
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

177 | IJREAMV07I0375089 DOI : 10.35291/2454-9150.2021.0334 © 2021, IJREAM All Rights Reserved.

Performance Efficient IR using Language Filters
Kathakali Mitra, Department of Computer Science and Engineering, Birla Institute of Technology

and Science , Pilani , India. kathakali1595@gmail.com

ABSTRACT - Throughout the technological domain , Information Retrieval systems play a critical role in gathering

unstructured text to satisfy the user requirements. These IR systems allow users access the recent and most relevant

information in an efficient way and a lesser time .This paper aims to extract the top relevant documents of a specified

language for a given free text query in an efficient and optimized way. In the proposed work , NLP based framework is

used to identify the language , index it and extract the relevant documents. Language Identification is done by running a

pipeline of TF-IDF Vectorizer on Bag of Words and by building an appropriate classifier model. Among the 5 popularly

used classifiers namely being SVM , Naïve Bayes , Decision Trees and KNN , the dataset worked best with Random Forest

Classifier for Language Classification with an accuracy of 91%. Indexing is done using a relevant data structure to invoke

only the corresponding dataset pertaining to the same language. A modified vector space modelling accompanied by an

updated TF-IDF weighting technique to consider the freshness and number of votes is proposed for extracting top

relevant trending documents.

Keywords: TF-IDF Vectorizer , Random Forest Classifier , Cosine Similarity , Lemmatization ,Jacard Similarity , Vector

Space Model

I. INTRODUCTION

With significant rise in data worldwide , users want to obtain

the data which likely resembles the free text query in a faster

time. The simplest form of document retrieval is for a

machine to do a linear scan through all the documents i.e

grepping the text. With evolution of technology and

production of huge data worldwide , linear scan was not the

preferrable technique of document retrieval. IR systems were

hence introduced to process large documents very quickly ,

allow more flexible matching operations and facilitate

ranked retrieval. Information Retrieval domain closely

works in extracting the most relevant and useful data to the

user which matches their requirements. Different algorithms ,

models and tools have evolved with time which tried to

extract the best possible match to the user query. The World

Wide Web contains a vast amount of information and is a

rich source for data extraction, but manually extracting data

from the Web is a tedious and time-consuming process,

especially when a large amount of data matches the

extraction criteria.

Indexing supported Boolean Queries given by Boolean

Retrieval Model. With huge production of data from various

sources , the resulting documents can far exceed the linear

scanning through indexing. It is essential for a search engine

to rank documents matching a free-text-query. This is the

reason for adoption of different weighting and scoring

techniques to rank a document.

The key task of different modelling technique is a faster and

an accurate retrieval policy. There were different challenges

in terms of time complexity and faster access of relevant

trending and most frequently accessed documents. The

proposed work intends to solve this challenge by working

with a lesser time complexity, optimized storage capacity

and providing accurate results. The algorithm provides the

most relevant domain specific , language specific , current

trending and most frequently accessed documents which

matches the user specified query.

II. RELATED WORK

The widely used models of IR from the time of evolution

included Boolean Retrieval Model, TF-IDF Vectorizer,

Vector Space Model, n-Gram Modelling etc. Boolean

Retrieval Model used Term Incidence Matrix for indexing

operations but was not widely accepted because of certain

limitations. Inverted Index was used for storing the posting

list for this method. The top limitations being its sparse

nature and inability to handle similarity queries. Wildcard

characters also played a critical part in IR systems. Tolerant

Retrieval, Asymmetric Query Expansion, Normalization,

Equivalence Class are used for converting words that have

different representations in different documents into the

same format. Stemming and Lemmatization was used for

converting words expressed in different parts of speech into

the same inflectional form. [1] Phrases were often used as

queries while searching relevant documents on the search

engine. These phrase queries use bi-word indexes for

Information Retrieval asks. Bi-word indexes generate a huge

number of false positives and are not preferred as the ideal

model for IR.

Integration of wild cards in our queries can generally reduce

the number of queries that must be issued, hence simplifying

the extraction task. A problem in querying natural language

text is that a free text query specified by a user may not

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

178 | IJREAMV07I0375089 DOI : 10.35291/2454-9150.2021.0334 © 2021, IJREAM All Rights Reserved.

retrieve enough exact matches. Unlike term queries which

can be relaxed by removing some of the terms removing

terms from a wild card query without ruining its meaning is

more challenging. There are various ways to deal with

wildcard queries the most popular being the Permuterm

Index. Example : mon*day can be rotated unless the *

appears at the end of the query.[3]

With an increase in the amount of data from different data

sources, ranking of documents is a critical task for providing

the best possible match to the user-specified query. Different

weighting mechanisms are available the most popular being

TF-IDF, Raw Term Frequency Weighting Scheme. The TF-

IDF converts the text document into a sparse matrix of a Bag

of Words of corpus and then performs different operations

and modeling on the obtained matrix. The TF-IDF

Vectorization concept is used in text summarization, domain

classification etc. [1]

Different Similarity Measures were used to compare the

best-suited document to the query in the vector space

modeling. Cosine Similarity, Inner Product, Dice Coefficient,

Jaccard Similarity was used to calculate the distance between

the document and the free-text query. Top n documents

matching the query with the shortest distance would be

retrieved as a part of the IR.

III. SPECIFICATIONS

In order to accomplish the objectives of the paper , Python

has been used as a base language and Natural Language

Toolkit (NLTK) and Sklearn libraries have been used.

IV. PROPOSED WORK

This section represents our proposed work and focuses a

strategy on retrieving n relevant documents from a free text

query with reduced time complexity. The development

method is broadly divided into 2 main parts - Language

Prediction and Relevant Documents Retrieval. To perform

Language Prediction , the data is extracted from varying

language-data dictionaries and by web-scraping. Data is then

pre-processed through different techniques. TF-IDF

Vectorizer Model generates a sparse matrix converting text

data into numerical data for better modelling. The vectorized

matrix with the unique terms in the dataset as its columns

along with message length and punctuation count are treated

as the parameters/features for building the classification

model. Random Forest Classifier has been used which uses

ensemble learning and bagging technique to predict the free

text query’s language. To perform relevant documents

retrieval , a language hash map is used which stores the

Language as keys and Corresponding Dataset pertaining to

different domains as values in a key-value pair format. The

predicted language is passed to the data Hash Map for

importing the expected dataset. Data pre-processing is done

for making the data suitable for higher accuracy and better

modelling. Hash Map technique is proposed for an optimized

time complexity and less iterative heavy threads. TF-IDF

Vectorizer is modified to consider the Unique Terms along

with the hits and timestamp/freshness. The TF-IDF values

are then used to calculate the score and cosine similarity

between the other vectors/documents and the free text query

vector. The cosine values are then sorted in a descending

order to retrieve the top n relevant documents from a huge

dynamic dataset.

The architectural overview describing an overall process of Information Retrieval which is shown in Fig. 1.

Fig.1 Architecture Diagram

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

179 | IJREAMV07I0375089 DOI : 10.35291/2454-9150.2021.0334 © 2021, IJREAM All Rights Reserved.

Algorithm 1

Input : New Test Document

Output : Predict the Language of Test Document

Method :

1. Import a Training Dataset (Format : Documents and Language)

2. For EachDoc in Training Data:

 Docs  Tokenize(EachDoc)

 Docs RemoveStopwords(EachDoc)

 Docs CleanDocs(EachDoc)

 Docs WordNetLemmatizer(EachDoc)

3. Vectorizer  TFIDF Vectorizer()

4. Extract the features for Classification

X_Features = Unique Terms of the TFIDF Model + Message Length + Punctuation Count

Y_Original = Given Language in the Dataset

5. Split the Dataset into Training and Testing Data

6. Model  RandomForestClassifier(Training Data)

7. Language_Prediction  Pickle the Model.

Algorithm 2

Input : Given a User Query

Output : Retrieve n relevant documents pertaining to the same domain

Method:

1. Language_HashMap = {“Language” : “Training Dataset from different domains”}

//Training Data Comprising of Data , PageHits , Freshness

2. Storing the Training Dataset in LinkedList because of the dynamic pattern.

3. Passing the New User Query into the Language Prediction Model

2.1 Predicted_Language = Language_Prediction(User Query) //Invoke the Pickled Model

2.2 Training_Dataset = Language_HashMap(Predicted_Language)

4. Df  Retrieve the Training Dataset

5. For EachDoc in Training Data:

 Docs  word_tokenize()

 Docs  RemoveStopwords(EachDoc)

 Docs  CleanDocs(EachDoc)

 Docs  WordNetLemmatizer(EachDoc)

6. Df  Df.append(User Query)

7. Vectorizer  TFIDF Vectorizer(Df(n_terms , page_hits , timestamp))

8. X  Vectorizer.fit_transform(Df)

9. for col in Vectorizer.nonzero()[1]:

 print(Df[col], ' - ', Vectorizer [0, col])

10. cosine = cosine_similarity(Vectorizer, X)

11. for x in cosine:

 valuessort = x.argsort()[-n:][::-1]

I. Language Identification

Language Identification becomes a crucial pre-requisite in Information Retrieval systems where it is common to index documents

in a multilingual collection by the language they are written in. This feature helps in reducing the time complexity with the

indexing property in IR systems. The main steps involved in Language Identification are : Data Extraction ,Data Tokenization ,

Data Preprocessing , TF-IDF Vectorization and Classification.

Data Extraction is an important aspect of any machine learning algorithms since it forms the base for building efficient models

and deriving better accuracy scores. Data is gathered from different sources , data dictionaries and through web scraping. [1].

NLTK library is used to perform the text pre-processing. The documents are broken into tokens using the word_tokenize()

package supported by NLTK. Stopwords are the most frequently used words in every language and do not add in important

information in terms of performing any analytical tasks or cater to a little value in helping select documents matching a user

need, so they are removed as a part of text pre-processing. Numeric characters and special characters are often present in any

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

180 | IJREAMV07I0375089 DOI : 10.35291/2454-9150.2021.0334 © 2021, IJREAM All Rights Reserved.

documents but they additionally don’t contribute to any efficiency of the model and are hence removed. Lemmatization refers

to doing things properly with the use of a vocabulary and morphological analysis of words , normally aiming to remove the

inflectional endings only and to return the base form of a word/lemma.

Classifiers cannot be directly built on text data. Hence different weighting schemes convert the text data into numerical form for

different models to work on. We have used TF-IDF Vectorization which is a product of Number of times a term occurring in

document d and Number of documents in the collection that contain the term t.

Model_Pipeline(TF-IDF Vectorizer , Classifier)

Any document in a vector space model is expressed by :

D1 : <T1 T2 T3 T4 T5 T9 T2 T3 T5>

D2 : <T2 T5 T6 T7 T8>

 T1 T2 T3 T4 T5 T6 T7 T8 T9

D1 1 2 2 1 2 0 0 0 1

D2 0 1 0 0 1 1 1 1 0

This is a count vectorizer model which considers the Raw Term Frequency in a document. We run into certain challenges like

bias towards more stop words/more frequently occurring terms in the document , hence the proposed and widely used solution

is Term Frequency – Inverse Document Frequency.

TF-IDF Weighting Technique is given by the mathematical formula.

where,

 tf : number of times a term t appears in a document

 N : total number of documents in the collection

 df : number of documents that contains the term t

After applying the TF-IDF Vectorizer , the corpus now contains Bag of Words (all unique terms in any given order).

 For feature selection, we add 2 more factors like document length and punctuation count.

X (Dependent Variable)= Document Length(x1) + Punctuation Count(x2) + Bag of Words (x3…xi)

Y (Target Variable) = Language

The corpus is then classified into training and testing data and different classifiers are built on the training dataset. Models are

fit on the training data and prediction is done on the test data. Different Accuracy Scores are generated from applying different

modelling techniques. The Accuracy chart is given in the Fig.2 and is proved that Random Forest Classifier worked best on our

dataset.

Fig.2 Accuracy Report

The Classification Report is generated for all the predictor variables/languages to check their precision , recall , f1-score and

support. The report is given in Fig.3

Tf-idf(t,d) = (1+log(tf)) * log(N/df)

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

181 | IJREAMV07I0375089 DOI : 10.35291/2454-9150.2021.0334 © 2021, IJREAM All Rights Reserved.

Fig.3. Accuracy Report of Random Forest Classifier

The Language Identification Pipeline through TF-IDF Vectorization and Classification was able to successfully predict the

languages in the validation dataset or a free text query with a model accuracy of 91%.

II. Dynamic Indexing

All Information Retrieval systems work with huge terabytes of data which is non-static and gets updated frequently or at periodic

intervals. Fault tolerant systems are used for building indexes in IR. The preferred data structure used is B+ Tree or a Linked

List because the data size length is not fixed. Most collections are modified frequently with documents being added, deleted, and

updated , either new terms need to be added to the dictionary or postings lists need to be updated for existing terms. We have 2

main indexes , Big Index and Small Index(Auxiliary Index) through which we overcome the challenge of dynamic data. A

HashMap is maintained in terms of a key-value pair of language and the corresponding varying domain dataset. The identified

language of the free text query obtained from the Language Identification Process is then iterated through the HashMap for

extracting the corresponding dataset which will be required for the next processing tasks.

III. Relevant Documents Retrieval

Information Retrieval systems operate on the underlying algorithm of finding documents of an unstructured nature that satisfies

the an user requirement. To process large documents in an optimal and a shorter time , allow more flexible matching operations

and allow ranked retrieval , linear scanning of texts is not a possible best solution. Hence Ranked Retrieval models have been

introduced to cater to a free text query with better accuracy and a shorter turn around time. Text Pre-processing is done on the

language specific dataset that has been transferred in the Main Memory. Pre-processing involves tokenization of documents into

tokens/terms followed by stop word/punctuation removal followed by lemmatization.[6].

In Boolean Retrieval Model , the documents are represented as vectors of indexed terms. Retrieval is based on membership in

sets through binary retrieval function i.e 0 when the term doesn’t appear in the document , 1 when the term appears in the

document. Boolean Retrieval is closely associated with Inverted Index Construction. Inverted Index is represented as Term,

Document Frequency and a Posting List. Boolean Retrieval Systems often create a large sparse inverted matrix and is

computationally weak and takes a lot of time for processing tasks.

Structure of Inverted Index:

Term Doc. Frequency

When a free text query is entered by a user , the documents are expected to be retrieved in a Ranked Order , so different scoring

and weighting techniques are used.

Jacard Coefficient Similarity between two dataset is the ratio between the number of terms common to all and all the unique

terms.

Jacard Similarity (Query , Document) = (Query AND Document) / (Query UNION Document)

After certain experiments , it has been observed that Jaccard Coefficient is bias towards shorter length documents and does not

consider the Term Frequency in a document. Sometime rare words in a collection are more informative than frequent terms

which is not considered by Jaccard Coefficient. Vector Space Modelling is a widely used technique in Information Retrieval

Systems. In Vector Space Modelling , the terms are represented as basis vectors which are linearly independent and orthogonal

to each other. Basis vectors correspond to dimensions or directions in the vector space. Vector Coefficients are represented in

the following fig.4

Posting List

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

182 | IJREAMV07I0375089 DOI : 10.35291/2454-9150.2021.0334 © 2021, IJREAM All Rights Reserved.

Fig.4 Vector Space Modelling

Doc1: Laptops Domain World <1 1 1>

Doc2: World Laptops Laptops Domain Domain Domain <1 2 3>

Query: World Laptops Laptops Domain Domain<1 2 2>

Vector Coefficients represent the importance of a term but not help assign weights to the term.

Commonly used coefficients are Raw Term Frequency ,Term-Frequency—Inverse Document Frequency etc. Raw Term

Frequency denotes the occurrence of frequency of terms in a document and specifies the relative importance of a word in a

document. The challenge with Raw Term Frequency is about stop words or different parts of speech which are frequently

occurring but might not be important in a document. The relation between Score and Raw Term Frequency is show in Fig.6

which shows the score and the coefficient is directly proportional to the occurrence of terms in a document. But for an ideal

behavior , after the repetition of terms in a document , the score should be constant approximately. This scenario happens when

1+RTF is taken instead of RTF for calculating the score.

In this paper , the proposed technique is TF-IDF weighting scheme. This weighting scheme is modified to also consider

freshness/timestamp and number of votes for each document. The rarity of a term is given by Inverse Document Frequency. DFt

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

183 | IJREAMV07I0375089 DOI : 10.35291/2454-9150.2021.0334 © 2021, IJREAM All Rights Reserved.

is the document frequency of t: the number of documents that contain t. We define the IDF (inverse document frequency) of t

by log10 (N/ DFt).

The proposed formula for TF-IDF in this paper to consider the changing dataset , the latest trends , freshness/timestamp and also

the number of votes for each document (how other users have browsed the document) is given below.

where,

 TF : number of times a term t appears in a document

N : total number of documents in the collection

DF : number of documents that contains the term t

The TF-IDF Weighting is calculated for all terms in the document/Bag of Words of the corpus. To retrieve the top relevant

documents , the cosine similarity needs to be calculated between the documents in a collection and the free text query.

where,

q : free text query

d : documents in the corpus

Cosine Similarity / Score is calculated by the given mathematical formula.

Score calculated is sorted in a descending order to provide the top most relevant trending and most user recommended documents

for a free text query entered by the user.

V. RESULT

From the language identification algorithm which was built using TF-IDF Vectorizer and Random Forest Classifier, the language

was identified for further operations. A Validation dataset was created to predict the language using the pickled TF-IDF and

Random Forest Classifier Model. The Validation report is given in Fig.5.

Fig.5. Language Output Report

The predicted language is then passed through the IR modelling to retrieve the most relevant , domain-specific , current trending

and most frequently accessed documents which matches the user specified query. The results are shown below for the free text

query “Covid19 vaccines”. Top n Relevant Documents were retrieved for a given free text query in Fig.6 .

Cosine_Similarity (q , d) =
∑𝑞⋅𝑑𝑖

√∑𝑑𝑖
2⋅√∑𝑞2

Tf-IDFupdated =((1+ log(TF)) * log10(N/DF) + (1+log10(Freshness))+ (1+log10(Number of Votes))

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

184 | IJREAMV07I0375089 DOI : 10.35291/2454-9150.2021.0334 © 2021, IJREAM All Rights Reserved.

Fig.6. Top 10 Relevant Documents

VI. CONCLUSION

Although Information Retrieval systems exist and caters to

the user need of providing the relevant documents , our

proposed solution works in an efficient manner with a lesser

time and space complexity. Our solution is built using

NLTK and Scikit Learn Packages. In this paper we have

developed Language Identification system using TF-IDF

Vectorizer and a classifier model , followed by a modified

vector space model that considers the number of votes and

timestamp along with the Bag of Words for TF-IDF matrix

computation and retrieves the top relevant documents to the

user using cosine similarity scoring technique. The

Language Classifier Model worked with an average

accuracy of 91% to predict the language. The intermediate

hashmap technique used between the two modelling

techniques has reduced the time complexity and helped in

retrieving the results faster.

REFERENCES

[1] Christopher D. Manning, Prabhakar Raghavan &

Hinrich Schütze. Introduction to Information Retrieval

2008 Cambridge University Press

[2] Suphakit Niwattanakul*, Jatsada Singthongchai,

Ekkachai Naenudorn and Supachanun Wanapu Using of

Jaccard Coefficient for Keywords Similarity Proceedings of

the International MultiConference of Engineers and

Computer Scientists 2013 Vol I, IMECS 2013, March 13 -

15, 2013, Hong Kong

[3] Davood Rafiei , Haobin Li Wild Card Queries for

Searching Resources on the Web arXiv:0908.2588v1

[cs.DB] 18 Aug 2009

[4]Shahzad Qaiser , Ramsha Ali Text Mining: Use of TF-

IDF to Examine the Relevance of Words to Documents

 International Journal of Computer Applications (0975 –

8887)

[5] Qiong Ren a), Hui Cheng b) and Hai Han Research on

Machine Learning Framework Based on Random Forest

Algorithm

[6] Alfirna Rizqi Lahitani, Adhistya Erna Permanasari,

Noor Akhmad Setiawan Cosine Similarity to Determine

Similarity Measure: Study Case in Online Essay Assessment

IEEE

[7] Liu, C., Sheng, Y., Wei, Z., & Yang, Y.-Q.

(2018). Research of Text Classification Based on Improved

TF-IDF Algorithm. 2018 IEEE International Conference of

Intelligent Robotic and Control Engineering (IRCE)

