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Abstract Over the lifetime of the reservoir, the pressure will fall and, at some point, there'll be scarce amount of 

underground pressure to force the oil to the surface. Secondary oil recovery techniques increase the reservoir pressure 

by water injection, which pushes oil towards the well. During this study, instability phenomenon has been observed when 

the water is injected in an inclined oil formatted area due to viscosity difference between water and oil. The non-linear 

partial differential equation for the instability phenomenon has been obtained. The differential transform method has 

been applied to the governing equation by using appropriate initial conditions. We’ve got compared the numerical value 

of saturation of injected water with and without inclination, too. The numerical value and graphical presentation are 

given by using MATLAB software. It’s concluded that the saturation of water is increasing during instability 

phenomenon in inclined porous media when the length of fingers and time increase and without inclination, it's more 

increasing as compared to with inclination. 
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I. INTRODUCTION 

The study of multiphase flow through porous media has 

been of great significance in petroleum technology for the 

method of oil recovery for the last few decades. In Primary 

oil recovery process oil comes out from oil formatted area 

by natural pressure and it produces only 10% to 12% of oil 

by natural pressure of the reservoir. Remaining oil can 

recover by injecting gas, chemicals, but mostly water 

(reason being supply of water is plentiful, inexpensive and 

usually more stable frontal displacement).Since we inject 

fluid, this process is called the secondary process of oil 

recovery. In the secondary oil recovery process, the 

instability phenomenon occurs in the secondary oil recovery 

process, when water is injected into the oil-formatted field. 

Due to the difference in viscosity of water and oil, the 

protuberances will occur with irregular fingers in size and 

shape instead of normal displacement of the entire front 

(common interface).Hence, it is called fingering 

phenomenon. In both miscible and immiscible systems, 

instability may occur and arise at the interface between two 

fluids (e.g. oil and water). This phenomenon has been 

observed, studied and understanding of it has continuously 

evolved by many researchers. Many researchers applied 

different Analytical and Numerical approaches as well. 

Saffman and Taylor(1958)[2] suggested that fluid 

displacement involves only a microscopic fluid-fluid 

interface and it is mathematically comparable to two-

dimensional flow in a porous medium. Several moving 

microscopic fluid-fluid interfaces are represented by the 

macroscopic interface and displacement are three 

dimensional. The first application of the Hele-Shaw cell to 

viscous fingering problems was made by Saffman and 

Taylor[2]. As both the velocity of the fluid in the porous 

medium and the velocity of the fluid in the Hele-Shaw cell 

obey Darcy's law, Saffman and Taylor proposed that the 

behavior of the Hele-Shaw cell could reflect the flow of the 

porous medium. In the displacement of one viscous liquid 

by another immiscible one through a uniform porous 

medium, Chouke et al(1959)[3] examined macroscopic 

instability. By defining an effective interfacial tension 

between the fluids in a porous medium analogous to the 

interfacial tension in the bulk fluids, he also accounted for 

capillary effects. The stability of displacement fronts in 

porous media was studied by Scheideggar (1960)[4]. 

Scheidegger and Johnson(1961)[5] examine this 

phenomenon analytically for the first time. They suggested 

statistical approach. The average cross-sectional area 

occupied by the fingers was considered by Scheidegger 

(1960)[4], while the size and shape of the individual fingers 

were overlooked. In a displacement phase in a 
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heterogeneous porous medium with capillary pressure using 

a perturbation solution, Verma (1969)[6] addressed the 

statistical behavior of the fingering phenomenon. A non-

linear evolution equation for water oil displacement front 

was numerically formulated by Brailovsky et al. (2006)[7]. 

They also explored a way of regulating the unregulated 

growth of fingers by not uniformly injecting water, but 

rather at suitably spaced time intervals. Patel and 

Mehta(2008)[8] have explored this phenomenon by 

transforming the governing equation of the fingering 

phenomenon into a Burger equation and an analytical 

solution. Joshi and Mehta (2009)[9] presented the solution 

of the instability phenomenon occurring in fluid flow 

through porous media by the Group Invariant approach. 

Kinjal and Mehta(2011)[10] presented a set of nonlinear 

partial differential equation solutions in both heterogeneous 

and homogeneous porous media for fingering phenomena. 

Kajal and Mehta(2014)[11] obtained the solution by 

Homotopy Analysis method. Parikh(2015)[12] obtained the 

solution in terms of quadratic polynomial by using 

generalized severable method. Borana and 

Prathan(2016)[13] obtained the solution by Crank-Nicolson 

finite difference scheme. Pathak and singh(2016)[14] 

obtained the solution by optimal homotopy analysis 

method. In the present paper, we are going to obtain solution 

by Differential Transform Method. 

II. MATHEMATICAL FORMULATION 

To formulate this phenomenon mathematically, we have 

considered the following assumptions. From a large natural 

field area, we took a vertical cross-sectional area of a piece 

of a cylindrical porous matrix as a rectangle having length 

L and inclination θ with the horizontal x-axis. It’s all sides 

are impermeable except for one end of the cylinder which is 

designated as a common interface at x = 0 as shown in Fig. 

1.  

 
Injected water comes into contact with oil at the common 

interface x = 0, the phenomenon of instability begins 

(Fig.1). Due to the irregular shape and size of the fingers, 

Scheidegger[4] suggested the schematic shape in the 

form of rectangular fingers (Fig. 2). However, it is still 

difficult to find the portion saturated with water due to an 

irregular length; thus, we took the average cross-section 

area covered by rectangular fingers (Fig. 3). The 

saturation of water at common interface occupied cross-

sectional area is very small saturation. This study has 

been carried out for instability phenomenon in 

homogeneous porous matrix with and without 

inclination. 

Since water is injected at common interface in inclined 

homogeneous porous matrix contenting oil which will 

displaced by injecting water. Hence water and oil both will 

satisfy Darcy's law given by Bear[1] which gives velocities 

of water and oil respectively as 

𝑉𝑖𝑤 = −
𝑘𝑖𝑤

𝜇𝑖𝑤
𝐾 (

𝜕𝑝𝑖𝑤

𝜕𝑥
+ 𝜌𝑖𝑤𝑔𝑠𝑖𝑛𝜃) (1)  

𝑉𝑛𝑜 = −
𝑘𝑛𝑜

𝜇𝑛𝑜
𝐾 (

𝜕𝑝𝑛𝑜

𝜕𝑥
+ 𝜌𝑛𝑜𝑔𝑠𝑖𝑛𝜃) (2)  

 Since gravitational effect g and angle of inclination 

play an important role in the injected water and native oil 

velocities in the inclined porous matrix, the second terms in 

the above equations are applied. Here, iw represents 

injected water and no represents native oil. V represents 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-06,  Issue-12, MAR 2021 

85 | IJREAMV06I1272027                          DOI : 10.35291/2454-9150.2021.0091                    © 2021, IJREAM All Rights Reserved. 

 

velocity, K represents permeability of homogeneous porous 

medium, angle of inclination is represented by 𝜽, k 

represents relative permeability, which is function of 

saturation S, p represents pressure. represents constant 

density. g represents acceleration due to 

gravity.represents constant kinematic viscosity. Due to 

the capillary pressure of water and oil, water and oil are 

followed through interconnected capillaries in a porous 

matrix throughout the phenomenon of instability. Injected 

water and displaced native oil to satisfy the continuity 

equation given by Scheidegger as 

∅
𝛛𝐒𝐢𝐰

𝛛𝐭
+

𝛛𝐕𝐢𝐰

𝛛𝐱
= 𝟎                                            (3) 

∅
𝜕𝑆𝑛𝑜

𝜕𝑡
+

𝜕𝑉𝑛𝑜

𝜕𝑥
= 0     

     (4) 

Where the porosity ∅ of the homogeneous porous medium 

is provided as a constant here. 

The sum of the saturation of the injected water and native 

oil is also considered to be equal to the unity (i.e. completely 

saturated) written as 

Siw  Sno  1    (5) 

In addition, it is important to consider the role of 

capillary pressure in the phenomenon of instability. 

Therefore, the water will flow through interconnected 

capillaries created by effective pores when less viscous 

water is injected at x = 0 in oil formatted inclined porous 

matrix of length x = L, and this is due to the difference in 

pressure of native oil and injected water. Scheidegger 

defined function of saturation of injected water as 

pc Siw   pno  piw    (6) 

However, Mehta claims that in homogeneous porous 

media, the injected water linearly flows through small 

interconnected capillaries. Therefore, he considers capillary 

pressure pc as a linear Siw saturation function given by 

pc   Siw;is constant.   (7) 

The minus sign here indicates the position of the 

capillary pressure opposite the saturation of the water 

injected.  This relationship between the permeability and 

saturation of water and oil was established by Scheidegger 

and Bear[1,4]. 

𝐾𝑖𝑤 = 𝑆𝑖𝑤  , 𝐾𝑛𝑜 = 𝑆𝑛𝑜 = 1 − 𝛼𝑆𝑖𝑤   (8) 

Here   1.11 which is constant. The following coupled 

partial differential equations are now replaced by the 

value of the seepage velocity of injected water 𝑉𝑖𝑤 and 

the velocity of native oil 𝑉𝑛𝑜 from eq (1) and (2) in the 

continuity equations of (3) and (4) as 

∅
𝜕𝑆𝑖𝑤

𝜕𝑡
=

𝜕

𝜕𝑥
[
𝑘𝑖𝑤

𝜇𝑖𝑤
𝐾 (

𝜕𝑝𝑖𝑤

𝜕𝑥
+ 𝜌𝑖𝑤𝑔𝑠𝑖𝑛𝜃)] 

 (9) 

 ∅
𝜕𝑆𝑛𝑜

𝜕𝑡
=

𝜕

𝜕𝑥
[
𝑘𝑛𝑜

𝜇𝑛𝑜
𝐾 (

𝜕𝑝𝑛𝑜

𝜕𝑥
+ 𝜌𝑛𝑜𝑔𝑠𝑖𝑛𝜃)]             

(10) 

From equation (6) and (9), we get 

∅
𝜕𝑆𝑖𝑤

𝜕𝑡
=

𝜕

𝜕𝑥
[
𝑘𝑖𝑤

𝜇𝑖𝑤
𝐾 {(

𝜕𝑝𝑛𝑜

𝜕𝑥
) − (

𝜕𝑝𝑐

𝜕𝑥
) + 𝜌𝑖𝑤𝑔𝑠𝑖𝑛𝜃}]     (11) 

Taking summation of equation (10) and (11) and from 

relation (5) then integrating with respect to x we get, 

{
(
𝑘𝑖𝑤

𝜇𝑖𝑤
𝐾 +

𝑘𝑛𝑜

𝜇𝑛𝑜
𝐾)

𝜕𝑝𝑛𝑜

𝜕𝑥
− (

𝑘𝑖𝑤

𝜇𝑖𝑤
𝐾)

𝜕𝑝𝑐

𝜕𝑥

+(
𝑘𝑖𝑤

𝜇𝑖𝑤
𝜌𝑖𝑤𝐾 +

𝑘𝑛𝑜

𝜇𝑖𝑤
𝜌𝑛𝑜𝐾)𝑔𝑠𝑖𝑛𝜃

} = −𝑉(𝑡) 

                 (12) 

Where V(t) is a constant of integration. 

From equation (12) we get 
𝜕𝑝𝑛𝑜

𝜕𝑥
 as follows 

 
𝜕𝑝𝑛𝑜

𝜕𝑥
= 

{
 
 

 
 −

𝑉(𝑡)

(
𝑘𝑖𝑤
𝜇𝑖𝑤

𝐾+
𝑘𝑛𝑜
𝜇𝑛𝑜

𝐾)
+

(
𝑘𝑖𝑤
𝜇𝑖𝑤

𝐾)
𝜕𝑝𝑐
𝜕𝑥

(
𝑘𝑖𝑤
𝜇𝑖𝑤

𝐾+
𝑘𝑛𝑜
𝜇𝑛𝑜

𝐾)

−
(
𝑘𝑖𝑤
𝜇𝑖𝑤

𝜌𝑖𝑤𝐾+
𝑘𝑛𝑜
𝜇𝑛𝑜

𝜌𝑛𝑜𝐾)𝑔𝑠𝑖𝑛𝜃

(
𝑘𝑖𝑤
𝜇𝑖𝑤

𝐾+
𝑘𝑛𝑜
𝜇𝑛𝑜

𝐾) }
 
 

 
 

  (13) 

 By putting the value of 
𝜕𝑝𝑛𝑜

𝜕𝑥
 in (13) we get 

∅
𝜕𝑆𝑖𝑤

𝜕𝑡
=

𝜕

𝜕𝑥

[
 
 
 
 
 

𝑘𝑖𝑤

𝜇𝑖𝑤
𝐾

{
 
 

 
 −

𝑉(𝑡)

(
𝑘𝑖𝑤
𝜇𝑖𝑤

𝐾+
𝑘𝑛𝑜
𝜇𝑛𝑜

𝐾)
−

(
𝑘𝑛𝑜
𝜇𝑛𝑜

𝐾)
𝜕𝑝𝑐
𝜕𝑥

(
𝑘𝑖𝑤
𝜇𝑖𝑤

𝐾+
𝑘𝑛𝑜
𝜇𝑛𝑜

𝐾)

−
(
𝑘𝑛𝑜
𝜇𝑛𝑜

(𝜌𝑛𝑜−𝜌𝑖𝑤)𝐾)𝑔𝑠𝑖𝑛𝜃

(
𝑘𝑖𝑤
𝜇𝑖𝑤

𝐾+
𝑘𝑛𝑜
𝜇𝑛𝑜

𝐾) }
 
 

 
 

]
 
 
 
 
 

 

(14) 

Now Oroveanu[15] gave relation of mean pressure by  

𝑝𝑛𝑜 = 𝑝̅ +
1

2
𝑝𝑐 , 𝑝̅ =

(𝑝𝑛𝑜+𝑝𝑖𝑤)

2
    (15) 

Where 𝑝̅ is the constant mean pressure. 
𝜕𝑝𝑛𝑜

𝜕𝑥
=

1

2

𝜕𝑝𝑐

𝜕𝑥
       (16) 

To determine the value of V(t) we use relation (16) in 

equation (13) and after simplification we get, 

−𝑉(𝑡) = {

1

2
(
𝑘𝑛𝑜

𝜇𝑛𝑜
𝐾 −

𝑘𝑖𝑤

𝜇𝑖𝑤
𝐾)

𝜕𝑝𝑐

𝜕𝑥
+

+(
𝑘𝑖𝑤

𝜇𝑖𝑤
𝜌𝑖𝑤𝐾 +

𝑘𝑛𝑜

𝜇𝑖𝑤
𝜌𝑛𝑜𝐾)𝑔𝑠𝑖𝑛𝜃

}   

   (17) 

Hence using the value of V(t) in (14) and after 

simplification we get, 

∅
𝜕𝑆𝑖𝑤

𝜕𝑡
=

𝜕

𝜕𝑥
{
𝑘𝑖𝑤

𝜇𝑖𝑤
𝐾 (−

1

2

𝜕𝑝𝑐

𝜕𝑥
) +

𝑘𝑖𝑤

𝜇𝑖𝑤
𝜌𝑖𝑤𝐾𝑔𝑠𝑖𝑛𝜃}   

        (18) 

For more simplification of above equation of motion we use 

relation of  𝑝𝑐 and 𝑘𝑖𝑤 from equation (6) and (8) 

respectively we get, 

∅
𝜕𝑆𝑖𝑤

𝜕𝑡
= 

𝛽𝐾

2𝜇𝑖𝑤

𝜕

𝜕𝑥
(𝑆𝑖𝑤

𝜕𝑆𝑖𝑤

𝜕𝑥
) +

𝐾𝜌𝑖𝑤𝑔

𝜇𝑖𝑤
𝑠𝑖𝑛𝜃

𝜕𝑆𝑖𝑤

𝜕𝑥
   

        (19) 

Equation (19) is non-linear partial differential equation of 

motion for the saturation of injected water during instability 

phenomenon occurring in secondary oil recovery process in 

incline homogeneous porous matrix. To solve nonlinear 

equation (19), it is necessary to choose appropriate 

boundary and initial conditions at common interface x = 

0.We consider here that when water is injected at common 

interface x = 0 the saturation of injected water is Sw0 which 

is very small for given time t > 0. 

i.e. 𝑆𝑖𝑤(0, 𝑡) = 𝑆𝑤0 at x=0 for t > 0   (20) 

 𝑎𝑛𝑑 𝑆𝑖𝑤(𝑥, 0) = 𝑆𝑤0𝑒
𝑥

𝐿 at t = 0 for x > 0 , L is length of 

porous matrix.       (21). 
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III. DIFFERENTIAL TRANSFORM METHOD 

Zhou[16], who solved linear and nonlinear issues in 

electrical circuit problems, first suggested the idea of the 

DTM. This technique was developed by Chen and Ho[17] 

for partial differential equations and Ayaz[28] applied it to 

the differential equation method. This approach for solving 

different types of equations has been used by several 

researchers in recent years. 

IV. TWO DIMENSIONAL DIFFERENTIAL TRANSFORM METHOD 

Consider a function of two variables w(x, t) and suppose that 

it can be represented as product of two single-variable 

functions, i.e., w(x, t) = f(x)g(t): Based on the properties of 

differential transform , function w(x,t) can be represented as 

𝑤(𝑥, 𝑡) = ∑ 𝐹(𝑖)𝑥𝑖∞
𝑖=0 ∑ 𝐺(𝑗)𝑡𝑗∞

𝑗=0 =

∑ ∑ 𝑊(𝑖, 𝑗)𝑥𝑖𝑡𝑗∞
𝑗=0

∞
𝑖=0  ,      (22) 

Where 𝑊(𝑖, 𝑗) = F(i)G(j) is called the spectrum of w(x,t). 

If function w(x, t) is analytic and differentiated continuously 

with respect to time t and space x in the domain of interest, 

then let 

𝑊(𝑚 , 𝑛) =
1

𝑚!𝑛!
[
𝜕𝑚+𝑛

𝜕𝑥𝑚𝜕𝑡𝑛
𝑤(𝑥, 𝑡)]

𝑥=0
𝑡=0

   (23) 

where the t-dimensional spectrum function 𝑊(𝑚, 𝑛) is the 

transformed function which is called T-function in brief. 

The differential inverse transform of 𝑊(𝑚, 𝑛) is defined as 

follows: 

𝑤(𝑥, 𝑡) = ∑ ∑ 𝑊(𝑚, 𝑛)𝑥𝑚𝑡𝑛∞
𝑛=0

∞
𝑚=0    (24) 

Combining (23) and (24) gives the solution as 

𝑤(𝑥, 𝑡) = ∑ ∑
1

𝑚!𝑛!
[
𝜕𝑚+𝑛

𝜕𝑥𝑚𝜕𝑡𝑛
𝑤(𝑥, 𝑡)]

𝑥=0
𝑡=0

𝑥𝑚𝑡𝑛∞
𝑛=0

∞
𝑚=0   (25) 

 

Function Form                                              Transformed Form 

𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) ± 𝑣(𝑥, 𝑡) 𝑊(𝑚, 𝑛) = 𝑈(𝑚, 𝑛) ± 𝑉(𝑚, 𝑛) 

𝑤(𝑥, 𝑡) = 𝑐𝑢(𝑥, 𝑡) 𝑊(𝑚, 𝑛) = 𝑐𝑈(𝑚, 𝑛) 

𝑤(𝑥, 𝑡) =
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) 

𝑊(𝑚, 𝑛) = (𝑚 + 1)𝑈(𝑚 + 1, 𝑛) 

𝑤(𝑥, 𝑡) =
𝜕

𝜕𝑡
𝑢(𝑥, 𝑡) 

𝑊(𝑚, 𝑛) = (𝑛 + 1)𝑈(𝑚, 𝑛 + 1) 

𝑤(𝑥, 𝑡) =
𝜕𝑟+𝑠

𝜕𝑥𝑟𝜕𝑡𝑠
𝑢(𝑥, 𝑡) 𝑊(𝑚,𝑛) =

(𝑚 + 𝑟)! (𝑛 + 𝑠)!

𝑚! 𝑛!
𝑈(𝑚 + 𝑟, 𝑛 + 𝑠) 

𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡) 
𝑊(𝑚, 𝑛) = ∑∑𝑈(𝑟, 𝑛 − 𝑠)𝑉(𝑚 − 𝑟, 𝑠)

𝑛

𝑠=0

𝑚

𝑟=0

 

𝑤(𝑥, 𝑡) = 𝑥𝛼𝑡𝛽 𝑊(𝑚, 𝑛) = 𝛿(𝑚 − 𝛼, 𝑛 − 𝛽) = {
1    𝑚 = 𝛼, 𝑛 = 𝛽
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Table 1 

 

V. INSTABILITY PHENOMENON IN 

HOMOGENEOUS POROUS MEDIA WITH 

INCLINATION 

To solve non-linear partial differential equation (19) for 

phenomenon of instability together with the condition (20)-

(21). Choosing dimensionless variable 

𝑋 =
𝑥

𝐿
and𝑇 =

𝐾

∅𝐿2𝜇𝑖𝑤
𝑡 

The equation (19) together with condition (20-21) will be 

converted into dimensionless form as 

𝜕𝑆𝑖𝑤

𝜕𝑇
= 𝜀 [𝑆𝑖𝑤

𝜕2𝑆𝑖𝑤

𝜕𝑋2
+ (

𝜕𝑆𝑖𝑤

𝜕𝑋
)
2

] + 𝐴
𝜕𝑆𝑖𝑤

𝜕𝑋
  

   (26) 

Where 𝜀 =
𝛽

2
 and 𝐴 = 𝜌𝑖𝑤𝑔𝑠𝑖𝑛𝜃𝐿 units which is constant. 

𝑆𝑖𝑤(0, 𝑇) = 𝑆𝑤0at X=0 for T > 0   

   (27) 

𝑆𝑖𝑤(𝑋, 0) = 𝑆𝑤0𝑒
𝑋at T = 0 for X> 0   

    (28) 

To solve the equation (26) together with condition (27) and 

(28) we apply DTM method. 
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Equation (26) 
𝜕𝑆𝑖𝑤

𝜕𝑇
= 𝜀𝑆𝑖𝑤

𝜕2𝑆𝑖𝑤

𝜕𝑋2
+ 𝜀 (

𝜕𝑆𝑖𝑤

𝜕𝑋
)
2

+ 𝐴
𝜕𝑆𝑖𝑤

𝜕𝑋
with 

Initial condition 𝑆𝑖𝑤(X, 0) = 𝑆𝑤0𝑒
𝑋 is transformed as 

follows: 

(n + 1)S(m, n + 1)

= 𝜀∑ ∑ (r + 1)(m − r + 1)S(r
n

t=0

m

r=0

+ 1, n − t)S(m − r + 1, t)

+ 𝜀∑ ∑ (m− r + 1)(m − r
n

t=0

m

r=0

+ 2)S(r, n − t)S(m − r + 2, t) + 𝐴(𝑚

+ 1)𝑆(𝑚 + 1, 𝑛) 

(29) 

Taking the values as follows: 

𝑆𝑤0 = 0.2 ,𝜀 = 1 , 𝐴 = 𝜌𝑖𝑤𝑔𝐿𝑠𝑖𝑛𝜃 = 0.01 × −9.8 × 2 ×

sin 15 = −0.05176 

By definition of DTM 

𝑆(𝑚 , 𝑛) =
1

𝑚!𝑛!
[
𝜕𝑚+𝑛

𝜕𝑋𝑚𝜕𝑇𝑛
𝑆𝑖𝑤(𝑋, 𝑇)]𝑋=0

𝑡=0

  

   (30) 

To Apply initial condition in equation (30) putting n=T=0 

we get, 

𝑆(𝑚 , 0) =
1

𝑚!0!
[
𝜕𝑚

𝜕𝑋𝑚
𝑆𝑖𝑤(𝑋, 0)]

𝑋=0
   

   (31) 

Applying initial condition in equation (31) and putting 

different values of m ,i.e m=0,1,2,3,4,5,… we get 

𝑆(0 , 0) =
1

0!
[
𝜕0

𝜕𝑋0
𝑆𝑖𝑤(𝑋, 0)]

𝑋=0

 

𝑆(0 , 0) =
1

1
[0.2eX]𝑋=0 

So we get S(0,0) =0.2 

𝑆(1 , 0) =
1

1!
[
𝜕1

𝜕𝑋1
𝑆𝑖𝑤(𝑋, 0)]

𝑋=0

 

𝑆(1 , 0) =
1

1
[
𝜕1

𝜕𝑋1
0.2eX]

𝑋=0

 

𝑆(1 , 0) = [0.2eX]𝑋=0 

So we get S(1,0) = 0.2 

𝑆(2 , 0) =
1

2!
[
𝜕2

𝜕𝑋2
𝑆𝑖𝑤(𝑋, 0)]

𝑋=0

 

𝑆(2 , 0) =
1

2
[
𝜕2

𝜕𝑋2
0.2eX]

𝑋=0

 

𝑆(2 , 0) =
1

2
[0.2eX]𝑋=0 

So we get S(2,0) = 
0.2

2
 

In similar manner, we will get S(3,0) = 
0.2

6
 

S(4,0) = 
0.2

24
 

S(5,0) = 
0.2

120
 

Therefore, the values that we found are 

S(0,0) = 0.2 , S(1,0) = 0.2 , S(2,0) = 
0.2

2
 , S(4,0) = 

0.2

24
 , S(5,0) 

= 
0.2

120
 

Putting different values of m and n in equation (29) we got 

different S(X,T) which are as follows: 

S(0,0) = 0.2 S(1,0) = 0.2 S(2,0) = 
0.2

2
 S(3,0) = 

0.2

6
 

S(0,1) = 0.0696 S(1,1) = 0.1392 S(2,1) = 0.1392 S(3,1) = 0.0928 

S(0,2) = 0.00643 S(1,2) = 0.01929 S(2,2) =0.0145 S(3,2) = 0.0289 

S(0,3) = 0.000567 S(1,3) = 0.002268 S(2,3) = 0.004536 

 

S(3,3) = 0.0060 

 

 

And so on… 

Now by equation (24) we get, 

𝑆𝑖𝑤(𝑋, 𝑇) = ∑∑𝑆(𝑚, 𝑛)𝑋𝑚𝑇𝑛
∞

𝑛=0

∞

𝑚=0

 

so, 𝑆𝑖𝑤(𝑋, 𝑇) = 𝑆(0,0)𝑋
0𝑇0 + 𝑆(1,0)𝑋1𝑇0 +

𝑆(2,0)𝑋2𝑇0 + 𝑆(3,0)𝑋3𝑇0 + 𝑆(0,1)𝑋0𝑇1 +

𝑆(1,1)𝑋1𝑇1 + 𝑆(2,1)𝑋2𝑇1 + 𝑆(3,1)𝑋3𝑇1 +

𝑆(0,2)𝑋0𝑇2 + 𝑆(1,2)𝑋1𝑇2 + 𝑆(2,2)𝑋2𝑇2 +

𝑆(3,2)𝑋3𝑇2 + 𝑆(0,3)𝑋0𝑇3 + 𝑆(1,3)𝑋1𝑇3 +

𝑆(2,3)𝑋2𝑇3 + 𝑆(3,3)𝑋3𝑇3 +⋯ 

Putting the value from the above table, we get, 

𝑆𝑖𝑤(𝑋, 𝑇) = 0.2 + 0.2𝑋 +
0.2𝑋2

2!
+

0.2𝑋3

3!
+ 0.0696𝑇 +

0.1392𝑋𝑇 + 0.1392𝑋2𝑇 + 0.0928𝑋3𝑇 + 0.00643𝑇2 +

0.01929𝑋𝑇2 + 0.0145𝑋2𝑇2 + 0.0289𝑋3𝑇2 +

0.000567𝑇3 + 0.002268𝑋𝑇3 + 0.004536𝑋2𝑇3 +

0.0060𝑋3𝑇3 +⋯    (32) 

The above equation shows the saturation of injected water. 

VI. NUMERICAL AND GRAPHICAL PRESENTATION WITH INCLINATION 

Numerical and Graphical presentations of Equation (32) has been obtained using MATLAB coding. Figure 2 shows the graph 

of saturation of injected water 𝑆𝑖𝑤(𝑋, 𝑇) vs. X for fixed time T=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 , The following table 

represents the numerical values for height for different distance x for fixed time t=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 . 

 

 Saturation of the injected water in inclined porous matrix 

X/T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.1 0.2288 0.2367 0.2448 0.2537 0.2616 0.2702 0.2789 0.2880 0.2972 0.3066 

0.2 0.2528 0.2617 0.2707 0.2806 0.2893 0.2989 0.3088 0.3189 0.3293 0.3399 
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0.3 0.2794 0.2892 0.2992 0.3103 0.3201 0.3309 0.3419 0.3533 0.3650 0.3770 

0.4 0.3088 0.3197 0.3309 0.3431 0.3541 0.3662 0.3787 0.3916 0.4048 0.4184 

0.5 0.3414 0.3534 0.3658 0.3795 0.3918 0.4054 0.4195 0.4340 0.4490 0.4645 

0.6 0.3773 0.3907 0.4045 0.4198 0.4336 0.4489 0.4648 0.4813 0.4984 0.5160 

0.7 0.4170 0.4318 0.4473 0.4644 0.4799 0.4972 0.5152 0.5340 0.5534 0.5736 

0.8 0.4609 0.4774 0.4946 0.5138 0.5313 0.5509 0.5713 0.5926 0.6149 0.6381 

0.9 0.5094 0.5278 0.5470 0.5685 0.5883 0.6105 0.6337 0.6581 0.6836 0.7104 

1.0 0.5630 0.5835 0.6050 0.6292 0.6516 0.6767 0.7033 0.7312 0.7607 0.7917 

 Table 2. Numerical values of saturation of injected water in Homogeneous Porous Matrix with small inclination 𝜃 = 15° 

 
Fig. 4

 

VII DEDUCTION OF INSTABILITY PHENOMENON 

in homogeneous porous media without inclination: 

To solve non-linear partial differential equation (19) for 

phenomenon of instability together with the condition (20)-

(21). Choosing dimensionless variable 

𝑋 =
𝑥

𝐿
 and 𝑇 =

𝐾

∅𝐿2𝜇𝑖𝑤
𝑡 

The equation (19) together with condition (20-21) will be 

converted into dimensionless form as  

𝜕𝑆𝑖𝑤

𝜕𝑇
= 𝜀 [𝑆𝑖𝑤

𝜕2𝑆𝑖𝑤

𝜕𝑋2
+ (

𝜕𝑆𝑖𝑤

𝜕𝑋
)
2

] + 𝐴
𝜕𝑆𝑖𝑤

𝜕𝑋
   

   (33) 

Where 𝜀 =
𝛽

2
 and 𝐴 = 𝜌𝑖𝑤𝑔𝑠𝑖𝑛𝜃𝐿 units which is constant. 

𝑆𝑖𝑤(0, 𝑇) = 𝑆𝑤0 at X=0 for T > 0   

   (34) 

𝑆𝑖𝑤(𝑋, 0) = 𝑆𝑤0𝑒
𝑋 at T = 0 for X > 0   

   (35) 

To solve the equation (33) together with condition (34) and  

(35) we apply DTM method. 

Equation (33) 
𝜕𝑆𝑖𝑤

𝜕𝑇
= 𝜀𝑆𝑖𝑤

𝜕2𝑆𝑖𝑤

𝜕𝑋2
+ 𝜀 (

𝜕𝑆𝑖𝑤

𝜕𝑋
)
2

+ 𝐴
𝜕𝑆𝑖𝑤

𝜕𝑋
 with 

Initial condition 𝑆𝑖𝑤(X, 0) = 𝑆𝑤0𝑒
𝑋 is transformed as 

follows: 

(n + 1)S(m, n + 1)

= 𝜀∑ ∑ (r + 1)(m − r + 1)S(r
n

t=0

m

r=0

+ 1, n − t)S(m − r + 1, t)

+ 𝜀∑ ∑ (m− r + 1)(m − r
n

t=0

m

r=0

+ 2)S(r, n − t)S(m − r + 2, t) + 𝐴(𝑚

+ 1)𝑆(𝑚 + 1, 𝑛) 

     

     (36) 

Taking the values as follows: 

𝑆𝑤0 = 0.2 ,𝜀 = 1 , 𝐴 = 𝜌𝑖𝑤𝑔𝐿𝑠𝑖𝑛𝜃 = 0.01 × −9.8 × 2 ×

sin 0 = 0 

By definition of DTM 

𝑆(𝑚 , 𝑛) =
1

𝑚!𝑛!
[
𝜕𝑚+𝑛

𝜕𝑋𝑚𝜕𝑇𝑛
𝑆𝑖𝑤(𝑋, 𝑇)]𝑋=0

𝑡=0

   

   (37) 

To Apply initial condition in equation (30) putting n=T=0 

we get, 

𝑆(𝑚 , 0) =
1

𝑚!0!
[
𝜕𝑚

𝜕𝑋𝑚
𝑆𝑖𝑤(𝑋, 0)]

𝑋=0
   (38) 

Applying initial condition in equation (36) and putting 

different values of m , i.e m=0,1,2,3,4,5,… we get 

𝑆(0 , 0) =
1

0!
[
𝜕0

𝜕𝑋0
𝑆𝑖𝑤(𝑋, 0)]

𝑋=0
  

𝑆(0 , 0) =
1

1
[0.2eX]𝑋=0  
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So we get S(0,0) =0.2 

𝑆(1 , 0) =
1

1!
[
𝜕1

𝜕𝑋1
𝑆𝑖𝑤(𝑋, 0)]

𝑋=0
  

𝑆(1 , 0) =
1

1
[
𝜕1

𝜕𝑋1
0.2eX]

𝑋=0
  

𝑆(1 , 0) = [0.2eX]𝑋=0  

So we get S(1,0) = 0.2 

𝑆(2 , 0) =
1

2!
[
𝜕2

𝜕𝑋2
𝑆𝑖𝑤(𝑋, 0)]

𝑋=0
  

𝑆(2 , 0) =
1

2
[
𝜕2

𝜕𝑋2
0.2eX]

𝑋=0
  

𝑆(2 , 0) =
1

2
[0.2eX]𝑋=0  

So we get S(2,0) = 
0.2

2
  

In similar manner, we will get S(3,0) = 
0.2

6
 

S(4,0) = 
0.2

24
 

S(5,0) = 
0.2

120
 

Therefore, the values that we found are  

S(0,0) = 0.2 , S(1,0) = 0.2 , S(2,0) = 
0.2

2
  , S(4,0) = 

0.2

24
 , S(5,0) 

= 
0.2

120
 

Putting different values of m and n in equation (29) we got different S(X,T) which are as follows: 

S(0,0) = 0.2 S(1,0) = 0.2 S(2,0) = 
0.2

2
 S(3,0) = 

0.2

6
 

S(0,1) = 0.08 S(1,1) = 0.16 S(2,1) = 0.16 S(3,1) = 
0.32

3
 

S(0,2) = 0.0072 S(1,2) = 0.0216 S(2,2) = 0.0162 S(3,2) = 0.0324 

S(0,3) = 0.0006 S(1,3) = 0.0024 S(2,3) = 0.0048 

 

S(3,3) = 0.0064 

 

 And so on… 

Now by equation (24) we get, 

𝑆𝑖𝑤(𝑋, 𝑇) = ∑ ∑ 𝑆(𝑚, 𝑛)𝑋𝑚𝑇𝑛∞
𝑛=0

∞
𝑚=0   

so, 𝑆𝑖𝑤(𝑋, 𝑇) = 𝑆(0,0)𝑋
0𝑇0 + 𝑆(1,0)𝑋1𝑇0 +

𝑆(2,0)𝑋2𝑇0 + 𝑆(3,0)𝑋3𝑇0 + 𝑆(0,1)𝑋0𝑇1 +

𝑆(1,1)𝑋1𝑇1 + 𝑆(2,1)𝑋2𝑇1 + 𝑆(3,1)𝑋3𝑇1 +

𝑆(0,2)𝑋0𝑇2 + 𝑆(1,2)𝑋1𝑇2 + 𝑆(2,2)𝑋2𝑇2 +

𝑆(3,2)𝑋3𝑇2 + 𝑆(0,3)𝑋0𝑇3 + 𝑆(1,3)𝑋1𝑇3 +

𝑆(2,3)𝑋2𝑇3 + 𝑆(3,3)𝑋3𝑇3 +⋯ 

Putting the value from the above table, we get, 

𝑆𝑖𝑤(𝑋, 𝑇) = 0.2 + 0.2𝑋 +
0.2𝑋2

2!
+

0.2𝑋3

3!
+ 0.08𝑇 +

0.16𝑋𝑇 + 0.16𝑋2𝑇 + 
0.32

3
𝑋3𝑇 + 0.0072𝑇2 +

0.0216𝑋𝑇2 + 0.0162𝑋2𝑇2 + 0.0324𝑋3𝑇2 +

0.0006𝑇3 + 0.0024𝑋𝑇3 + 0.0048𝑋2𝑇3 +

0.0064𝑋3𝑇3 +⋯  (39) 

The above equation shows the saturation of injected water. 

VIII NUMERICAL AND GRAPHICAL PRESENTATION WITHOUT INCLINATION 

Numerical and Graphical presentations of Equation (39) has been obtained using MATLAB coding. Figure 2 shows the graph 

of saturation of injected water 𝑆𝑖𝑤(𝑋, 𝑇) vs. X for fixed time T=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 , The following table 

represents the numerical values for height for different distance x for fixed time t= 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 .               

 

 𝑆𝑖𝑤 (X,T) 

X/T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 0.2299 0.2391 0.2484 0.2579 0.2675 0.2774 0.2875 0.2978 0.3083 0.3191 

0.2 0.2542 0.2642 0.2746 0.2852 0.2960 0.3070 0.3183 0.3299 0.3417 0.3538 

0.3 0.2798 0.2921 0.3036 0.3154 0.3274 0.3398 0.3525 0.3655 0.3789 0.3926 

0.4 0.3104 0.3229 0.3357 0.3488 0.3623 0.3762 0.3904 0.4051 0.4202 0.4357 

0.5 0.3431 0.3569 0.3711 0.3858 0.4009 0.4165 0.4326 0.4492 0.4663 0.4839 

0.6 0.3792 0.3946 0.4104 0.4268 0.4437 0.4613 0.4794 0.4982 0.5176 0.5377 

0.7 0.4191 0.4362 0.4538 0.4722 0.4912 0.5110 0.5315 0.5528 0.5750 0.5979 

0.8 0.4633 0.4822 0.5019 0.5225 0.5438 0.5662 0.5895 0.6138 0.6397 0.6654 

0.9 0.5120 0.5331 0.5551 0.5782 0.6023 0.6276 0.6541 0.6818 0.7108 0.7412 

1.0 0.5639 0.5894 0.6140 0.6399 0.6672 0.6959 0.7261 0.7578 0.7913 0.8237 

Table 3. Numerical values of saturation of injected water in Homogeneous Porous Matrix without inclination 𝜃 = 15° 
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    Fig. 5 

 
  Saturation of the injected water in inclined porous matrix 

 T=0.1 T=0.2 T=0.3 T=0.4 T=0.5 

X/T With 

incline 

Without 

incline 

With 

incline 

Without 

incline 

With 

incline 

Without 

incline 

With 

incline 

Without 

incline 

With 

incline 

Without 

incline 

0.1 0.2288 0.2299 0.2367 0.2391 0.2448 0.2484 0.2537 0.2579 0.2616 0.2675 

0.2 0.2528 0.2542 0.2617 0.2642 0.2707 0.2746 0.2806 0.2852 0.2893 0.2960 

0.3 0.2794 
0.2798 

0.2892 
0.2921 

0.2992 
0.3036 

0.3103 
0.3154 

0.3201 
0.3274 

0.4 0.3088 
0.3104 

0.3197 
0.3229 

0.3309 
0.3357 

0.3431 
0.3488 

0.3541 
0.3623 

0.5 0.3414 
0.3431 

0.3534 
0.3569 

0.3658 
0.3711 

0.3795 
0.3858 

0.3918 
0.4009 

0.6 0.3773 
0.3792 

0.3907 
0.3946 

0.4045 
0.4104 

0.4198 
0.4268 

0.4336 
0.4437 

0.7 0.4170 
0.4191 

0.4318 
0.4362 

0.4473 
0.4538 

0.4644 
0.4722 

0.4799 
0.4912 

0.8 0.4609 
0.4633 

0.4774 
0.4822 

0.4946 
0.5019 

0.5138 
0.5225 

0.5313 
0.5438 

0.9 0.5094 
0.5120 

0.5278 
0.5331 

0.5470 
0.5551 

0.5685 
0.5782 

0.5883 
0.6023 

1.0 0.5630 
0.5639 

0.5835 
0.5894 

0.6050 
0.6140 

0.6292 
0.6399 

0.6516 
0.6672 

 

 
  Saturation of the injected water in inclined porous matrix 

 T=0.6 T=0.7 T=0.8 T=0.9 T=1.0 

X/T With 

incline 

Without 

incline 

With 

incline 

Without 

incline 

With 

incline 

Without 

incline 

With 

incline 

Without 

incline 

With 

incline 

Without 

incline 

0.1 0.2702 0.2774 0.2789 0.2875 0.2880 0.2978 0.2972 0.3083 0.3066 0.3191 

0.2 0.2989 0.3070 0.3088 0.3183 0.3189 0.3299 0.3293 0.3417 0.3399 0.3538 

0.3 0.3309 
0.3398 

0.3419 
0.3525 

0.3533 
0.3655 

0.3650 
0.3789 

0.3770 
0.3926 

0.4 0.3662 
0.3762 

0.3787 
0.3904 

0.3916 
0.4051 

0.4048 
0.4202 

0.4184 
0.4357 

0.5 0.4054 
0.4165 

0.4195 
0.4326 

0.4340 
0.4492 

0.4490 
0.4663 

0.4645 
0.4839 

0.6 0.4489 
0.4613 

0.4648 
0.4794 

0.4813 
0.4982 

0.4984 
0.5176 

0.5160 
0.5377 

0.7 0.4972 
0.5110 

0.5152 
0.5315 

0.5340 
0.5528 

0.5534 
0.5750 

0.5736 
0.5979 
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0.8 0.5509 
0.5662 

0.5713 
0.5895 

0.5926 
0.6138 

0.6149 
0.6397 

0.6381 
0.6654 

0.9 0.6105 
0.6276 

0.6337 
0.6541 

0.6581 
0.6818 

0.6836 
0.7108 

0.7104 
0.7412 

1.0 0.6767 
0.6959 

0.7033 
0.7261 

0.7312 
0.7578 

0.7607 
0.7913 

0.7917 
0.8237 

 Table 4. Comparative Numerical Value of saturation of injected water with and without inclination. 

IX. CONCLUSION 

Equations (31) and (39) shows the saturation of injected 

water. Equation (31) represents saturation of injected water 

with inclination of small degree and Equation (39) 

represents saturation of injected water without inclination. 

Table 2 and Fig. 4 gives numerical and graphical solutions 

of equation (31). Table 3 and Fig. 5 gives numerical and 

graphical solutions of equation (39).   

We can conclude that Saturation of injected water increases 

exponentially as distance X increases. Other thing that we 

observe is, if we look at table 4, we can see that due to 

inclination the saturation of injected water is slightly less 

comparative to without inclination. Saturation shows how 

much instability is in there and how can we adjust the angle 

to get the suitable result. Many researchers have applied 

many methods for this instability phenomenon. Compared 

to those methods Differential transform method gets result 

faster. 
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