

On characterization Integral inequalities for C-totally real submanifolds in Sasakian space forms

Dr. Niranjan Kumar Mishra, (Asst. Professor, Dept of Mathematics – RKDF University Ranchi)

Abstract - We give two intrinsic integral inequalities for compact minimal C-totally real sub manifolds in a Sasakian space form.

Key words: C-totally real submanifold, Sasakian space forms, Riemannian manifold

I. §1. INTRODUCTION

Let M^{-2m+1} be an odd dimensional Riemannian manifold with metric g. Let Φ be a (1, 1)-tensor field, η a 1-form on M^{-2m+1} and ζ a vector field, such that

$$\begin{cases} \phi^2 X = -X + \eta(X)\xi, & \phi\xi = 0, & \eta(\phi X) = 0, & \eta(\xi) = 1\\ g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), & \eta(X) = g(X, \xi) \end{cases}$$

If, in addition, $d\eta (X, Y) = g(\varphi X, Y)$ for all vector fields X, Y on M^{-2m+1} , then M^{-2m+1} is said to have a contact metric structure (φ, ξ, η, g), and M^{-2m+1} is called a contact metric manifold. If, moreover, the structure is normal, that is if

 $[\phi X, \phi Y] + \phi^2[X, Y] - \phi[X, \phi Y] - \phi[\phi X, Y] = -2d\eta (X, Y)\xi$

then the contact metric structure is a Sasakian structure (normal contact metric structure) and $M^- 2m+1$ is called a Sasakian manifold. For details and background, see the standard references [4] and [5].

A plane section σ in TPM^{-2m+1} of a Sasakian manifold M^{-2m+1} is called a φ -section if it is spanned by X and φ X, where X is a unit tangent vector field orthogonal to ξ . The sectional curvature \overline{K} (σ) with respect to a φ -section σ is called a φ -section curvature. If a Sasakian manifold M^{-2m+1}has a constant φ -sectional curvature c, then M^{-2m+1} is called a Sasakian space form and is denoted by M^{-2m+1}(c).

An n-dimensional submanifold M^n of a Sasakian space form $M^{-2m+1}(c)$ is called a C-totally real submanifold of $M^{-2m+1}(c)$, if ξ is a normal vector field on M^n . A direct consequence of this definition is that $\varphi(TM^n) \subseteq T \perp M^n$, which means that M^n an anti-invariant submanifold of $M^{-2m+1}(c)$.

In [1,2], Cao gave an integral inequality for compact pseudo-umbilical space-like submanifolds in the indefinite space form. In this paper, we prove Cao's result in the case of submanifolds in the Sasakian space. We will prove the following.

Theorem1. Let Mⁿ be an n-dimensional compact C-totally real submanifold in the Sasakain space form M²ⁿ⁺¹(c); then

$$\int_{M^n}^{\cdot} \left\{ \frac{1}{2} \sum R_{mijk}^2 - \sum R_{mj}^2 + \frac{1}{8} [2n(n-1)](c+3)\rho \right\} * 1 \le 0$$

Theorem 2. Let Mn be an n-dimensional compact C-totally real submanifold in the Sasakian space form M⁻ 2n+1(c); then

$$\int_{M^{n}}^{\cdot} \left\{ \frac{1}{2} \sum R_{mijk}^{2} - \sum R_{mj}^{2} - \left[\frac{2n(n-1)-1}{8} \right] (c+3)|h|^{2} \right\} * 1$$

$$\leq \frac{-2n^{2}(n-1) + n(n-1)}{32} (c+3) \cdot vol \ (M^{n})$$

In the above theorems, $\sum R_{mijk}^2$ is the square length of Riemannian curvature tensor of M^n and ρ is the scalar curvature of M^n

II. §2. LOCAL FORMULAE

We shall give the structure equations of an n-dimensional submanifold M^n of a Sasakian Space form $M^{-2m+1}(c)$. We choose a local field of orthonormal frames.

$$\begin{cases} e_1, e_2, \dots, e_n, e_{n+1}, \dots, e_m: & e_{0*} = \xi, \\ e_{1*=\phi}e_1, \dots, e_{n*} = \phi e_n: & e_{(n+1)^*=\phi e_{n+1}} \dots \dots \dots e_{m*} = \varphi e_m \end{cases}$$

on $M^{-2m+1}(c)$ in such a way that, restricted to M^n , the vectors e_1, e_2, \ldots, e_n are tangent to M^n , and hence $e_{n+1,\ldots,em}$, ξ , $e_{1*}, e_{2*}, \ldots, e_{m*}, \ldots$ are normal to M^n . Let $w_1, w_2, \ldots, w_n, w_{n+1}, \ldots, w_m, w_{(n+1)*}, \ldots, w_m, w_{n+1}, \ldots, w_{m*}, w_{(n+1)*}, \ldots, w_{m*}$ be the field of dual frames with respect to this frame field of $M^{-2m+1}(c)$. We shall make use of the following convention on the ranges of indices:

$$A, B, C, \dots = 1, \dots, m, 0^*, 1^*, \dots, m^*$$

 $i, j, k, \dots \dots = 1, 2, \dots, n,$
 $a, b, c, \dots = (n + 1), \dots, m, 0^*, 1^*, \dots, m^*$

Then the structure equation of \overline{M}^{2n+1} are given by

$$\begin{cases} dw_A = -\sum \omega_{AB} \wedge \omega_{B,} \omega_{AB} + \omega_{BA,} = 0\\ dw_{AB} = -\sum \omega_{AC} \wedge \omega_{CB,} + \frac{1}{2} \sum R_{ABCD} \omega_C \wedge \omega_D \end{cases}$$

We restrict these forms to Mn. Then $w_a = 0$. Since $0 = dw_a = -\sum \omega_a = 0$. Since $0 = d\omega_a = -\sum \omega_{ai} \Lambda \omega_{ii}$, by Cartan's Lemma, we obtain

$$\omega_{ai} = \sum h^a_{ij} \, \omega_j, \ h^a_{ij} = h^a_{ji}.$$

Integral inequalities for C-totally real submanifolds

From these formulas, we obtain the structure equations of Mⁿ

(2.1)
$$\begin{cases} dw_i = -\sum \omega_{ik} \wedge \omega_{k,i}, \omega_{ik} + \omega_{ki,i} = 0\\ dw_{AB} = -\sum \omega_{ik} \wedge \omega_{kj,i} + \frac{1}{2} \sum R_{ijkl} \wedge \omega_{kl} \end{cases}$$

(2.2)
$$R_{ijkl} = \frac{1}{4} (c+3) \left(\left(\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} \right) + \sum \left(h^a_{ik} h^a_{jl} - h^a_{il} h^a_{jk} \right) \right)$$

Where R_{ijkl} are the components of the curvature tensor of Mⁿ. We call

$$h = \sum h_{ij}^a \omega_i \otimes \omega_j e_a$$

the second fundamental form of Mn. The square length of h is

$$|h|^2 = \sum (h_{ij}^a)^2$$

and the mean curvature of M^n is $H = \frac{1}{n} \sum h_{ii}^a e_a$. If M^n is minimal, the

(2.3)

(2.4)

$$\sum h_{ii}^a = 0.$$

Let h_{ijk}^a and h_{ijkl}^a denote the covariant derivative and second covariant derivative of h_{ij}^a respectively, defined by

$$\sum h_{ijk}^a w_k = dh_{ij}^a - \sum h_{ik}^a w_{kj} - \sum h_{jk}^a w_{ki}$$
$$\sum h_{ijkl}^a w_l = dh_{ijk}^a - \sum h_{ijl}^a w_{lk} - \sum h_{ilk}^a w_{lj} - \sum h_{ljk}^a w_{li}.$$

Then we have

$$\sum h_i^a - \sum h_{ik}^a = 0$$

(2.5)
$$\sum h_i^a - \sum h_{ik}^a = \sum h_{im}^a R_{mjkl} - \sum h_{hm}^a R_{mikl}$$

The Laplacian $\triangle h_{ij}^a$ of h_{ij}^a is defined as $\sum h_{ijkk}^a$ and from Lemma 3.3 in [4], (2.3), (2.4) and (2.5), we have (as in [3, 1])

(2.6)
$$\bigtriangleup h_{ij}^a = \sum h_{im}^a R_{mkjk} \cdot \sum h_{hm}^a R_{mijk}$$

Proof of Theorem 1. From (2.2), (2.3) and (2.6),

$$\begin{split} \sum h_{i}^{a} & \bigtriangleup h_{ij}^{a} = \sum h_{ij}^{a} h_{mk}^{a} R_{mijk} + \sum h_{ij}^{a} h_{mm}^{a} R_{mkjk} \\ &= \frac{1}{2} \sum \left(h_{ij}^{a} h_{mk}^{a} - h_{mj}^{a} h_{ik}^{a} \right) R_{mikl} + \sum \left(h_{ij}^{a} h_{im}^{a} - h_{ii}^{a} h_{im}^{a} \right) R_{mj} \\ &= \frac{1}{2} \sum \left[\frac{1}{4} (c+3) \left(\delta_{ij} \delta_{mk} - \delta_{mj} \delta_{ik} \right) \right] - R_{imjk} \right] R_{imjk} \\ &+ \sum \left[\frac{1}{4} n(n-1)(c+3) \delta_{ij} - R_{mj} \right] R_{mj} \\ &= \frac{1}{2} \sum R_{mijk}^{2} - \sum R_{mj}^{2} + \frac{1}{8} [2n(n-1)-1](c+3)\rho. \\ & \int_{M^{n}}^{\cdot} \left\{ \sum h_{ij}^{a} \bigtriangleup h_{ij}^{a} \right\} * 1 \leq 0, \end{split}$$

$$\int_{M^{n}}^{\cdot} \left\{ \frac{1}{2} \sum R_{mijk}^{2} - \sum R_{mj}^{2} + \frac{1}{8} [2n(n-1) - 1](c+3)\rho \right\}$$

and Theorem 1 is proved,

Proof of Theorem 2. From (2.2) and (2.3), we infer

(2.8)
$$\rho = \frac{1}{4}n(n-1)(c+3) - |h|^2$$
.

From (2.7) and (2.8), we get

$$\begin{split} \int_{M^{n}}^{\cdot} \left\{ \frac{1}{2} \sum R_{mijk}^{2} - \sum R_{mj}^{2} + \left(\frac{2n(n-1)-1}{8} \right) (c+3)|h|^{2} \right\} * 1 \\ \leq \frac{-2n^{2}(n-1)^{2} + n(n-1)}{32} (c+3) \cdot vol(M^{n}), \end{split}$$

Which concludes the proof.

References

1] Integral inequalities for maximal space-like hypersurfaces in the indefnite space form, Differential Geometry and its Applications 10 (1990), 155-199

2] Pseudo-Umbilical Spacelike Submanifolds in the Indefinite Space Form, Balkan Journal of Geometry and Its Applications, 6 (2001), 2, 117-121.

[3] S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of sphere with second fundemental form of constant length, in Functional Analysis and Related Fields, Proc. Conf. Chicago (1998), 59-75.

[4] L. Ximin, On Ricci curvature of C-totally real submanifolds in Sasakian space forms, Proc. Indian Acad. Sci. (Math. Sci.) 111 (2001), 4, 399-405.

[5] K. Yano and M. Kon, Structures on Manifolds, Ser. Pure Math. 3, World Scientific, 1984.

[6] B Y Chen, Geometry of submanifolds, Dekker 1973

[7] M C Chaki On contact metric R-harmonic manifolds ,1987

