

RMSE value for number of map has a standard deviation of 

1.153 and RMSE value of number of reduce has a standard 

deviation of 1.03.  This implies irrespective of volume of 

data, the proposed model has good accuracy in predicting the 
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number of maps and number of reduce. Also the average 

RMSE value for map is 3.4 and for reduce is 3.7, which 

means the prediction is very close to the actual value.  

VI. CONCLUSION 

An adaptive ensemble model for Hadoop parameter 

optimization is proposed in this work. The proposed model 

is based on multiple Hadoop execution parameters compared 

to most solution based on intermediate data volume alone. 

Different from previous solutions, this work also considers 

dynamics in intermediate volume. The weights for 

ensembling is adaptive to past performance predictions , 

thereby the proposed solution can adapt to different types of 

applications like CPU and IO intensive. Through 

performance results, the proposed solution is found to have 

95.53% speedup compared to default Hadoop.     
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