
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-01, APR 2021

118 | IJREAMV07I0173034 DOI : 10.35291/2454-9150.2021.0149 © 2021, IJREAM All Rights Reserved.

Automatic Timetable Generator using Genetic

Algorithm
Suman S Mhalsank1, Jenaan Kasmani2, Sanket Wani3 ,Sunil Wankhade4

1,2,3,4Department of Information Technology, MCT’s Rajiv Gandhi Institute of Technology,

Mumbai, Maharashtra, India

1 sumanmhalsank2000@gmail.com, 2jenaan.official@gmail.com , 3wanisanket08@gmail.com,

4sunil.wankhade@mctrgit.ac.in

Abstract - Timetable creation is a very tedious and time-consuming task. Years back when computers were not used to

solve complex problems due to computational power, Scheduling classes was often done by humans which proved

to be efficient but not perfect. Today with the explosion of Artificial intelligence and an exponential increase in

computing power, using computers to solve new set of problems that previously could only be solved by

humans became easy. Scheduling is one of the problems that can now be solved by computers with solutions

acceptable or even better. To resolve the complexity and to reduce the efforts of generating timetables

manually, some technologies can be implemented. However, scheduling is known to be a non-deterministic

polynomial-time (NP) complete problem where, in order to find the best solution, every possible combination

should be executed. Genetic Algorithm (search heuristic that is inspired by Charles Darwin’s theory of natural evolution)

is fit for scheduling problems as it creates a solution over time based on rules and criteria. This algorithm reflects

the process of natural selection where the fittest individuals are selected for reproduction to produce offspring of the next

generation using which we can optimize the Scheduling problem.

Keywords — Adaptive-Elitist Genetic Algorithm, Evolutionary Algorithm, Genetic Algorithm, Machine Learning, Python,

Scheduling.

I. INTRODUCTION

Timetable scheduling is the way toward making schedules

that fit the imperative of the situation. It is utilized in an

extent of industry from booking transportations up to

making complex timetables for profoundly enhanced

robotized industrial facilities. Lion's share of limited scope

scheduling are done physically while bigger activities

require PC helped planning.

Artificial intelligence is one of the rising computing

solutions due to an increase in computing power. It

tends to be applied to various kinds of issues which can help

optimize existing solutions or create never been attempted

solutions because of multiple limitations. Artificial

Intelligence helps to solve non-deterministic polynomial-

time issues that organizations and businesses will

consistently have. NP is the set of decision problems for

which the problem instances, where the answer is "yes",

have proofs verifiable in polynomial time by a deterministic

Turing Machine.

Genetic algorithm is a metaheuristic that mimics the

process of natural selection. It can be performed in

multiple different ways with different types but it will

all follow the same concept. This project aims to create

an artificial intelligence through the use of evolutionary

algorithm, specifically genetic algorithm combined with

adaptive and elitist traits that can generate a university

schedule timetable with the goal of generating a valid

and as optimal as possible solution with certain

constraints

II. LITERATURE SURVEY

NP-Complete Complexity Class

The knapsack problem belongs to the complexity class

of non-deterministic polynomial-time (NP) hard. These

are problems where there are no efficient solution

algorithms yet. The computational time only grows as

the size grows according to Stephen A. Cook [6].

According to standard defining organization’s

computer scientist, Paul E. Black [7], NP-Complete is a

complexity class where solutions can be verified

quickly and if there is a quick algorithm to solve this

class of problem, it can be used to solve other NP

problems too. In an article by J.D. Ullman [8], he said

mailto:sumanmhalsank2000@gmail.com
mailto:jenaan.official@gmail.com
mailto:wanisanket08@gmail.com
mailto:4sunil.wankhade@mctrgit.ac.in

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-01, APR 2021

119 | IJREAMV07I0173034 DOI : 10.35291/2454-9150.2021.0149 © 2021, IJREAM All Rights Reserved.

that finding the most optimal schedule or solving

scheduling itself belongs to the NP-Complete problem.

Ways on Solving University Class Scheduling

There are multiple approaches towards solving

scheduling problems according to Ellis Cohen and Jarurat

Ousingsawat [9]. Some are only feasible up to a certain

level such as the constraints they can handle, objectives to

meet and computation time. The most common

approaches are construction algorithms which greedy

algorithm is included and search algorithms where tabu

search, simulated annealing, particle swarm optimization,

genetic algorithm and many more from J Zhou, P E D

Love, X Wang, K L Teo and Z Irani’s review on

scheduling [10].

Genetic Algorithms: An Overview

According to Melanie Mitchell’s lesson [11], genetic

algorithm is a program that mimics the process of

biological evolution in order to solve problems and to

model evolutionary systems. The vast search space has

inspired the creation of genetic algorithm. Biological

entities over the years have adapted to their environment

to be more efficient and effective. It has then become part

of the early waves of artificial intelligence wherein rules

and behavior are manually encoded. The algorithm is still

in use in the modern period mostly for optimization

problems.

III. PROPOSED SYSTEM

This paper aims to create an artificial intelligence that can

create timetable schedules. This only covers processing

input data and generating human sensible results. The

process to be used in creating schedules is adaptive-elitist

genetic algorithm. A type of evolutionary algorithm that

involves keeping the best set of solutions over next

generations to preserve high-level solutions but at the

same time, variables such as the population count,

mutation rate and selection pressure, change in order to

avoid premature convergence that leads to poor output.

Some Hard Constraint are Instructors teach one class at a

time, Instructors can only take N amount of subjects to

have less load, Sections attend only one class at a time.

Some Medium Constraints are Sections’ subjects are

placed on the schedule, Sections should have at least 30

minutes vacant time for a lunch break. An example of

Soft Constraint is Students should have only 30 minutes

break for every two hours of session per day. More

constraints can be added according to the user’s choice

CONCEPTUAL FRAMEWORK

The program can easily be described as a scheduling

computing software wherein you input basic data sets and

it will output a structured result. In Fig 1: Simplified

Model of the Program as we can see, The application

takes five major input; Instructors, rooms and subjects

component supports the addition of entry using the

application and importation.

 Fig 1: Simplified Model of the Program

The sections component allows the creation of sections

with a special feature of sharing subject with other

sections and the scenario manager component handles

running configuration. There would be two types of

output; using the result viewer of the application which

can view the top five solutions of the last generated

scenario and exporting the selected solution which will

produce three comma-separated values (CSV) files. The

application will be using the Python language.

FLOW OF THE WORK

The repetitive process of GA is best conceptualized using

a flowchart which is Fig 2: Genetic Algorithm Flowchart

.

 Fig 2: Genetic Algorithm Flowchart

Generation of the population is done by random

selection with a mix of greedy approach (Random

filling). During the generation of population, all hard

constraints are to be met. Evaluation which is the

process of calculating the Fitness of a Chromosome

triggers the ending process given that a certain fitness

is met. Calculating the fitness is done by assessing each

chromosome to the selected constraints and the

evaluation matrix (set of constraint weights based on

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-01, APR 2021

120 | IJREAMV07I0173034 DOI : 10.35291/2454-9150.2021.0149 © 2021, IJREAM All Rights Reserved.

prioritization of constraints using a distribution of a

hundred percent (100%) provided by the user).

We included seven factors to be distributed in the

100% of the Evaluation Matrix they are the subject

placement, lunch break, section rest, section idle time,

instructor rest, instructor load balance and meeting

pattern.

The total fitness can be calculated using the formula

below where:

y = chromosome

f = functions that follow the evaluation matrix

fW = Evaluation weight

Fitness(y) = ∑ (f(y) * fW)

Fitness(y) = (a(y) * aW) + (b(y) * bW) + (c(y) * cW) + (d(y) *

dW) + (e(y) * eW) + (f(y) * fW) + (g(y) * gW)

The Next step is Adaption (changing running variables

to cater for better results) of artificial intelligence to its

current performance to avoid focusing on one set of the

problem which may cause pre-mature convergence.

Adaption performs two important tasks which are

population alignment and mutation rate adjustment.

POPULATION ALIGNMENT

Population (A set of proposed solutions). We can change

the running variables before the generation of the

solution. The GA settings “Minimum Population” and

“Maximum Population” define the limit of population

change. Calculation of population alignment will show

how much population change is to be done using a

series of formulas.

MUTATION RATE ADJUSTMENT

The mutation rate is the chance for each chromosome

to get random change. When a generation completes

without triggering the adjustment, the mutation rate will

decrement by 0.5% else it will be increased by 0.5%.

Calculation of mutation rate adjustment trigger follows

a formula

After evaluation, the fittest chromosomes are picked to

participate in reproduction. Considering the pros and

cons, out of all the ways of selecting chromosome,

Elitism is used here which is the most appropriate type

of selection will help avoid early convergence and

promotes diverse solutions. As an elitist variant of the

genetic algorithm, the top n% of the population is

guaranteed to proceed in the next generation with the

same genes depending on the settings. The rest of the

selection process is to be done by implementing

multiple tournaments on the population. The

participants in the tournament are selected randomly

with a quantity of 4% of the existing population but

capped at twenty-five (25). The tournament will run

until enough pairs are picked. The mating pool consists

of selected chromosomes that will undergo crossover

(Production of offspring based on genes). Like

selection, to have a better outcome, Here out of all the

ways Davis’ order crossover works better for

permutation-based problems. Mutation (altering the

gene/s of a chromosome) to maintain the variety of

solutions. Mutation is the process of. Usually, the

mutation rate is low and fixed. However, adaptive

genetic algorithm means that the mutation rate may

vary depending on the performance of the population.

Once the genetic algorithm terminates either by force or

meeting the end criteria, the top 5 fittest chromosomes

will be displayed for user review. The user may pick

any from the proposed solution and get its output in a

CSV file.

GENETIC ALGORITHM SETTINGS

Due to the limitation of computational power, the

configuration of genetic algorithm within the

application is not one for all types where it can cater to

every scenario.

 Fig 3: Genetic Algorithm Random Settings

To counter the limitation and still be able to support

scalability of usage, the algorithm’s running

configuration can be altered according to operators’

device capability or preference. The setting properties

include in the Fig 3: Genetic Algorithm Random

Settings includes random values of the settings that can

be changed according to the user’s choice to get the best

optimal result.

IV. DESIGN AND METHODOLOGY

The paper falls under optimization problem and

evaluation of performance in an extensive verification

is not a feasible solution. It is important to select an

appropriate design and methodology to get the viability

of the work. The selected method for collecting and

analyzing data (e.g. subjects, instructors and rooms) for

testing the system is quantitative. These datasets will be

profiled using pandas after being used in the system.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-01, APR 2021

121 | IJREAMV07I0173034 DOI : 10.35291/2454-9150.2021.0149 © 2021, IJREAM All Rights Reserved.

Iterative development as a method for creating the

software fits for continuously changing environment for

artificial intelligence development. This enables the

developer to learn every iteration and apply it to the

future instance. This methodology is fit for the project

as the system relies on tweaking and managing

constraints. Initial planning has been done by designing

system architecture, data schematic and models. Upon

entering an iteration, the feature to be done is decided

and planned. There are two types of iterations used;

adding a feature or a model and tweaking values. Each

iteration’s goal is then implemented and then manually

tested.

The selected evaluation methodology for the project is

a combination of Monte Carlo methods and surrogate

modeling. It is an experimental methodology as

evaluation for evolutionary computation based

scheduling systems are yet to be done. Implementation

of Monte Carlo method and surrogate modelling for

evaluation of artificial intelligence based scheduling

system, follow the following steps:

 (1) Generation of a set of solutions using Monte Carlo

method with genetic algorithm settings as variables that

can be tweaked.

(2) Creation of a surrogate model which only uses the

evaluation matrix as basis.

(3) Computation of each set of solutions generated by

the Monte Carlo method difference to surrogate model.

(4) Providing the mean of the result as basis for

performance of the artificial intelligence (Scenario

based).

Usage of the Monte Carlo method in the system is for the

generation of random genetic algorithm configuration.

The surrogate modeling usage for this project makes

use of an imaginary 1-dimensional metric basing on

the evaluation matrix. The model will serve as a basis

for evaluating the closeness of the solution to the ideal

one. There will be three models Balanced Distribution,

Subject Placement and Tight Constraints For each

model, there will be three scenarios. For each scenario,

there will be three randomly generated value of settings

It is important to note that there will only be one time

generation of random values for settings and the three

generated values will be used all throughout the

scenarios to prevent bias in result. For every setting,

there will be five generated result set. In total, there

will be 135 solution set for evaluation which will be

abstracted per level.

V. RESULTS

 Judging by the performance of results from Fig 4:

Timetable of a Week (1) and Fig 5: Timetable of a

Week (2), the system was able to generate solutions

that have at least 80% fitness (basing onset of highest

solutions per scenario). The problem lies in the

inability of artificial intelligence to perform minor

corrections on adjusting schedules Nevertheless, the

algorithm was able to cater to a majority of the entries

on the evaluation matrix and perform to its capability

despite limitations imposed by the algorithm’s

configuration. It is important to note that the generated

random values for settings were limited, therefore, the

system was not able to perform at its peak. The results

of the application are not guaranteed to be the best

possible solution for the scenario. The quality of the

result relies heavily on running preference. Due to its

stochastic nature, results may vary from poor to

excellent. The system does not guarantee that every

solution’s hard constraint will be met especially when

the presented scenario is logically impossible or

intensely tight.

 Fig 4: Timetable of a Week (1)

 Fig 5: Timetable of a Week (2)

In the Fig 4: Timetable of a Week (1) i.e Monday to

Wednesday and Fig 5: Timetable of a Week (2) i.e

Thursday to Friday, we see the week’s timetable is

formed based on the inputs given and the constraints to

be met. The Time Slots (Rows) and the week days

(Columns) are displayed, Professors are allotted classes

and timings, the subjects they teach are mentioned. The

Blocks displayed include the Subject name, Classroom

and the Professor name. The height of those blocks

indicate the starting hour and the ending hour, the

professor will teach. This is an example of one

Chromosome shown and the details of the

chromosomes that include it’s fitness along with the

seven factors we included in our Evaluation Matrix.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-01, APR 2021

122 | IJREAMV07I0173034 DOI : 10.35291/2454-9150.2021.0149 © 2021, IJREAM All Rights Reserved.

Below that the application also shows the Generation

Time required to generate the timetable, the CPU and

the memory usages. Four more chromosomes are

generated by the application, it’s the user’s choice to

select the chromosome they think is perfect. Due to the

stochastic nature of the algorithm, it will generate

different chromosomes everytime with varying

chromosome details.

VI. CONCLUSION

The outcomes have shown that this framework/system can

provide valid solutions that can be utilized. Nonetheless, it

does not give total automation. There are still situations that

would require the administrator to change a few entries to

make an ideal solution. The system was likewise intended to

be basic and clear. This takes out any confusion brought

about by dispersed user interface controls and makes use of

software fully utilized. The straightforwardness and

simplicity of the system and introduction of configurable

algorithm’s goal and performance reduced the requirement

for such a lot of constraints as solutions are made

dynamically. This enables users to effortlessly utilize and

explore different avenues regarding the application until

they discover the ideal fit for their scenario. A large number

of combinations for testing to find an accurate evaluation

for the application has proven to be far from possibility.

However, it very well may be reasoned that from the models

provided, the system had the option to create results that

despite being imperfect, remains valid and acceptable given

the number of constraints imposed on it. The solutions that

the system will provide will intensely rely on the running

configuration and evaluation matrix. One may track down

an ideal solution if the application was given sufficient time

and computing power. The complete evaluation for the

system will remain hard to solve as the freedom for the

configuration of the algorithm has provided a large number

of combinations. It can likewise be deduced that evaluation

using other methodologies will yield the same amount of

result.

Acknowledgment

We would like to acknowledge and thank the

following:

Our God Almighty, for making all of this happen.

Beloved Parents who always supported us in all their

capabilities and served as our inspiration for success in

life.

MCT’s Rajiv Gandhi Institute of Technology’s faculty who

supported us whenever we needed assistance, which made

the research project possible.

Our friends and peers who have shown their support and

help in times of distress.

REFERENCES

[1] “The Usage of Operations Management”, Universal Class.

Retrieved from

https://www.universalclass.com/articles/business/the-usage- of-

operations-management.htm

[2] R. Dan Reid and Nada R. Sanders, “Operations Management:

Chapter 15”, 2010. Retrieved from

www.csus.edu/indiv/b/blakeh/mgmt/documents/opm101chapter

15

[3] Paulyn Navarrete and Illiana Tan, “Persistent issues faced

during enlistment”, January 2015. Retrieved from

http://thelasallian.com/2015/01/29/in-review-persistent-issues-

faced-during-enlistment/

[4] Careen L. Malahay and Tweeny M. Malinao, “Elementary

school shortens classes to accommodate pupils”, June 2012.

Retrieved from http://newsinfo.inquirer.net/207699/elementary-

school-shortens- classes-to-accommodate-pupils

[5] Carsten Murawski and Peter Bossaerts, “How Humans Solve

Complex Problems: The Case of the Knapsack Problem”,

October 2016. Retrieved from

https://www.nature.com/articles/srep34851/

[6] Stephen A. Cook, “An Overview of Computational Complexity”,

June 1983. Retrieved from

https://dl.acm.org/citation.cfm?doid=358141.358144

[7] Paul E. Black, “NP-Complete”, December 2016. Retrieved from

https://xlinux.nist.gov/dads/HTML/npcomplete.html

[8] J.D. Ullman, “NP-Complete-Scheduling-Problems”, June 1975.

Retrieved from

https://www.sciencedirect.com/science/article/pii/S0022000075800

[9] Ellis Cohen and Jarurat Ousingsawat, “An Introduction to

Algorithms for Solving Schedule-Related Problems”, January 2015.

Retrieved from

http://www.project.net/introduction-algorithms-solving-schedule-

related-problems

[10] J J Zhou, P E D Love, X Wang, K L Teo and Z Irani, “A review

of methods and algorithms for optimizing construction

scheduling”, March 2013. Retrieved from

https://link.springer.com/article/10.1057/jors.2012.174

[11] Melanie Mitchell, “Genetic Algorithms: An Overview”, 1995.

Retrieved from

http://ohm.ecce.admu.edu.ph/wiki/pub/Main/ResearchProjects/

mit chell_GA_tutorial.pdf

http://www.universalclass.com/articles/business/the-usage-
http://www.universalclass.com/articles/business/the-usage-
http://www.csus.edu/indiv/b/blakeh/mgmt/documents/opm101chapter15
http://www.csus.edu/indiv/b/blakeh/mgmt/documents/opm101chapter15
http://thelasallian.com/2015/01/29/in-review-persistent-issues-
http://thelasallian.com/2015/01/29/in-review-persistent-issues-
http://newsinfo.inquirer.net/207699/elementary-school-shortens-
http://newsinfo.inquirer.net/207699/elementary-school-shortens-
http://www.nature.com/articles/srep34851/
http://www.nature.com/articles/srep34851/
https://www.sciencedirect.com/science/article/pii/S0022000075800
http://www.project.net/introduction-algorithms-solving-schedule-related-problems
http://www.project.net/introduction-algorithms-solving-schedule-related-problems
https://link.springer.com/article/10.1057/jors.2012.174
http://ohm.ecce.admu.edu.ph/wiki/pub/Main/ResearchProjects/mit%20chell_GA_tutorial.pdf
http://ohm.ecce.admu.edu.ph/wiki/pub/Main/ResearchProjects/mit%20chell_GA_tutorial.pdf

