On characterization Integral inequalities for \mathbf{C} totally real submanifolds in Sasakian space forms

Dr. Niranjan Kumar Mishra, (Asst. Professor, Dept of Mathematics - RKDF University Ranchi)

Abstract

We give two intrinsic integral inequalities for compact minimal C-totally real sub manifolds in a Sasakian space form.

Key words: C-totally real submanifold, Sasakian space forms, Riemannian manifold

I. §1. Introduction

Let $\mathrm{M}^{-2 \mathrm{~m}+1}$ be an odd dimensional Riemannian manifold with metric g . Let Φ be a (1, 1)-tensor field, η a 1 -form on $\mathrm{M}^{-2 \mathrm{~m}+1}$ and ζ a vector field, such that

$$
\left\{\begin{array}{c}
\varphi^{2} X=-X+\eta(X) \xi, \quad \phi \xi=0, \quad \eta(\phi X)=0, \quad \eta(\xi)=1 \\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad \eta(X)=g(X, \xi)
\end{array}\right.
$$

If, in addition, $\mathrm{d} \eta(\mathrm{X}, \mathrm{Y})=\mathrm{g}(\varphi \mathrm{X}, \mathrm{Y})$ for all vector fields X, Y on $\mathrm{M}^{-2 \mathrm{~m}+1}$, then $\mathrm{M}^{-2 \mathrm{~m}+1}$ is said to have a contact metric structure $(\varphi, \xi, \eta, \mathrm{g})$, and $\mathrm{M}^{-2 \mathrm{~m}+1}$ is called a contact metric manifold. If, moreover, the structure is normal, that is if

$$
[\phi X, \phi Y]+\phi^{2}[X, Y]-\phi[X, \phi Y]-\phi[\phi X, Y]=-2 d \eta(X, Y) \xi
$$

then the contact metric structure is a Sasakian structure (normal contact metric structure) and $\mathrm{M}^{-} 2 \mathrm{~m}+1$ is called a Sasakian manifold. For details and background, see the standard references [4] and [5].

A plane section σ in TPM $^{-2 m+1}$ of a Sasakian manifold $M^{-2 m+1}$ is called a φ-section if it is spanned by X and φX, where X is a unit tangent vector field orthogonal to ξ. The sectional curvature $\bar{K}(\sigma)$ with respect to a φ-section σ is called a φ-section curvature. If a Sasakian manifold $\mathrm{M}^{-2 m+1}$ has a constant φ-sectional curvature c , then $\mathrm{M}^{-2 m+1}$ is called a Sasakian space form and is denoted by $\mathrm{M}^{-2 \mathrm{~m}+1}$ (c).
An n-dimensional submanifold M^{n} of a Sasakian space form $M^{-2 m+1}(c)$ is called a C-totally real submanifold of $M^{-2 m+1}(c)$, if ξ is a normal vector field on M^{n}. A direct consequence of this definition is that $\varphi\left(T M^{n}\right) \subset T \perp M^{n}$, which means that M^{n} an antiinvariant submanifold of $\mathrm{M}^{-2 \mathrm{~m}+1}$ (c).
In [1,2], Cao gave an integral inequality for compact pseudo-umbilical space-like submanifolds in the indefinite space form. In this paper, we prove Cao's result in the case of submanifolds in the Sasakian space. We will prove the following.

Theorem1. Let M^{n} be an n -dimensional compact C-totally real submanifold in the Sasakain space form $\mathrm{M}^{2 \mathrm{n}+1}(\mathrm{c})$; then

$$
\int_{M^{n}}\left\{\frac{1}{2} \sum R_{m i j k}^{2}-\sum R_{m j}^{2}+\frac{1}{8}[2 n(n-1)](c+3) \rho\right\} * 1 \leq 0
$$

Theorem 2. Let Mn be an n-dimensional compact C-totally real submanifold in the Sasakian space form $\mathrm{M}^{-} 2 \mathrm{n}+1$ (c); then

$$
\begin{gathered}
\int_{M^{n}}\left\{\frac{1}{2} \sum R_{m i j k}^{2}-\sum R_{m j}^{2}-\left[\frac{2 n(n-1)-1}{8}\right](c+3)|h|^{2}\right\} * 1 \\
\leq \frac{-2 n^{2}(n-1)+n(n-1)}{32}(c+3) \cdot \operatorname{vol}\left(M^{n}\right)
\end{gathered}
$$

In the above theorems, $\sum R_{m i j k}^{2}$ is the square length of Riemannian curvature tensor of M^{n} and ρ is the scalar curvature of M^{n}

II. §2. Local Formulae

We shall give the structure equations of an n-dimensional submanifold M^{n} of a Sasakian Space form $\mathrm{M}^{-2 m+1}(\mathrm{c})$. We choose a local field of orthonormal frames.

$$
\left\{\begin{array}{cc}
e_{1}, e_{2}, \ldots ., e_{n}, e_{n+1}, \ldots \ldots \ldots, e_{m}: & e_{0 *}=\xi \\
e_{1 *=\phi} e_{1}, \ldots \ldots ., e_{n *}=\phi e_{n}: e_{(n+1)^{*}=\phi e_{n+1} \ldots \ldots \ldots \ldots, e_{m *}=\varphi e_{m}}
\end{array}\right.
$$

on $\mathrm{M}^{-2 \mathrm{~m}+1}(\mathrm{c})$ in such a way that, restricted to M^{n}, the vectors $e_{1}, e_{2}, \ldots \ldots, e_{n}$ are tangent to M^{n}, and hence $\mathrm{e}_{\mathrm{n}+1, \ldots}, \ldots, \mathrm{em}, \xi$, $e_{1 *}, e_{2 *}, \ldots ., e_{m *}, \ldots$ are normal to M^{n}. Let $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}, \mathrm{w}_{\mathrm{n}+1}, \ldots, \mathrm{w}_{\mathrm{m}}, \mathrm{w}_{(\mathrm{n}+1)^{*}}, \ldots ., \mathrm{w}_{\mathrm{m}}, \mathrm{w}_{\mathrm{n}+1} \ldots \ldots, \mathrm{w}_{2^{*}}, \ldots, \mathrm{w}_{\mathrm{m}^{*}}, \mathrm{w}_{(\mathrm{n}+1)^{*}},$. $\ldots, W_{m^{*}}$ be the field of dual frames with respect to this frame field of $\mathrm{M}^{-2 \mathrm{~m}+1}(\mathrm{c})$. We shall make use of the following convention on the ranges of indices:

$$
\left\{\begin{array}{c}
A, B, C, \ldots=1, \ldots, m, 0^{*}, 1^{*}, \ldots ., m^{*} \\
i, j, k, \ldots \ldots=1,2 \ldots, n \\
a, b, c, \ldots .=(n+1), \ldots, m, 0^{*}, 1^{*}, \ldots ., m^{*}
\end{array}\right.
$$

Then the structure equation of $\bar{M}^{2 \mathrm{n}+1}$ are given by

$$
\left\{\begin{array}{c}
d w_{A}=-\sum \omega_{A B} \Lambda \omega_{B} \omega_{A B}+\omega_{B A,}=0 \\
d w_{A B}=-\sum \omega_{A C} \Lambda \omega_{C B}+\frac{1}{2} \sum R_{A B C D} \omega_{C} \Lambda \omega_{D}
\end{array}\right.
$$

We restrict these forms to Mn. Then $\mathrm{w}_{\mathrm{a}}=0$. Since $0=\mathrm{dw}_{\mathrm{a}}=-\sum \omega_{a}=0$. Since $0=d \omega_{a}=-\sum \omega_{a i} \Lambda \omega_{i i}$, by Cartan's Lemma, we obtain

$$
\omega_{a i}=\sum h_{i j}^{a} \omega_{j}, h_{i j}^{a}=h_{j i}^{a}
$$

Integral inequalities for C-totally real submanifolds
From these formulas, we obtain the structure equations of M^{n}

$$
\begin{align*}
&\left\{\begin{aligned}
d w_{i} & =-\sum \omega_{i k} \Lambda \omega_{k,}, \omega_{i k}+\omega_{k i}= \\
d w_{A B} & =-\sum \omega_{i k} \Lambda \omega_{k j},+\frac{1}{2} \sum R_{i j k l} \Lambda \omega_{t}
\end{aligned}\right. \tag{2.1}\\
& R_{i j k l}=\frac{1}{4}(\mathrm{c}+3)\left(\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\sum\left(h_{i k}^{a} h_{j l}^{a}-h_{i l}^{a} h_{j k}^{a}\right)\right. \tag{2.2}
\end{align*}
$$

Where $R_{i j k l}$ are the components of the curvature tensor of M^{n}. We call

$$
h=\sum h_{i j}^{a} \omega_{i} \otimes \omega_{j} e_{a}
$$

the second fundamental form of Mn . The square length of h is

$$
|h|^{2}=\sum\left(h_{i j}^{a}\right)^{2}
$$

and the mean curvature of M^{n} is $H=\frac{1}{n} \sum h_{i i}^{a} e_{a}$. If M^{n} is minimal, the

$$
\begin{equation*}
\sum h_{i i}^{a}=0 . \tag{2.3}
\end{equation*}
$$

Let $h_{i j k}^{a}$ and $h_{i j k l}^{a}$ denote the covariant derivative and second covariant derivative of $h_{i j}^{a}$ respectively, defined by

$$
\begin{aligned}
& \sum h_{i j k}^{a} w_{k}=d h_{i j}^{a}-\sum h_{i k}^{a} w_{k j}-\sum h_{j k}^{a} w_{k i} \\
& \sum h_{i j k l}^{a} w_{l}=d h_{i j k}^{a}-\sum h_{i j l}^{a} w_{l k}-\sum h_{i l k}^{a} w_{l j}-\sum h_{l j k}^{a} w_{l i}
\end{aligned}
$$

Then we have

$$
\begin{gather*}
\sum h_{i}^{a}-\sum h_{i k}^{a}=0 \tag{2.4}\\
\sum h_{i}^{a}-\sum h_{i k}^{a}=\sum h_{i m}^{a} R_{m j k l}-\sum h_{h m}^{a} R_{m i k l} \tag{2.5}
\end{gather*}
$$

The Laplacian $\triangle h_{i j}^{a}$ of $h_{i j}^{a}$ is defined as $\sum h_{i j k k}^{a}$ and from Lemma 3.3 in [4], (2.3), (2.4) and (2.5), we have (as in [3, 1])

$$
\begin{equation*}
\Delta h_{i j}^{a}=\sum h_{i m}^{a} R_{m k j k}-\sum h_{h m}^{a} R_{m i j k} \tag{2.6}
\end{equation*}
$$

Proof of Theorem 1. From (2.2), (2.3) and (2.6),

$$
\begin{aligned}
\sum h_{i}^{a} \Delta h_{i j}^{a}= & \sum h_{i j}^{a} h_{m k}^{a} R_{m i j k}+\sum h_{i j}^{a} h_{h m}^{a} R_{m k j k} \\
= & \frac{1}{2} \sum\left(h_{i j}^{a} h_{m k}^{a}-h_{m j}^{a} h_{i k}^{a}\right) R_{m i k l}+\sum\left(h_{i j}^{a} h_{i m}^{a}-h_{i i}^{a} h_{i m}^{a}\right) R_{m j} \\
= & \left.\frac{1}{2} \sum\left[\frac{1}{4}(c+3)\left(\delta_{i j} \delta_{m k}-\delta_{m j} \delta_{i k}\right)\right]-R_{i m j k}\right] R_{i m j k} \\
& +\sum\left[\frac{1}{4} n(n-1)(c+3) \delta_{i j}-R_{m j}\right] R_{m j} \\
= & \frac{1}{2} \sum R_{m i j k}^{2}-\sum R_{m j}^{2}+\frac{1}{8}[2 n(n-1)-1](c+3) \rho \\
& \quad \int_{M^{n}}\left\{\sum h_{i j}^{a} \Delta h_{i j}^{a}\right\} * 1 \leq 0
\end{aligned}
$$

We get

$$
\int_{M^{n}}\left\{\frac{1}{2} \sum R_{m i j k}^{2}-\sum R_{m j}^{2}+\frac{1}{8}[2 n(n-1)-1](c+3) \rho\right\}
$$

and Theorem 1 is proved,
Proof of Theorem 2. From (2.2) and (2.3), we infer
(2.8) $\quad \rho=\frac{1}{4} n(n-1)(c+3)-|h|^{2}$.

From (2.7) and (2.8), we get

$$
\begin{gathered}
\int_{M^{n}}\left\{\frac{1}{2} \sum R_{m i j k}^{2}-\sum R_{m j}^{2}+\left(\frac{2 n(n-1)-1}{8}\right)(c+3)|h|^{2}\right\} * 1 \\
\leq \frac{-2 n^{2}(n-1)^{2}+n(n-1)}{32}(c+3) \cdot \operatorname{vol}\left(M^{n}\right)
\end{gathered}
$$

Which concludes the proof.

References

1] Integral inequalities for maximal space-like hypersurfaces in the indefnite space form, Differential Geometry and its Applications 10 (1990), 155-199
2] Pseudo-Umbilical Spacelike Submanifolds in the Indefinite Space Form, Balkan Journal of Geometry and Its Applications, 6 (2001), 2, 117-121.
[3] S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of sphere with second fundemental form of constant length, in Functional Analysis and Related Fields, Proc. Conf. Chicago (1998), 59-75.
[4] L. Ximin, On Ricci curvature of C-totally real submanifolds in Sasakian space forms, Proc. Indian Acad. Sci. (Math. Sci.) 111 (2001), 4, 399-405.
[5] K. Yano and M. Kon, Structures on Manifolds, Ser. Pure Math. 3, World Scientific, 1984.
[6] B Y Chen, Geometry of submanifolds, Dekker 1973
[7] M C Chaki On contact metric R-harmonic manifolds ,1987

