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ABSTRACT - Throughout the technological domain , Information Retrieval systems play a critical role in gathering 

unstructured text to satisfy the user requirements. These IR systems allow users access the recent and most relevant 

information in an efficient way and a lesser time .This paper aims to extract the top relevant documents of a specified 

language for a given free text query in an efficient and optimized way. In the proposed work , NLP based framework is 

used to identify the language , index it and extract the relevant documents. Language Identification is done by running a 

pipeline of TF-IDF Vectorizer on Bag of Words and by building an appropriate classifier model. Among the 5 popularly 

used classifiers namely being SVM , Naïve Bayes , Decision Trees and KNN , the dataset worked best with Random Forest 

Classifier for Language Classification with an accuracy of 91%. Indexing is done using a relevant data structure to invoke 

only the corresponding dataset pertaining to the same language. A modified vector space modelling accompanied by an 

updated TF-IDF weighting technique to consider the freshness and number of votes is proposed for extracting top 

relevant trending documents. 

Keywords: TF-IDF Vectorizer , Random Forest Classifier , Cosine Similarity , Lemmatization  ,Jacard Similarity , Vector 

Space Model 

I. INTRODUCTION 

With significant rise in data worldwide , users want to obtain 

the data which likely resembles the free text query in a faster 

time. The simplest form of document retrieval is for a 

machine to do a linear scan through all the documents i.e 

grepping the text. With evolution of technology and 

production of huge data worldwide , linear scan was not the 

preferrable technique of document retrieval. IR systems were 

hence introduced to process large documents very quickly , 

allow more flexible matching operations and facilitate 

ranked retrieval. Information Retrieval domain closely 

works in extracting the most relevant and useful data to the 

user which matches their requirements. Different algorithms , 

models and tools have evolved with time which tried to 

extract the best possible match to the user query. The World 

Wide Web contains a vast amount of information and is a 

rich source for data extraction, but manually extracting data 

from the Web is a tedious and time-consuming process, 

especially when a large amount of data matches the 

extraction criteria. 

Indexing supported Boolean Queries given by Boolean 

Retrieval Model. With huge production of data from various 

sources , the resulting documents can far exceed the linear 

scanning through indexing. It is essential for a search engine 

to rank documents matching a free-text-query. This is the 

reason for adoption of different weighting and scoring 

techniques to rank a document. 

The key task of different modelling technique is a faster and 

an accurate retrieval policy. There were different challenges 

in terms of time complexity and faster access of relevant 

trending and most frequently accessed documents. The 

proposed work intends to solve this challenge by working 

with a lesser time complexity, optimized storage capacity 

and providing accurate results. The algorithm provides the 

most relevant domain specific , language specific , current 

trending and most frequently accessed documents which 

matches the user specified query. 

II. RELATED WORK 

The widely used models of IR from the time of evolution 

included Boolean Retrieval Model, TF-IDF Vectorizer, 

Vector Space Model, n-Gram Modelling etc. Boolean 

Retrieval Model used Term Incidence Matrix for indexing 

operations but was not widely accepted because of certain 

limitations. Inverted Index was used for storing the posting 

list for this method. The top limitations being its sparse 

nature and inability to handle similarity queries. Wildcard 

characters also played a critical part in IR systems. Tolerant 

Retrieval, Asymmetric Query Expansion, Normalization, 

Equivalence Class are used for converting words that have 

different representations in different documents into the 

same format. Stemming and Lemmatization was used for 

converting words expressed in different parts of speech into 

the same inflectional form. [1] Phrases were often used as 

queries while searching relevant documents on the search 

engine. These phrase queries use bi-word indexes for 

Information Retrieval asks. Bi-word indexes generate a huge 

number of false positives and are not preferred as the ideal 

model for IR. 

Integration of wild cards in our queries can generally reduce 

the number of queries that must be issued, hence simplifying 

the extraction task. A problem in querying natural language 

text is that a free text query specified by a user may not 
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retrieve enough exact matches. Unlike term queries which 

can be relaxed by removing some of the terms removing 

terms from a wild card query without ruining its meaning is 

more challenging. There are various ways to deal with 

wildcard queries the most popular being the Permuterm 

Index. Example : mon*day can be rotated unless the * 

appears at the end of the query.[3] 

With an increase in the amount of data from different data 

sources, ranking of documents is a critical task for providing 

the best possible match to the user-specified query. Different 

weighting mechanisms are available the most popular being 

TF-IDF, Raw Term Frequency Weighting Scheme. The TF-

IDF converts the text document into a sparse matrix of a Bag 

of Words of corpus and then performs different operations 

and modeling on the obtained matrix. The TF-IDF 

Vectorization concept is used in text summarization, domain 

classification etc. [1] 

Different Similarity Measures were used to compare the 

best-suited document to the query in the vector space 

modeling. Cosine Similarity, Inner Product, Dice Coefficient, 

Jaccard Similarity was used to calculate the distance between 

the document and the free-text query. Top n documents 

matching the query with the shortest distance would be 

retrieved as a part of the IR. 

III. SPECIFICATIONS 

In order to accomplish the objectives of the paper , Python 

has been used as a base language and Natural Language 

Toolkit (NLTK) and Sklearn libraries have been used.  

IV. PROPOSED WORK 

This section represents our proposed work and focuses a 

strategy on retrieving n relevant documents from a free text 

query with reduced time complexity. The development 

method is broadly divided into 2 main parts -  Language 

Prediction and Relevant Documents Retrieval. To perform 

Language Prediction , the data is extracted from varying 

language-data dictionaries and by web-scraping. Data is then 

pre-processed through different techniques. TF-IDF 

Vectorizer Model generates a sparse matrix converting text 

data into numerical data for better modelling. The vectorized 

matrix with  the unique terms in the dataset as its columns 

along with message length and punctuation count are treated 

as the parameters/features for building the classification 

model. Random Forest Classifier has been used which uses 

ensemble learning and bagging technique to predict the free 

text query’s language. To perform relevant documents 

retrieval , a language hash map is used which stores the 

Language as keys and Corresponding Dataset pertaining to 

different domains as values in a key-value pair format. The 

predicted language is passed to the data Hash Map for 

importing the expected dataset. Data pre-processing is done 

for making the data suitable for higher accuracy and better 

modelling. Hash Map technique is proposed for an optimized 

time complexity and less iterative heavy threads. TF-IDF 

Vectorizer is modified to consider the Unique Terms along 

with the hits and timestamp/freshness. The TF-IDF values 

are then used to calculate the score and cosine similarity 

between the other vectors/documents and the free text query 

vector. The cosine values are then sorted in a descending 

order to retrieve the top n relevant documents from a huge 

dynamic dataset. 

The architectural overview describing an overall process of Information Retrieval which is shown in Fig. 1.  

 
Fig.1 Architecture Diagram 
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Algorithm 1 

Input : New Test Document 

Output : Predict the Language of Test Document 

Method : 

1. Import a Training Dataset (Format : Documents and Language) 

2. For EachDoc in Training Data: 

  Docs  Tokenize(EachDoc) 

 Docs RemoveStopwords(EachDoc) 

 Docs CleanDocs(EachDoc) 

 Docs WordNetLemmatizer(EachDoc) 

3. Vectorizer  TFIDF Vectorizer() 

4. Extract the features for Classification  

X_Features = Unique Terms of the TFIDF Model + Message Length + Punctuation Count 

Y_Original  = Given Language in the Dataset 

5. Split the Dataset into Training and Testing Data 

6. Model  RandomForestClassifier(Training Data) 

7. Language_Prediction  Pickle the Model. 

Algorithm 2 

Input : Given a User Query 

Output : Retrieve n relevant documents pertaining to the same domain 

Method: 

1. Language_HashMap = {“Language” : “Training Dataset from different domains”} 

//Training Data Comprising of Data , PageHits , Freshness 

2. Storing the Training Dataset in LinkedList  because of the dynamic pattern. 

3. Passing the New User Query into the Language Prediction Model 

2.1 Predicted_Language = Language_Prediction(User Query)    //Invoke the Pickled Model 

2.2 Training_Dataset = Language_HashMap(Predicted_Language) 

4. Df  Retrieve the Training Dataset 

5. For EachDoc in Training Data: 

  Docs  word_tokenize() 

 Docs  RemoveStopwords(EachDoc) 

 Docs  CleanDocs(EachDoc) 

 Docs  WordNetLemmatizer(EachDoc) 

6. Df  Df.append(User Query) 

7. Vectorizer  TFIDF Vectorizer(Df(n_terms , page_hits , timestamp)) 

8. X  Vectorizer.fit_transform(Df) 

9. for col in Vectorizer.nonzero()[1]: 

    print(Df[col], ' - ', Vectorizer [0, col]) 

10. cosine = cosine_similarity(Vectorizer, X) 

11. for x in cosine: 

                   valuessort = x.argsort()[-n:][::-1] 

I. Language Identification 

Language Identification becomes a crucial pre-requisite in Information Retrieval systems where it is common to index documents 

in a multilingual collection by the language they are written in. This feature helps in reducing the time complexity with the 

indexing property in IR systems. The main steps involved in Language Identification are : Data Extraction ,Data Tokenization ,  

Data Preprocessing , TF-IDF Vectorization and Classification.  

Data Extraction is an important aspect of any machine learning algorithms since it forms the base for building efficient models 

and deriving better accuracy scores. Data is gathered from different sources ,  data dictionaries and through web scraping. [1]. 

NLTK library is used to perform the text pre-processing. The documents are broken into tokens using the word_tokenize() 

package supported by NLTK. Stopwords are the most frequently used words in every language and do not add in important 

information in terms of performing any analytical tasks or cater to a little value in helping select documents matching a user 

need, so they are removed as a part of text pre-processing. Numeric characters and special characters are often present in any 
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documents but they additionally don’t contribute to any efficiency of the model and are hence removed. Lemmatization refers 

to doing things properly with the use of a vocabulary and morphological analysis of words , normally aiming to remove the 

inflectional endings only and to return the base form of a word/lemma. 

Classifiers cannot be directly built on text data. Hence different weighting schemes convert the text data into numerical form for 

different models to work on. We have used TF-IDF Vectorization which is a product of Number of times a term occurring in 

document  d and Number of documents in the collection that contain the term t. 

Model_Pipeline(TF-IDF Vectorizer , Classifier) 

Any document in a vector space model is expressed by :  

D1 : <T1 T2 T3 T4 T5 T9 T2 T3 T5> 

D2 : <T2 T5 T6 T7 T8> 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 

D1 1 2 2 1 2 0 0 0 1 

D2 0 1 0 0 1 1 1 1 0 

This is a count vectorizer model which considers the Raw Term Frequency in a document. We run into certain challenges like 

bias towards more stop words/more frequently occurring terms in the document , hence the proposed and widely used solution 

is Term Frequency – Inverse Document Frequency. 

TF-IDF Weighting Technique is given by the mathematical formula. 

 

 

where, 

  tf : number of times a term t appears in a document 

  N : total number of documents in the collection 

  df : number of documents that contains the term t  

After applying the TF-IDF Vectorizer , the corpus now contains Bag of Words (all unique terms in any given order). 

 For feature selection, we add 2 more factors like document length and punctuation count.  

X (Dependent Variable)= Document Length(x1) + Punctuation Count(x2) + Bag of Words (x3…xi)  

Y (Target Variable) = Language 

The corpus is then classified into training and testing data and different classifiers are built on the training dataset. Models are 

fit on the training data and prediction is done on the test data. Different Accuracy Scores are generated from applying different 

modelling techniques. The Accuracy chart is given in the Fig.2 and is proved that Random Forest Classifier worked best on our 

dataset. 

 

Fig.2 Accuracy Report 

The Classification Report is generated for all the predictor variables/languages to check their precision , recall , f1-score and 

support. The report is given in Fig.3 

 

Tf-idf(t,d) = (1+log(tf)) *  log(N/df) 
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Fig.3. Accuracy Report of Random Forest Classifier 

The Language Identification Pipeline through TF-IDF Vectorization and Classification was able to successfully predict the 

languages in the validation dataset or a free text query with a model accuracy of 91%. 

II. Dynamic Indexing 

All Information Retrieval systems work with huge terabytes of data which is non-static and gets updated frequently or at periodic 

intervals. Fault tolerant systems are used for building indexes in IR. The preferred data structure used is B+ Tree or a Linked 

List because the data size length is not fixed. Most collections are modified frequently with documents being added, deleted, and 

updated , either new terms need to be added to the dictionary or postings lists need to be updated for existing terms. We have 2 

main indexes , Big Index and Small Index(Auxiliary Index) through which we overcome the challenge of dynamic data. A 

HashMap is maintained in terms of a key-value pair of language and the corresponding varying domain dataset. The identified 

language of the free text query obtained from the Language Identification Process is then iterated through the HashMap for 

extracting the corresponding dataset which will be required for the next processing tasks. 

III. Relevant Documents Retrieval 

Information Retrieval systems operate on the underlying algorithm of finding documents of an unstructured nature that satisfies 

the an user requirement. To process large documents in an optimal and a shorter time , allow more flexible matching operations 

and allow ranked retrieval , linear scanning of texts is not a possible best solution. Hence Ranked Retrieval models have been 

introduced to cater to a free text query with better accuracy and a shorter turn around time. Text Pre-processing is done on the 

language specific dataset that has been transferred in the Main Memory. Pre-processing involves tokenization of documents into 

tokens/terms followed by stop word/punctuation removal followed by lemmatization.[6]. 

In Boolean Retrieval Model , the documents are represented as vectors of indexed terms. Retrieval is based on membership in 

sets through binary retrieval function i.e 0 when the term doesn’t appear in the document , 1 when the term appears in the 

document. Boolean Retrieval is closely associated with Inverted Index Construction. Inverted Index is represented as Term, 

Document Frequency and a Posting List. Boolean Retrieval Systems often create a large sparse inverted matrix and is 

computationally weak and takes a lot of time for processing tasks. 

Structure of Inverted Index: 

Term Doc. Frequency 

 

When a free text query is entered by a user , the documents are expected to be retrieved in a Ranked Order , so different scoring 

and weighting techniques are used.  

Jacard Coefficient Similarity between two dataset is the ratio between the number of terms common to all and all the unique 

terms.  

Jacard Similarity (Query , Document) = (Query AND Document) / (Query UNION Document) 

After certain experiments , it has been observed that Jaccard Coefficient is bias towards shorter length documents and does not 

consider the Term Frequency in a document. Sometime rare words in a collection are more informative than frequent terms 

which is not considered by Jaccard Coefficient. Vector Space Modelling is a widely used technique in Information Retrieval 

Systems. In Vector Space Modelling , the terms are represented as basis vectors which are linearly independent and orthogonal 

to each other. Basis vectors correspond to dimensions or directions in the vector space. Vector Coefficients are represented in 

the following fig.4 

Posting List 
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Fig.4 Vector Space Modelling 

Doc1: Laptops Domain World   <1 1 1>  

Doc2: World Laptops Laptops Domain Domain Domain  <1 2  3>  

Query: World Laptops Laptops Domain Domain<1 2 2> 

Vector Coefficients represent the importance of a term but not help assign weights to the term. 

Commonly used coefficients are Raw Term Frequency ,Term-Frequency—Inverse Document Frequency etc. Raw Term 

Frequency denotes the occurrence of frequency of terms in a document and specifies the relative importance of a word in a 

document. The challenge with Raw Term Frequency is about stop words or different parts of speech which are frequently 

occurring but might not be important in a document. The relation between Score and Raw Term Frequency is show in Fig.6 

which shows the score and the coefficient is directly proportional to the occurrence of terms in a document. But for an ideal 

behavior , after the repetition of terms in a document , the score should be constant approximately. This scenario happens when 

1+RTF is taken instead of RTF for calculating the score. 

 

 

 

In this paper , the proposed technique is TF-IDF weighting scheme. This weighting scheme is modified to also consider 

freshness/timestamp and number of votes for each document. The rarity of a term is given by Inverse Document Frequency. DFt 
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is the document frequency of t: the number of documents that contain t. We define the IDF (inverse document frequency) of t 

by log10 (N/ DFt). 

The proposed formula for TF-IDF in this paper to consider the changing dataset , the latest trends , freshness/timestamp and also 

the number of votes for each document (how other users have browsed the document) is given below. 

 

 

where, 

  TF : number of times a term t appears in a document 

N : total number of documents in the collection 

DF : number of documents that contains the term t  

The TF-IDF Weighting is calculated for all terms in the document/Bag of Words of the corpus. To retrieve the top relevant 

documents , the cosine similarity needs to be calculated between the documents in a collection and the free text query.  

 

where, 

q : free text query 

d : documents in the corpus 

Cosine Similarity / Score is calculated by the given mathematical formula. 

 

 

Score calculated is sorted in a descending order to provide the top most relevant trending and most user recommended documents 

for a free text query entered by the user. 

V. RESULT 

From the language identification algorithm which was built using TF-IDF Vectorizer and Random Forest Classifier, the language 

was identified for further operations. A Validation dataset was created to predict the language using the pickled TF-IDF and 

Random Forest Classifier Model. The Validation report is given in Fig.5. 

 

Fig.5. Language Output Report 

The predicted language is then passed through the IR modelling to retrieve the most relevant , domain-specific , current trending 

and most frequently accessed documents which matches the user specified query. The results are shown below for the free text 

query “Covid19 vaccines”. Top n Relevant Documents were retrieved for a given free text query in Fig.6 . 

 

Cosine_Similarity (q , d) = 
∑𝑞⋅𝑑𝑖

√∑𝑑𝑖
2⋅√∑𝑞2

 

 

Tf-IDFupdated =((1+ log(TF)) * log10(N/DF) + (1+log10(Freshness))+ (1+log10(Number of Votes)) 
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Fig.6. Top 10 Relevant Documents 

VI. CONCLUSION 

Although Information Retrieval systems exist and caters to 

the user need of providing the relevant documents , our 

proposed solution works in an efficient manner with a lesser 

time and space complexity. Our solution is built using 

NLTK and Scikit Learn Packages. In this paper we have 

developed Language Identification system using TF-IDF 

Vectorizer and a classifier model , followed by a modified 

vector space model that considers the number of votes and 

timestamp along with the Bag of Words for TF-IDF matrix 

computation and retrieves the top relevant documents to the 

user using cosine similarity scoring technique. The 

Language Classifier Model worked with an average 

accuracy of 91% to predict the language. The intermediate 

hashmap technique used between the two modelling 

techniques has reduced the time complexity and helped in 

retrieving the results faster. 
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