
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

207 | IJREAMV07I0375100 DOI : 10.35291/2454-9150.2021.0338 © 2021, IJREAM All Rights Reserved.

Developing Python Code for Static and Modal

Analysis of Plane Truss Structure

R Vara Prasad, Assistant Professor, Anil Neerukonda Institute of Technology & Sciences,

Visakhapatnam & India, vara.remo@gmail.com

Divya Dunga , Student, Anil Neerukonda Institute of Technology & Sciences, Visakhapatnam &

India, divyadunga250@gmail.com

Deepak Kumar.B, Student, Anil Neerukonda Institute of Technology & Sciences, Visakhapatnam

& India, drocks673@gmail.com

Bhargavi Sri, Student, Anil Neerukonda Institute of Technology & Sciences, Visakhapatnam &

India, bhargavishree415@gmail.com

D Santosh Sunil Varma, Student, Anil Neerukonda Institute of Technology & Sciences,

Visakhapatnam & India, sunilvarma024@gmail.com

G S Nethikonda, Student, Anil Neerukonda Institute of Technology & Sciences, Visakhapatnam &

India, srinethi97531@gmail.com

Abstract: Python is a high-sophisticated, general- purposefulness, object-oriented, enhanced programming language

that includes several general features like clean, easy and simple language, indicative language, dynamically typed,

automatic memory management and interpreted and very best tool when comparing with MATLAB because of various

rich libraries. In various fields of science, computational work and numerical calculations forms a bridge between

theory and experimentation which leads to developing automation and simulation. Developing of automation or

simulation has created several benefits like quality, high production rate, efficient use of materials, increased safety and

decreases industry lead time. Therefore, the present work have been investigated to develop Python code for

automation in structural and vibrational analysis of any Truss structure. In order to write python code, Railway bridge

truss structure was considered and the data was taken from introduction to finite elements by chandrapatla. Fully

working python code was developed using jupyter notebook and python 3.9.10 and investigated nodal displacements,

element stresses, support reactions, free natural frequencies and mode shapes. These results are compared using

ANSYS APDL R21. Therefore, using this developed python code, many researchers can do automation for analysis of

any truss structure at rocket speed.

Keywords — ANSYS APDL, Automation, Jupyter Notebook, MATLAB, Python, Truss.

I. INTRODUCTION

There is no confidential that engineering problems that were

decade ago are considered troublesome except on special

supercomputers, now routinely run on modest commodity

personal computers. However, it is not quite as well

recognized that these progresses have also been be

associated by important changes in programming languages,

all of which aims at greatly reducing the effort of writing

codes. Scientific applications are no exceptions; many

legacy programs written in Fortran, C or even C++ could

probably be rewritten in a more concise way using a variety

of scripting languages, such as MATLAB, Scilab, IDL,

Mathematica and others. Scripting languages have various

benefits over ‘conventional’ languages, these include:

(1) Scripting languages develop portable codes,

(2)Requires less memory management responsibility by the

programmer and

(3) Allow data types to be dynamically set at run time.

All of these factors contribute to making codes less bug

prone and so ultimately lead to increased productivity and

shorter code development cycles. These advantages,

unfortunately, have a price; scripting languages tend to be

inferior in raw numerical performance when benchmarked

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

208 | IJREAMV07I0375100 DOI : 10.35291/2454-9150.2021.0338 © 2021, IJREAM All Rights Reserved.

against compiled codes. Our experience, however, has been

that scripting languages, and in particular Python, often

perform above expectation, and are thus well positioned to

find the optimum between satisfactory execution time and

acceptable program development cost.

II. METHODOLOGY

The present work consists of two parts. In the first part a

fully working python code was developed using finite

element procedure in the jupyter notebook(Jupyter

Notebook (open source code), which began as the iPython

Notebook project, is a development environment for writing

and executing Python code. Jupyter Notebook is often used

for exploratory data analysis and visualization.

Project Jupyter is the top-level project name for all of the

subprojects under development, which includes Jupyter

Notebook. Jupyter Notebooks can also run code for other

programming languages such as Julia and R.) which is

accompanied by python 3.9.10.in the second part, the

results obtained using python are compared with the results

obtained from ANSYS APDL 2021 R21 software. The

python developed in this current work is applicable for any

type of truss structure of isotropic material and different

loading and support conditions. This python code is used to

investigate both static and vibrational analysis (A technique

used to determine a structure’s vibration characteristics: –

Natural frequencies – Mode shapes – Mode participation

factors (how much a given mode participates in a given

direction). It is most fundamental of all the dynamic

analysis types. Modal analysis allows the design to avoid

resonant vibrations or to vibrate at a specified frequency

(speakers, for example). Gives engineers an idea of how the

design will respond to different types of dynamic loads.

Helps in calculating solution controls (time steps, etc.) for

other dynamic analyses. Recommendation: Because a

structure’s vibration characteristics determine how it

responds to any type of dynamic load, always perform a

modal analysis first before trying any other dynamic

analysis) of any truss structure. To check whether the code

developed was giving exact results, the present work

considered railway bridge truss problem and the data was

taken from the textbook of introduction to finite elements by

chandrapatla and ashok belugundu.

III. STATIC AND VIBRATIONAL

ANALYSIS USING PYTHON CODE

This is the following python code developed in jupyter

notebook by importing various scientific computing

libraries:

importing libraries

import math

import matplotlib.pyplot as plot

import numpy as np

creating path for a file

file = open(r"D:\Remo desktop\PhD work\Python Project

2021\out.txt","w+")

creating input data and print

noofnodes=int(input("enter the total number of nodes"))

file.write("the total number of nodes= "+str(noofnodes)+

'\n')

noofelements=int(input("enter the total number of

elements"))

file.write("the total number of elements=

"+str(noofelements)+ '\n')

coordinates={}

for i in range(1,noofnodes+1):

coordinates[i]=list(map(int,input("enter coordinates for

node "+ str(i)+ ' in mm :').split(",")))

 file.write('coordinates for node' + str(i)+ 'in mm : '+

str(coordinates[i])+ '\n')

area=float(input("enter area in mm-square"))

file.write("area in mm-square= "+str(area)+ '\n')

elasticity=float(input("enter the modulus of elasticity in

N/mm-square"))

file.write("modulus of elasticity in N/mm-square=

"+str(elasticity)+ '\n')

startend={}

for i in range(1,noofelements+1):

startend[i]=list(map(int,input("enter the start node and

end node for element "+ str(i)+ ' :').split(",")))

file.write('the start node and end node for element '+

str(i)+ ' :'+str(startend[i])+ '\n')

noofsuppnodes=int(input("enter the total number of

nodes having supports"))

file.write('the total number of nodes having supports

'+str(noofsuppnodes)+ '\n')

nodesandtypesupport=[]

for i in range(noofsuppnodes):

 x=int(input("enter the node number having support"))

 print("enter the type of support")

 print("h for hinged/fixed")

 print("hrs for horizontal roller support")

 print("vrs for vertical roller support")

 t=input()

 file.write('the node number having support is '+str(x)+'

type of support is '+t+ '\n')

 nodesandtypesupport.append([x,t.lower()])

print(nodesandtypesupport)

noofloadnodes=int(input("enter total number of loaded

nodes "))

file.write('total number of loaded nodes

'+str(noofloadnodes)+ '\n')

loadnodes=[]

typeofload={}

for i in range(noofloadnodes):

 x=int(input("enter the node number having load "))

 loadnodes.append(x)

 typeofload[x]=list(map(float,input('enter the

horizontal and vertical loads in N ').split(',')))

 file.write('the node number having load is '+str(x)+'

horizontal and vertical loads in N is '+str(typeofload[x])+

'\n')

density=float(input("enter density in gm/mm-cube "))

poission=float(input("enter poission's ratio "))

http://jupyter.org/
http://jupyter.org/
https://github.com/jupyter/notebook
https://www.fullstackpython.com/development-environments.html
https://www.fullstackpython.com/data-analysis.html
https://julialang.org/
https://www.r-project.org/

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

209 | IJREAMV07I0375100 DOI : 10.35291/2454-9150.2021.0338 © 2021, IJREAM All Rights Reserved.

file.write('density in gm/mm-cube is '+str(density)+ '\n')

file.write('poissions ratio is '+str(poission)+ '\n')

calculating length of element direction cosines

lengthofelements={}

cos={}

sin={}

for i in range(1,noofelements+1):

 x,y=startend[i][0],startend[i][1]

 a,b=coordinates[x][0],coordinates[x][1]

 c,d=coordinates[y][0],coordinates[y][1]

 l=math.sqrt((d-b)**2+(c-a)**2)

 lengthofelements[i]=l

 cos[i]=(c-a)/l

 sin[i]=(d-b)/l

for i in range(1,noofelements+1):

 print("length of elements "+str(i)+":

",lengthofelements[i])

 print("cos value of elements "+str(i)+": ",cos[i])

 print("sin value of elements "+str(i)+": ",sin[i])

calculating element stiffness matrix and element mass

matrix

stiffness={}

for i in range(1,noofelements+1):

 l=cos[i]

 m=sin[i]

 mat=[[l**2,l*m,-l**2,-l*m],[l*m,m**2,-l*m,-m**2],[-

l**2,-l*m,l**2,l*m],[-l*m,-m**2,l*m,m**2]]

 a=(area*elasticity)/lengthofelements[i]

 for j in range(4):

 for k in range(4):

 mat[j][k]=a*mat[j][k]

 print("stiffness matrix of element "+str(i))

 for j in range(4):

 for k in range(4):

 print(mat[j][k],end=' ')

 print()

 print()

 print()

 stiffness[i]=mat

mass={}

for i in range(1,noofelements+1):

 mat=[[2,0,1,0],[0,2,0,1],[1,0,2,0],[0,1,0,2]]

 a=(area*density*lengthofelements[i])/6

 for j in range(4):

 for k in range(4):

 mat[j][k]=a*mat[j][k]

 print("mass matrix of element "+str(i))

 for j in range(4):

 for k in range(4):

 print(mat[j][k],end=' ')

 print()

 print()

 print()

 mass[i]=mat

calculating Global Stiffness matrix and global mass

matrix

ndof = noofnodes * 2

print(ndof)

globstifmat=[]

for i in range(ndof):

 globstifmat.append([0]*ndof)

x=0

asinode={}

for i in range(1,noofnodes+1):

 asinode[i]=[x,x+1]

 x+=2

e=startend

n=asinode

d={}

for i in range(1,noofelements+1):

 x=[]

 p=e[i]

 q=p[0]

 r=p[1]

 x.extend([n[q][0],n[q][1],n[r][0],n[r][1]])

 d[i]=x

print(d)

 for i in range(ndof):

 for j in range(ndof):

 s=0

 for k in d:

 if(i in d[k] and j in d[k]):

 zzz=stiffness[k]

 s+=zzz[d[k].index(i)][d[k].index(j)]

 globstifmat[i][j]=s

print("global stiffness matrix ")

for j in range(ndof):

 for k in range(ndof):

 print(globstifmat[j][k],end=' ')

 print()

print()

print(len(globstifmat))

print(len(globstifmat[0]))

ndof = noofnodes * 2

print(ndof)

globmassmat=[]

for i in range(ndof):

 globmassmat.append([0]*ndof)

for i in range(ndof):

 for j in range(ndof):

 s=0

 for k in d:

 if(i in d[k] and j in d[k]):

 zzz=mass[k]

 s+=zzz[d[k].index(i)][d[k].index(j)]

 globmassmat[i][j]=s

print("global mass matrix ")

for j in range(ndof):

 for k in range(ndof):

 print(globmassmat[j][k],end=' ')

 print()

print()

calculating global load vector

globloadvector=[0]*noofnodes*2

for i in typeofload:

 globloadvector[asinode[i][0]]=typeofload[i][0]

 globloadvector[asinode[i][1]]=typeofload[i][1]

print(globloadvector)

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

210 | IJREAMV07I0375100 DOI : 10.35291/2454-9150.2021.0338 © 2021, IJREAM All Rights Reserved.

print(nodesandtypesupport)

coltorem=[]

rowtorem=[]

for i in nodesandtypesupport:

 if(i[1]=='h'):

 coltorem.extend(asinode[i[0]])

 rowtorem.extend(asinode[i[0]])

 elif(i[1]=='hrs'):

 coltorem.append(asinode[i[0]][1])

 rowtorem.append(asinode[i[0]][1])

 elif(i[1]=='vrs'):

 coltorem.append(asinode[i[0]][0])

 rowtorem.append(asinode[i[0]][0])

print(coltorem)

print(rowtorem)

npglobstifmat=np.array(globstifmat)

onpglobstifmat=npglobstifmat

print(npglobstifmat)

print(npglobstifmat.shape)

Reducing Global Stiffness Matrix, global mass matrix

and global load vector

#removing row

npglobstifmat=np.delete(npglobstifmat, rowtorem, 0)

print(npglobstifmat)

print(npglobstifmat.shape)

#removing column

npglobstifmat=np.delete(npglobstifmat, rowtorem, 1)

print(npglobstifmat)

rednpglobstifmat=npglobstifmat

print(npglobstifmat.shape)

#mass matrix removing rows nd columns

npglobmassmat=np.array(globmassmat)

onpglobmassmat=npglobmassmat

print(npglobmassmat)

npglobmassmat=np.delete(npglobmassmat, rowtorem, 0)

print(npglobmassmat)

npglobmassmat=np.delete(npglobmassmat, rowtorem, 1)

print(npglobmassmat)

rednpglobmassmat=npglobmassmat

print(npglobmassmat.shape)

print(globloadvector)

#coverting to column vector

npglobloadvector=np.array(globloadvector)

orignpglobloadvector=npglobloadvector

print(npglobloadvector.shape)

#removing rows

npglobloadvector=np.delete(npglobloadvector,

rowtorem, 0)

print(npglobloadvector)

print(npglobloadvector.shape)

Solving KQ = F to determine Nodal Displacments

#linear eqn solving

a = npglobstifmat

b = npglobloadvector

nodaldisplacement = np.linalg.solve(a, b)

print("nodal displacement matrix in mm")

print(nodaldisplacement)

#changing dimension

xx=[]

zz=list(nodaldisplacement)

i=0

s=set(rowtorem)

for j in range(noofnodes*2):

 if(j not in s):

 xx.append(nodaldisplacement[i])

 i+=1

 else:

 xx.append(0)

print(xx)

file.write('nodal displacements in mm are ' + str(xx)+'\n')

#changing to col matrix

npnodaldisplacement=np.array(xx)

print(npnodaldisplacement.shape)

print('nodal displacement vector in mm')

print(npnodaldisplacement)

calculating Element Stresses

elementstresses={}

for i in range(1,noofelements+1):

 l=cos[i]

 m=sin[i]

 m1=np.array([-l,-m,l,m]).reshape(1,-1)

 pq=[]

 for z in d[i]:

 pq.append(npnodaldisplacement[z])

 zz=np.array(pq).reshape(-1,1)

 a=(elasticity/lengthofelements[i])

 b=np.matmul(m1,zz)

 elementstresses[i]=a*b

print("element stresses in N/mm-square")

for i in elementstresses:

print("element"+str(i)+"="+str(elementstresses[i][0][0]))

 file.write('element '+str(i)+' stress in N/mm-square=

'+str(elementstresses[i][0][0])+'\n')

#reaction of support

npglobstifmat=np.array(globstifmat)

x=np.matmul(npglobstifmat,npnodaldisplacement)

y=x-orignpglobloadvector

reactionmat=y

print("reaction at support nodes in N")

print(reactionmat)

j=0

for i in nodesandtypesupport:

 if(i[1]=='h'):

 print('reaction node at R'+str(i[0])+"X in N

"+str(reactionmat[(i[0]-1)*2]))

 print('reaction node at R'+str(i[0])+"Y in N

"+str(reactionmat[(i[0]-1)*2+1]))

 file.write('reaction node at R'+str(i[0])+"X in N

"+str(reactionmat[(i[0]-1)*2])+ '\n')

 file.write('reaction node at R'+str(i[0])+"Y in N

"+str(reactionmat[(i[0]-1)*2+1])+ '\n')

 elif(i[1]=='hrs'):

 print('reaction node at R'+str(i[0])+"Y in N

"+str(reactionmat[(i[0]-1)*2+1]))

 file.write('reaction node at R'+str(i[0])+"Y in N

"+str(reactionmat[(i[0]-1)*2+1])+ '\n')

 elif(i[1]=='vrs'):

 print('reaction node at R'+str(i[0])+"X in N

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

211 | IJREAMV07I0375100 DOI : 10.35291/2454-9150.2021.0338 © 2021, IJREAM All Rights Reserved.

"+str(reactionmat[(i[0]-1)*2]))

 file.write('reaction node at R'+str(i[0])+"X in N

"+str(reactionmat[(i[0]-1)*2])+ '\n')

#modal analysis

#(globalstiffnessmatrix-(lambda)globalmassmatrix)X

class Eigen(object):

 def _init_(self, *args, **kwargs):

 return super()._init_(*args, **kwargs)

 def Rescale(self, x):

 max = x.max()

 min = x.min()

 s = x.shape

 n = s[0]

 amax = max

 if abs(min) > max: amax = abs(min)

 for i in range(n):

 x[i] = x[i] / max

 return x

 def RescaleEigenVectors(self, evec):

 dims = evec.shape

 ndofs = dims[0]

 for i in range(ndofs):

 evec[:,i] = self.Rescale(evec[:,i])

 return evec

 def GetOrthogonalVector(self, ndofs, trial, mg, ev,evec):

 const = 0

 s = [ndofs]

 sumcu= np.zeros(s)

 for e in range(ev):

 U = evec[:,e]

 const += trial @ mg @ U

 cu = [x * const for x in U]

 sumcu += cu

 trial = trial - sumcu

 return trial

 def Solve(self,kg, mg, tolerance = 0.00001):

 dims = kg.shape

 ndofs = dims[0]

 s = (ndofs,ndofs)

 evec = np.zeros(s)

 s = (ndofs)

 eval = np.zeros(ndofs)

 trial = np.ones(ndofs)

 eigenvalue0 = 0

 for ev in range(ndofs):

 print("Computing eigenvalue and eigen vector " +

str(ev) + "... " , end="")

 converged = False

 uk_1 = trial

 k = 0

 while converged == False:

 k += 1

 if ev > 0:

 uk_1 =

self.GetOrthogonalVector(ndofs,uk_1,mg,ev,evec)

 vk_1 = mg @ uk_1

 uhatk = np.linalg.solve(kg,vk_1)

 vhatk = mg @ uhatk

 uhatkt = np.transpose(uhatk)

 eigenvalue = (uhatkt @ vk_1)/(uhatkt @ vhatk)

 denominator = math.sqrt(uhatkt @ vhatk)

 uk = uhatk/denominator

 tol = abs((eigenvalue - eigenvalue0) /

eigenvalue)

 if tol <= tolerance:

 converged = True

 evec[:,ev] = uk

 eval[ev] = eigenvalue

 print("Eigenvalue = " + str(eigenvalue))

 print('no of iterations= ',k)

 else:

 eigenvalue0 = eigenvalue

 uk_1 = uk

 if k > 1000:

 evec[:,ev] = uk

 eval[ev] = eigenvalue

 print ("could not converge. Tolerance = "

+ str(tol))

 break

 self.eigenvalues = eval

 return evec

rednpglobstifmat.shape

rednpglobmassmat.shape

compute eigenvalues and eigen vectors

e = Eigen()

evec = e.Solve(rednpglobstifmat,rednpglobmassmat)

evect = e.RescaleEigenVectors(evec)

eval = e.eigenvalues

neval = len(eval)

print("eigen values")

eigvalues=e.eigenvalues

print(e.eigenvalues)

file.write("eigen values are "+str(eigvalues)+'\n')

print(len(e.eigenvalues))

print("eigen vectors")

print(len(evect))

print(evect)

for i in evect:

file.write("eigen vectors are "+str(list(i))+'\n')

from scipy.linalg import eigvalsh

ab=eigvalsh(rednpglobstifmat,rednpglobmassmat)

print(ab[0])

f1=np.sqrt(ab[0])

f1

f2=np.sqrt(ab[0])

f2=f2/(2*3.14)

f2

#frequency

freq=[]

for i in eigvalues:

freq.append(math.sqrt(i)/(2*3.14))

print("natural frequency in hertz",freq)

file.write("natural frequency in hertz "+str(freq)+ '\n')

import matplotlib.pyplot as plt

z=1

for i in evect:

 time = np.array(i)

 amplitude = np.sin(time)

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

212 | IJREAMV07I0375100 DOI : 10.35291/2454-9150.2021.0338 © 2021, IJREAM All Rights Reserved.

 plot.plot(time, amplitude)

 plot.title('mode'+str(z))

 plot.xlabel('vector')

 plot.ylabel('sin(vector)')

 plot.grid(True, which='both')

 plot.axhline(y=0, color='k')

 plot.savefig(r"D:\Remo desktop\PhD work\Python

Project 2021\mode"+str(z)+'.png', bbox_inches='tight')

 plot.show()

 plot.show()

 z+=1

file.close()

This code is saved as projectcode.ipynb.To verify

whether the code giving correct results or not, the present

work considers a railway bridge truss structure as shown

 Fig.3.1: Railway Bridge Truss Structure

Now run this python code by clicking run in the jupyter

notebook interface. The code prompts the following input

data:

The total number of nodes = 19

The total number of elements = 35

Coordinates for node1in mm: [0, 0]

Coordinates for node2in mm: [1800, 3118]

Coordinates for node3in mm: [3600, 0]

Coordinates for node4in mm: [5400, 3118]

Coordinates for node5in mm: [7200, 0]

Coordinates for node6in mm: [9000, 3118]

Coordinates for node7in mm: [10800, 0]

Coordinates for node8in mm: [12600, 3118]

Coordinates for node9in mm: [14400, 0]

Coordinates for node10in mm: [16200, 3118]

Coordinates for node11in mm: [18000, 0]

Coordinates for node12in mm: [19800, 3118]

Coordinates for node13in mm: [21600, 0]

Coordinates for node14in mm: [23400, 3118]

Coordinates for node15in mm: [25200, 0]

Coordinates for node16in mm: [27000, 3118]

Coordinates for node17in mm: [28800, 0]

Coordinates for node18in mm: [30600, 3118]

Coordinates for node19in mm: [32400, 0]

Area in mm2 = 3250.0

Modulus of elasticity in N/mm2 = 200000.0

The start node and end node for element 1: [1, 3]

The start node and end node for element 2: [3, 5]

The start node and end node for element 3: [5, 7]

The start node and end node for element 4: [7, 9]

The start node and end node for element 5: [9, 11]

The start node and end node for element 6: [11, 13]

The start node and end node for element 7: [13, 15]

The start node and end node for element 8: [15, 17]

The start node and end node for element 9: [17, 19]

The start node and end node for element 10: [2, 4]

The start node and end node for element 11: [4, 6]

The start node and end node for element 12: [6, 8]

The start node and end node for element 13: [8, 10]

The start node and end node for element 14: [10, 12]

The start node and end node for element 15: [12, 14]

The start node and end node for element 16: [14, 16]

The start node and end node for element 17: [16, 18]

The start node and end node for element 18: [1, 2]

The start node and end node for element 19: [2, 3]

The start node and end node for element 20: [3, 4]

The start node and end node for element 21: [4, 5]

The start node and end node for element 22: [5, 6]

The start node and end node for element 23: [6, 7]

The start node and end node for element 24: [7, 8]

The start node and end node for element 25: [8, 9]

The start node and end node for element 26: [9, 10]

The start node and end node for element 27: [10, 11]

The start node and end node for element 28: [11, 12]

The start node and end node for element 29: [12, 13]

The start node and end node for element 30: [13, 14]

The start node and end node for element 31: [14, 15]

The start node and end node for element 32: [15, 16]

The start node and end node for element 33: [16, 17]

The start node and end node for element 34: [17, 18]

The start node and end node for element 35: [18, 19]

The total number of nodes having supports 2

The node number having support is 1 type of support is h

The node number having support is 19 type of support is

hrs

Total number of loaded nodes 10

The node number having load is 1 horizontal and vertical

loads in N is [0.0, -280000.0]

The node number having load is 3 horizontal and vertical

loads in N is [0.0, -210000.0]

The node number having load is 5 horizontal and vertical

loads in N is [0.0, -210000.0]

The node number having load is 7 horizontal and vertical

loads in N is [0.0, -210000.0]

The node number having load is 9 horizontal and vertical

loads in N is [0.0, -210000.0]

The node number having load is 11 horizontal and

vertical loads in N is [0.0, -210000.0]

The node number having load is 13 horizontal and

vertical loads in N is [0.0, -210000.0]

The node number having load is 15 horizontal and

vertical loads in N is [0.0, -210000.0]

The node number having load is 17 horizontal and

vertical loads in N is [0.0, -210000.0]

The node number having load is 19 horizontal and

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

213 | IJREAMV07I0375100 DOI : 10.35291/2454-9150.2021.0338 © 2021, IJREAM All Rights Reserved.

vertical loads in N is [0.0, -360000.0]

Density in gm/mm3 is 0.00785

Poissions ratio is 0.3

IV. RESULTS AND DISCUSSIONS

The results obtained from python code is verified by

doing analysis of railway-bridge in ANSYS APDL

software. The static results are compared for validation for

checking the code is correct or not.

By observing Table 4.1, Table 4.2 and Table 4.3 results

obtained from python code and ANSYS APDL are

compared for nodal displacements, element stresses and

support reactions for validation. The python code result

values are exactly matched with ANSYS APDL result

values which shows that the code developed in the current

work is validated and is suitable for any truss structure for

static and vibrational analysis.

Table 4.1: Validation of Nodal Displacements.

Reaction forces

Reaction forces from

Ansys APDL in N

Reaction forces from

Python Code in N

R1x 1.1816E-08 1.1816E-08

R1y 1119999.9 1119999.9

R19y 1199999.9 1199999.9

Table 4.2: Validation of Reaction Forces.

As the code is validated, the modal analysis of given

railway-bridge truss structure is done and the natural

frequency and mode shapes are shown. The mode shapes

for the corresponding 35 natural frequencies are plotted in

the Fig: 4.1(mode1-mode35) The 35 natural frequency

Table 4.3: Validation of Element Stresses

 Fig.4.1: Mode Shape 1 for corresponding frequency 1.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

214 | IJREAMV07I0375100 DOI : 10.35291/2454-9150.2021.0338 © 2021, IJREAM All Rights Reserved.

 Fig.4.2: Mode Shape 2 for corresponding frequency 2.

 Fig.4.3: Mode Shape 3 for corresponding frequency 3.

 Fig.4.4: Mode Shape 5 for corresponding frequency 5.

 Fig.4.5: Mode Shape 6 for corresponding frequency 6

 Fig.4.6: Mode Shape 7 for corresponding frequency 7.

 Fig.4.7: Mode Shape 8 for corresponding frequency 8.

 Fig.4.9: Mode Shape 9 for corresponding frequency 9.

 Fig.4.10: Mode Shape 10 for corresponding frequency 10.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

215 | IJREAMV07I0375100 DOI : 10.35291/2454-9150.2021.0338 © 2021, IJREAM All Rights Reserved.

 Fig.4.11: Mode Shape 11 for corresponding frequency 11.

Fig.4.12: Mode Shape 12 for corresponding frequency 12.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

216 | IJREAMV07I0375100 DOI : 10.35291/2454-9150.2021.0338 © 2021, IJREAM All Rights Reserved.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

217 | IJREAMV07I0375100 DOI : 10.35291/2454-9150.2021.0338 © 2021, IJREAM All Rights Reserved.

Fig.4.13: Mode Shapes From 13 to 35 for corresponding

Natural Frequencies From 13 to 35.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

218 | IJREAMV07I0375100 DOI : 10.35291/2454-9150.2021.0338 © 2021, IJREAM All Rights Reserved.

S.No

Natural frequency

from Python Code In

Hertz

1 0.00770

2 0.02299

3 0.02991

4 0.05340

5 0.07532

6 0.07105

7 0.05334

8 0.02723

9 0.01277

10 0.01068

11 0.02301

12 0.02379

13 0.00970

14 0.01411

15 0.00855

16 0.00795

17 0.00823

18 0.00790

19 0.00805

20 0.00786

21 0.00795

22 0.00783

23 0.00789

24 0.00780

25 0.00785

26 0.00788

27 0.00782

28 0.00784

29 0.00780

30 0.00781

31 0.00778

32 0.00779

33 0.00777

34 0.00778

35 0.00777

Table 4.4: Natural frequencies of Railway Bridge.

V. CONCLUSION AND FUTURE SCOPE

From the present investigation, it can be concluded that the

results obtained by running python code were almost

matched with the results obtained from ANSYS APDL

software. The current project investigated static and

vibrational analysis of Railway Bridge structure using

Python code and results obtained are exceptional.

The python code which we developed is suitable for all

truss structures with any material. Our code is restricted to

linear properties only. The code which we developed is

used for automation for conducting stress analysis and

vibration analysis.

If for different materials this same experiment has to run,

then the entire pre-processing process has to be changed

and re-run the analysis. If in another case the truss structure

was different or number of elements used are different, then

the entire modeling work and then the pre & post works has

to be carried out newly while using ANSYS APDL

Software. With this Python code, the mentioned challenges

can be solved very easily and at rocket speeds.

This Python code developed for any type of truss

structure. In future it can be upgraded to work for all

structural members like beams plates, columns etc. Also,

same procedure can be followed to develop python code

that can work for plates with notches. Also we can

implement in composite materials also.

REFERENCES

[1] An Object-Oriented class design for the Generalized

Finite Element Method programming Dorival Piedade

Neto* Manoel Dênis Costa Ferreira Sergio Persival

Baroncini Proença, latin American journal of solids and

structures, 10(2013) 1267 – 1291

[2] Alves Filho, J. S. R., Devloo, P. R. B. (1991). Object

Oriented programming in Scientific computations: the

beginning of a new era. Engineering Computations,

Vol. 8, Issue 1, pp. 81-87.

[3] Bordas, S. P. A., Nguyens, P. V., Dunant, C.,

Guidoum, A., Nguens-Dand, H. (2007). An extended

finite element library, International Journal for

Numerical Methods in Engineering, Vol. 71, pp. 703-

732

[4] Duarte, C. A. and Oden, J. T. (1996b).Hpclouds – an

hpmeshless method. Numerical Methods for Partial

Differential Equations, Vol. 12, pp. 673–705.

[5] scikit-fem: A Python package for finite element

assembly Tom Gustafsson1 and G. D. McBain DOI:

10.21105/joss.02369

[6] Cimrman, R., Lukeš, V., & Rohan, E. (2019).

Multiscale finite element calculations in Python using

SfePy. Advances in Computational Mathematics. doi:

10.1007/s10444-019 09666-0

[7] Hunter, J. D. (2007). Matplotlib: A 2D graphics

environment. Computing in Science & Engineering,

9(3), 90–95. doi:10.1109/MCSE.2007.55

[8] Bathe, K. J. (1996). Finite Element Procedures,

Prentice-Hall, Inc. Englewood Cliffs, New Jersey.

http://matplotlib.sf.net/Matplotlib.pdf, (accessed April

2011).

[9] Python Scientific Lecture Notes: https://scipy-

lectures.github.io/

[10] Scientific computing tools for python:

http://www.scipy.org/

[11] NumPy: http://www.numpy.org/

[12] SciPy library: http://www.scipy.org/scipylib/

[13] Matplotlib: http://matplotlib.org/

[14] IPython: http://ipython.org/

[15] Text book of introduction to finite element analysis by

Chandrapatla and Ashok Belugundu

