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Abstract Deep learning, an emerging trend in machine learning research and application, opens up a new outlook in 

machine learning realms.  Even though the deep learning methods have been mainly investing their efforts in the neural 

network, recently there are many attempts to leverage these features into kernel machines. However,  the gradient-

based and quadratic-based parameter tuning methods enforce iterative training procedures in artificial neural 

networks and kernel machines respectively. Extreme Learning Machine (ELM) eliminates this hectic and highly time 

consumed iterative parameter tuning mechanism from its training procedure. ELM exploits a unified learning method 

that facilitates feature mappings like kernel functions and random feature mappings.  The multilayer arc-cosine kernel 

exhibit deep learning features and it can be glued with ELM to build a Deep kernel-based extreme learning machine. 

This paper explores the possibility of detecting pneumonia from x-ray images using deep kernel-based extreme learning 

machines. 
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I. INTRODUCTION 

Two prevalent learning approaches, neural network and 

kernel machines, are enduring with their iterative parameter 

tuning-based learning strategy.  The gradient-based learning 

algorithms like Back Propagation (BP)  and its variants are 

the driving force behind neural networks [1], [2], [3], [4], 

[5]. Because of the inter-dependencies between the 

parameters in different layers of neural networks, these 

gradient-based algorithms cannot guarantee better 

generalization performance or global optimum solution.  

Similarly, the quadratic equation with tuning parameters 

used in the training process of Support Vector Machines 

(SVM), a popular kernel machine, also enforce iterative 

parameter tuning mechanisms [6], [7].  In the recent past, 

there were some attempts to build learning models without 

these iterative parameters tuning [8].  The extreme learning 

machine (ELM) is one such prominent learning model that 

exploits non-iterative parameter tuning mechanism in its 

learning process [9]. The core of ELM is the generalized 

matrix inverse operation. It eases the operation to compute 

the output weight, random computation of input weights, 

and biases [10], [11]. It has already been observed that as 

the norm of output weights decreases the generalization 

performance of feed-forward neural networks improves, 

reaching minimal errors [12]. Unlike conventional training 

approaches, the ELM accomplishes both the smallest norm 

of output weights and minimized training error. The 

universal approximation and classification capabilities turn 

the ELM into a unified learning method. Even though ELM 

had been proposed as a fast learning algorithm for single-

layer feed-forward networks (SLFNs), later it has been used 

to model different types of feature mappings, including 

kernel functions [13]. Kernel-based extreme learning 

machine (KELM) exploits kernel functions to tackle the 

situation where the feature mapping functions of hidden 

nodes are unknown to the user [14]. It proposes a unified 

learning model for regression and both binary and multi-

class classifications. The conventional KELMs involve only 

a single layer kernel and hence they fit in shallow-based 

learning architecture.  Robot execution failure prediction 

[15], different combinations of multiple kernels [16], the 

exploitation of parallel computing frameworks such as 

MapReduce [17] are some of the shallow architecture-based 

models that make KELM more popular. The deep learning 

models, the latest trend in machine learning, also exhibit the 

potential to shattered shallow-based learning models.  

Nowadays, there are several attempts to transform 

conventional shallow models into deep learning models. 

The eagerness over these transformations is the escalated 

number of layers and efficient feature extractions 

capabilities of deep learning architectures. Deep layered 

learning models have been showing their excellence in the 

area of neural networks. Inspired by the widespread 

acceptance of deep neural network models, there are some 

noticeable attempts to leverage deep learning capabilities in 

kernel machines.  The kernel function, the crux in kernel 

machines, eliminate the explicit mapping of data in the high 
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dimensional feature space but rather computes the inner 

products between every pair of data in the feature space 

[18]. 

The muli-layer arc-cosine kernel provides multiple layers 

of feature extraction in kernel machines.   Different layers in 

the hierarchy of arc-cosine kernel can have different 

activation functions and hence qualitatively different 

geometric properties.  The noticeable characteristic of the 

arc-cosine kernel is that it is recursive by itself and exhibits 

the potential to enforce multilayer computation in learning 

models. This multilayer arc-cosine kernel function attributes 

deep learning capabilities in kernel machines like support 

vector machines and their variants [19], [20]. Deep core 

vector machine [21], scalable deep kernel machines with 

multiple layers of unsupervised feature extraction [22] are 

some of the deep kernel machines.   

The possibilities of including this arc-cosine kernel in the 

fast non-iterative training mechanism of extreme learning 

machines were discussed in [23].   Nowadays, different 

machine learning approaches have been using in the 

diagnosis of common diseases. This paper explores the 

possibility of using a deep kernel machine such as deep 

kernel-based extreme learning machine to detect Pneumonia 

from the x-ray images.   

The rest of the paper is organized as follows. The deep 

kernel-based extreme learning machine and its 

computations are described in Section II.  The proposed 

deep kernel-based Pneumonia detection is explained in 

Section III. Experimental analysis and performance 

evaluations are given in Section IV.  Section V includes 

conclusions and future enhancements. 

II. DEEP KERNEL-BASED EXTREME LEARNING 

MACHINES 

Extreme learning machines were proposed as an alternative 

mechanism to train data without iterative parameter tuning. 

It has been achieved by randomly generated input weights 

and hidden layer biases. The other observed feature is that 

the hidden layer parameters are independent of input 

samples. The output weights are also calculated non 

iteratively as in linear systems. The basic computations in 

Single Layer Feedforward Network (SLFN) as depicted in 

Figure 1. can be described as follows[23]. 

 

 
Figure 1: The basic model of single layer feed forward 

network 

 

Here, the training sample can be expressed as: 

.  In Figure 1,  be the input 

weight matrix and it can be represented as: 

  

Similarly, the output weight matrix 

 

The mathematical model of SLFN with  as the 

bias of  hidden node and F( ) as the Activation function 

can be expressed as [11].  

 (1) 

 The activation function F() of the hidden nodes may be the 

sigmoid, hyperbolic tangent, threshold, etc. 

As described in the paper [10], there exist  

and  such that the actual output  equals to the target 

output , the SLFN approximates these N samples with 

zero mean square error.  

 

 Now the Equation 1 becomes  

 (2) 

 In simple form, the output function of SLFN can be 

expressed as  

 

 and these N equations(one for each data sample) can be 

written in matrix form as  

 (3) 

 where H is a  matrix of the form  

 

 (4) 

  is the output weight matrix ( ) is of the form  

and Y is the output matrix ( ). The conventional 

gradient-based training method of SLFN fine-tunes the 

parameters  with respect to the objective 

function.  

 (5) 

 The corresponding cost function is [11]  

 

 (6) 

 

ELM optimizes for the smallest error and also for 

the smallest norm of output weight. Taking these facts, the 

objective function of ELM [10] can be expressed as: 

 

 (7) 
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 The analytical model of obtaining the smallest norm least 

square solution of the above equation can be expressed as:  

(8) 

 where  is the Moore-Penrose generalized inverse of 

matrix H and it can be computed as , 

where  is the regularization parameter. The output 

function of ELM can be expressed as:  

  

 (9) 

Kernel-based ELM:   Equation 9 involves a dot product 

 and it can easily be replaced with a kernel function if 

the feature transformation function of ELM is unknown to 

the user. Now the Kernel-based ELM can be expressed as :  

 

 (10) 

 Here, the kernel matrix  

:  = . It can easily be 

migrated to the deep kernel-based extreme learning machine 

by inducing arc-cosine kernel in this model. 

Analysis of Arc-cosine kernel:   The process of attributing 

deep learning capabilities in kernel machines was achieved 

through the multi-layer arc-cosine kernel. In the paper [19], 

the  order kernel in the family of the arc-cosine kernel 

has been defined as:  

 

 (11) 

 where  is the Heaviside function. 

Two parameters on which arc-cosine kernel dependent are 

magnitudes of the inputs and angle between them ( ). The 

simple form of the arc-cosine kernel with degree  can be 

written as :  

 (12) 

 where the angular dependency  

 (13) 

 The first three expressions of  as [20]: 

 

 
. 

For the case n = 0, the kernel function takes the simple 

form:  

 (14) 

 The angle  between the input vectors x and y is  

 (15) 

 This arc-cosine kernel can be combined to form a multi-

layered arc-cosine kernel. Unlike other multiple 

combinations of kernel functions, each layer in multi-layer 

arc-cosine can have a different value of activation factor or 

degree. It facilitates the capability for exhibiting different 

geometric behavior on different layers of the arc-cosine 

kernel. The successive layers use the kernel matrix 

computed in the previous layer, with the same or different 

activation function in each layer [19]. - fold arc-cosine with 

degree ,  can be expressed as:  

 

 (16) 

 where  is the angle between the images of x and y in the 

feature space induced by the -fold composition.  

 (17) 

 It can be computed iteratively and the hierarchical method 

starts with initial kernels: , 

 and .  

Deep Kernel-based extreme learning machine:   Deep 

kernel-based extreme learning machine can be modeled by 

inducing the multi-layer arc-cosine kernel in kernel-based 

ELM. It can be expressed mathematically as :  

 

 (18) 

 Here  representing - fold arc-cosine kernel with 

degree . The iterative computation of arc-cosine kernel 

gives the deep kernel matrix . The output weight can 

be computed as  This output 

weight vector is used to predict the class label for training 

and testing dataset as  

dot( . In the case of testing,  

represent the kernel matrix corresponding to the test dataset. 

 

III. PNEUMONIA DETECTION USING DEEP 

KERNEL-BASED EXTREME LEARNING MACHINE 

Disease diagnosis and management involve an 

immense amount of images and their classification. It seems 

to be very hectic for human experts to classify those images 

and converge to a proper decision. There were many 

attempts to leverage machine learning algorithms in the 

realm of disease diagnosis and management. These 

conventional frameworks mainly relied on handcrafted 

object segmentation and shallow-based classification 

models to classify them [24]. The recent trend in machine 

learning, the deep learning architecture exhibit the potential 

to extract pattern automatically from input dataset through 

multiple layers of computations. The disease diagnosis and 

management process are progressively rolled out to these 

Artificial Neural networks (ANN) based deep learning 

methods [25].  Besides these deep ANN and kernel-based 

models, ELM also showing its capabilities in medical object 

detection [26] and image classifications[27]. 

It has been reported that the mortality rate of pneumonia 

among children is comparatively high [28]. Pneumonia may 

be caused by either Bacterial or viral pathogens and it needs 

to be handled separately. Antibiotic treatment has been 

usually practiced against the bacterial pathogen. Supportive 

caring mechanisms are taken for viral Pneumonia. Doctors 

are usually exerting chest X-rays for diagnosing and 
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differentiate bacterial and viral Pneumonia. Figure 2 shows 

the chest X-ray images of normal, bacterial, and viral 

pneumonia patients. 

     
Figure 2: (a) Normal  (b) Viral   (C) Bacterial  X-rays 

 

This paper explores the possibility of applying the deep 

kernel-based extreme learning machine, the Kernel-based 

ELM with multi-layer arc-cosine kernel,   on X-ray images 

to identify pneumonia patients.  

IV. EXPERIMENTAL RESULT AND EVALUATION 

Experiments were performed on the dataset taken from 

[29]. Out of 5840 images, 5216 images were taken under 

the consideration of training, and 624 were taken for testing 

purposes. The composition of normal, viral, and bacterial x-

rays images in the training and test data sets are depicted in 

Figure 3. 

 
       Figure 3: Dataset composition 

In our experiment first, we implement a deep 

kernel-based extreme learning machine by incorporating the 

arc-cosine kernel 1 as an external kernel in a classical ELM 

package 2. A three-layer arc-cosine kernel is evaluated in 

our experiment. Even though any values can be used as the 

activation value (degree) for each layer in the arc-cosine 

kernel, we have tried the combinations of activation values 

,  and 2.  Experiments have been tried in binary class 

classification mode (Normal vs Pneumonia) and it achieved 

an accuracy of 93.01 % for the combination . The 

average precision, recall, F1-sore, and accuracy of our deep 

kernel-based ELM against various combinations of 

activation values are shown in Table 1. Bold values indicate 

maximum accuracy and it has been more elaborated in the 

confusion matrix as shown in Figure 4. In this confusion 

matrix, it is clear that out of 234 normal test images 199 (86 

%) were correctly identified as the normal case itself. In 

affected cases out of 390 images, only less than 3% were 

 
1  libSVM-2.91:Available at https://www.csie.ntu.edu.tw/ 

cjlin/libsvm/oldfiles/ 
2 The ELM package elm-0.1.1 is available at htt 

ps://pypi.python.org/pypi/elm 

wrongly diagnosed as normal all others are detected as 

affected patients.  It shows the efficiency of this model.  

 

Table 1: precision, recall, F1-sore, and accuracy against 

various activation list 

Activation List Precision Recall F1-Score Accuracy 

[0, 1, 2] .920 .916 .918 .914 

[0, 2, 1] .920 .919 .922 .919 

[1, 0, 2 ] .910 .878 .894 .882 

[1, 2, 0] .914 .912 .913 .908 

[2, 0, 1] .931 0.929 0.930 .931 

[2, 1, 0] 0.891 0.910 .900 .902 

 

 
Figure 4: Confusion matrix against maximum accuracy. 

 

V. CONCLUSION AND FUTURE WORKS 

Neural networks and kernel machines have been 

revolving around the traditional iterative parameter tuning 

mechanism for their training purpose. The exploration 

towards the elimination of the hindrance of iterative 

parameter turning reached the formation of Extreme 

Learning Machines (ELMs). In ELM, the output weight is 

computed by analytical methods which are the source 

behind the elimination of iterative parameter tuning. It is 

facilitated by assigning random weight in the hidden nodes. 

Even though ELM has been modeled as a fast learning 

algorithm for single-layer feed-forward neural networks 

(SLFNs), it gradually rolled out different models like 

kernel-based ELM with its universal approximation and 

classification capabilities. The conventional kernel-based 

ELMs include only shallow-based (single-layered) kernels. 

The multi-layer arc-cosine kernel exhibits the potential for 

being a deep kernel. The inclusion of this multi-layer arc-

cosine kernel in ELM explored the possibility of the deep 

kernel-based extreme learning machine. This paper 

discussed the applicability of the deep kernel-based extreme 

learning machine with the multi-layer arc-cosine kernel on 

X-ray images for the rapid radiologic interpretation of 

bacterial and viral Pneumonia to provide urgent referral 

interventions. The experimental results show the potential 

of deep kernel-based extreme learning machines in the 

domain of disease diagnosing and management. This model 

can be enhanced for multi-class classification such as 

normal vs bacterial vs viral. This work can be further 

explored with more layers in the arc-cosine kernel. 

However, it may raise memory exceptions as the size of the 

kernel matrix increases. 
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