
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

269 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

A Novel Survey: Current Trends in Database

Management System and Their Impact on Security

Anjali Yadav, Assistant Professor, RKGIT Ghaziabad, India, anjali.yadavskb@gmail.com

Praveen Kumar, Assistant Professor, RKGIT Ghaziabad, India, ranagfcs@rkgit.edu.in

Lalit Kumar Saraswat, Assistant Professor, RKGIT Ghaziabad, India, lalitfcs@rkgit.edu.in

Manish Gupta, Assistant Professor, RKGIT Ghaziabad, India, manihfcs@rkgit.edu.in

Abstract - In today’s era, as organizations increase their reliance on information systems for daily business, it becomes

more vulnerable to security breaches even though they gain the advantages of productivity and efficiency. Although

various techniques are available to secure the data such as encryption and electronic signatures when transmitted

across sites, a comprehensive approach for data security must also include mechanisms for enforcing access control

policies based on data contents, subject qualifications and characteristics, security issues and many more. In this

modern era where everything is digital, the number of reported cases of data breaches, cyber crime, cyber attacks, leak

of sensitive information, disclosure of confidential data, data intrusion increases day by day, in that case need for

industries dependent on databases which ensure their data security and defend their data from all the security threats

is the main concern. The primary goal of database security is to restrict exposure of unnecessary information and

updating data while ensuring the availability of the needed services. In this paper, we discuss different security methods

that have been created to protect the databases and various different security models have been developed based on

different security aspects of the database. Use all these different security methods when the database management

system is designed and developed for protecting the database.

Keywords — Cyber Crime, Threat, SQL Injection, Vulnerabilities

I. INTRODUCTION

In today’s time the data has become a strategic asset of

high-value because of its ability to make new discoveries.

Data has become an indispensable part of everyone’s life

from a person keeping track of his monthly expenses to an

IT company trying to boost its revenues through data

mining. The collection of data related to each other, referred

as a Database contains all the information pertinent to an

organization. Database has made it possible for businesses

to add to the effectiveness of their operations and enhance

its capabilities. Any organization’s success and failure

probability depends upon the quality, quantity and level of

security of their database. However, these advancements

come along with various security threats like malicious

people targeting data and compromising data integrity,

unauthorized access to data and lastly data critical to the

industry getting leaked to the outside world. Since data held

by the database is of great significance, it is utmost

important to secure the database. Database security refers to

the process of preventing data from unauthenticated misuse,

inadvertent mistakes, data loss and corruption or any

unintended activity on the database. Just like every tangible

asset of the organization is protected, organization’s data in

the database is one of the key assets that needs to be

secured. Data resides in the database at different levels

namely physical, data, network, application and host level.

Data security ensures all the levels of the database are

protected. As organizations increase their adoption of

database systems as the key data management technology

for day-to-day operations and decision making, the security

of data managed by these systems becomes crucial. Damage

and misuse of data affect not only a single user or

application, but may have disastrous consequences on the

entire organization. The recent rapid proliferation of Web

based applications and information systems have further

increased the risk exposure of databases and, thus, data

protection is today more crucial than ever. It is also

important to appreciate that data needs to be protected not

only from external threats, but also from insider threats.

Security breaches are typically categorized as unauthorized

data observation, incorrect data modification, and data

unavailability. Unauthorized data observation results in the

disclosure of information to users not entitled to gain access

to such information. All organizations, ranging from

commercial organizations to social organizations, in a

variety of domains such as healthcare and homeland

protection, may suffer heavy losses from both financial and

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

270 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

human points of view as a consequence of unauthorized

data observation. Incorrect modifications of data, either

intentional or unintentional, result in an incorrect database

state. Any use of incorrect data may result in heavy losses

for the organization. When data is unavailable, information

crucial for the proper functioning of the organization is not

readily available when needed. Thus, a complete solution to

data security must meet the following three requirements: 1)

secrecy or confidentiality refers to the protection of data

against unauthorized disclosure, 2) integrity refers to the

prevention of unauthorized and improper data modification,

and 3) availability refers to the prevention and recovery

from hardware and software errors and from malicious data

access denials making the database system unavailable.

These three requirements arise in practically all application

environments. Consider a database that stores payroll

information. It is important that salaries of individual

employees not be released to unauthorized users, that

salaries be modified only by the users that are properly

authorized, and that paychecks be printed on time at the end

of the pay period. Similarly, consider the Web site of an

airline company. Here, it is important that customer

reservations only be available to the customers they refer to,

that reservations of a customer not be arbitrarily modified,

and that information on flights and reservations always be

available. In addition to these requirements, privacy

requirements are of high relevance today. Though the term

privacy is often used as a synonym for confidentiality, the

two requirements are quite different. Techniques for

information confidentiality may be used to implement

privacy; however, assuring privacy requires additional

techniques, such as mechanisms for obtaining and recording

the consents of users. Also, confidentiality can be achieved

by means of withholding data from access, whereas privacy

is required even after the data has been disclosed. In other

words, the data should be used only for the purposes

sanctioned by the user and not misused for other purposes.

Data protection is ensured by different components of a

database management system (DBMS). In particular, an

access control mechanism ensures data confidentiality.

Whenever a subject tries to access a data object, the access

control mechanism checks the rights of the user against a set

of authorizations, stated usually by some security

administrator. An authorization states whether a subject can

perform a particular action on an object. Authorizations are

stated according to the access control policies of the

organization. Data confidentiality is further enhanced by the

use of encryption techniques, applied to data when being

stored on secondary storage or transmitted on a network.

Recently, the use of encryption techniques has gained a lot

of interest in the context of outsourced data management; in

such contexts, the main issue is how to perform operations,

such as queries, on encrypted data. Data integrity is jointly

ensured by the access control mechanism and by semantic

integrity constraints. Whenever a subject tries to modify

some data, the access control mechanism verifies that the

user has the right to modify the data, and the semantic

integrity subsystem verifies that the updated data are

semantically correct. Semantic correctness is verified by a

set of conditions, or predicates, that must be verified against

the database state. To detect tampering, data can be digitally

signed. Finally, the recovery subsystem and the concurrency

control mechanism ensure that data is available and correct

despite hardware and software failures and accesses from

concurrent application programs. Data availability,

especially for data that are available on the Web, can be

further strengthened by the use of techniques protecting

against denial-of-service (DoS) attacks, such as the ones

based on machine learning techniques. In this paper, we

focus mainly on the confidentiality requirement and we

discuss access control models and techniques to provide

high-assurance confidentiality. Because, however, access

control deals with controlling access to the data, the

discussion in this paper is also relevant to the access control

aspect of integrity, that is, enforcing that no unauthorized

modifications to data occur. We also discuss recent work

focusing specifically on privacy-preserving database

systems. We do not cover transaction management or

semantic integrity. We refer the reader to for an extensive

discussion on transaction models, recovery and concurrency

control, and to any database textbook for details on

semantic integrity. It is also important to note that an access

control mechanism must rely for its proper functioning on

some authentication mechanism. Such a mechanism

identifies users and confirms their identities. Moreover, data

may be encrypted when transmitted over a network in the

case of distributed systems. Both authentication and

encryption techniques are widely discussed in the current

literature on computer network security and we refer the

reader to for details on such topics. We will, however,

discuss the use of encryption techniques in the context of

secure outsourcing of data, as this is an application of

cryptography which is specific to database management.

II. ASPECTS OF DATABSE SECURITY

2.1 Confidentiality, Integrity and Availability (CIA) in

Database Management System

As mentioned in [1] a complete solution to data security

must fulfilled the following three requirements

Confidentiality, Integrity, Availability (CIA): these entire

factors can gained in database using following ways:

2.1.1 Confidentiality

Means the protection of data against unauthorized

disclosure can be achieved using access control

mechanisms. It is already further enhanced by the use of

encryption techniques applied to data when being stored on

secondary storage or transmitted on a Network.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

271 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

2.1.2 Integrity

Means the prevention of unauthorized and improper data

modification and can be achieved in combination with

access control mechanisms by semantic integrity

constraints.

2.1.3 Availability

Means to the prevention and recovery from hardware and

software errors and from malicious data access denials

making the database system inaccessible. The data that are

available on the Web can be powered by the use of

techniques protecting against denial-of-service attacks such

as the ones based on machine learning techniques.

 Figure 1: CIA Triad

Latest approaches to protecting databases are illustrated in

[2]. All of these approaches are related to the CIA. In these

approaches the author proposes that it can be implemented

with the help of below listed appropriate techniques:

Authentication of Users

Within this point the author has mentioned public key

encryption (PKI) for the databases that require higher levels

of safety one-time passwords X.509 digital certificate smart

cards can be used. PKI is very useful when contacting over

irrelevant networks like the Internet and both on the internal

servers.

Access control to objects and authentication of authorized

applications

This point means the access control should be defined at the

design state. Here main emphasis is given on the roles and

based on this access is given to the user.

Administration policies and procedure

Its mean Security and safety policies with plans are required

for varying requirements of data security.

Secure initial configuration

This point indicates the Policies and procedures also define

auditing requirements for securing initial configuration and

managing change regulation.

Auditing

This point refers to auditing the author emphasizes on

maintaining logs of the changes to the database management

system.

Backup and recovery strategies

This point refers to the backup and strategies, As the

backup and recovery there should be three kinds of

backup’s cold, hot and logical. All these aspects are

traditional and there are vulnerabilities in these security

methods which may cause threats to the database system.

Henceforth this paper gives detailed information about the

vulnerabilities, threats and different security methods to

avoid them.

2.2 ORIGIN OF SECURITY THREATS

Security threats can have various sources of origination

such as Internal, External and Partner.

Internal: These are the security threats sources that exist

within the organization like some company executives who

have high access and privileges of the database. Internal

sources enjoy certain levels of trust and privileges [8].

External: Sources outside the organization pose as external

threats to the database. Hackers, cybercrime groups and

other government entities are some examples of external

sources of threats. No trust or privileges are invested in

external sources.

Partners: These are the people outside the organization

that share business relationships with them. Customers,

vendors, suppliers and contractors are a few examples of

partner groups of organizations that can be a source of

threat for the database. Since the communication between

both the parties are necessary for the functionality of

business, moderate levels of trust and privileges are

associated with them.

On the basis of Data Breach Investigation Report (DBIR)

2016[10], 2017[11], 2018[12] and 2019[13], where

different origins of security threats such as Internal,

External, Parties and Multiple parties were considered

following chart Figure 1 has been derived. The conclusions

made from the following graph [Figure 1] are: There was an

increase in the percentage of security threats originating

from within the organization from 11% in 2016 to 34% in

2019. Threats originating from external sources decreased

over the period of 2015 – 2019 from 86% to 69%.

 Figure 2: Origins of Security Threats Chart

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

272 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

2.3 SECURITY THREATS

According to IBM’s 2019 Data Breach Report, Conducted

by the Ponemon Institute, the cost of a data breach has

increased by 12% over the past 5 years and is now $3.92

million on world average[5]. The financial consequences of

the attacks on databases are not only immediate but the cost

impact is felt for years after the incident. There are several

security threats that can lead to data breach incidents. Top

10 threats over the past decade are:

A. Excessive and Inappropriate Privilege abuse:

Database management systems and their corresponding data

structures are complicated which makes administrators

granting excessive rights to the users so as to prevent any

application failure due to lack of rights. When users are

given privileges more than what is required for their job

functionality, these privileges can be used maliciously. For

example course coordinator for any university is given the

right to upload marks of every student. This privilege can be

misused to change the marks of any student or any subject.

This misuse is the result of granting generic access rights to

a certain group of users even when it exceeds their specific

job requirements.

B. Legitimate Privilege Abuse:

This happens when a user is given only those privileges

which are required by their job functionalities and these

legitimate privileges are used for unauthorized purposes.

User groups like Database System Administrator (DBA)

and Developers have access to the entire database due to

their job requirements. If a DBA tries to access the database

data directly instead of the application interface, all the

application permissions and security mechanisms would be

surpassed making the way for privilege abuse clear [4].

C. Privilege Elevation:

Users with low-level privileges may use the vulnerabilities

in the database to convert their access rights to high-level

privilege. This can lead to the availability of critical

information to unauthorized users.

D. Platform Vulnerabilities:

Any vulnerability in the underlying Operating System like

Windows 2000, Windows XP, and Linux etc. can lead to

privilege escalation, denial of service, data corruption and

unauthorized access security threats. For example, A

potential security vulnerability in Intel WIFI Drivers and

Intel PROSet/Wireless WiFi Software extension DLL with

severity rating as High was patched in November 2019

platform update. Memory corruption issues in Intel(R)

WIFI Drivers before version 21.40 may allow a privileged

user to enable escalation of privilege, denial of service, and

information disclosure via local access [8].

E. Weak Audit Trails:

Automated recording of any database transactions involving

sensitive data should be a part of every database

deployment. Failure to monitor transactions and collect

audit details of database activities poses risk to the

organization on many levels [2]. Many organizations rely on

native audit tools provided by the database but the native

audit tools do not record sufficient contextual information

necessary to ensure security, detect attacks and provide

incident forensics. Another reason native audit tools are not

reliable is that users with administrative rights either

legitimate or escalated can turn off database auditing to hide

malicious activities [12]. Therefore database responsibilities

and audit capabilities should be separate from both database

server platform and database administrator to ensure strong

separation of duties policy [11].

F. Denial of Service (DoS):

This is a general category attack in which the legitimate

users like employees, members or account holders are

deprived of database services or resources which they

require. This is done by shutting down the machine or the

network making it inaccessible for its intended users. This

can be done in two ways either by flooding the destination

with excess traffic or by sending them information that

results in a crash [12]. Even though Dos doesn’t directly

result in data theft, loss or corruption they can cost a

significant amount of time and money to handle.

G. Unsecured Storage Media:

Backup storage media is often less secured compared to the

other database assets. This resulted in several high profile

data breaches involving theft or incidental exposure of

database backup tapes and hard disks. Many regulations

have made it mandatory to protect backup copies of

sensitive data. One of the possible solutions to this is

encryption of all the backup data [2] [7].

H. SQL Injection Attack (SQLIA) [14]:

This is an attack which gives a potential attacker complete

control over your database through the insertion of

unauthorized or malicious SQL code in the database query.

There can be multiple types of SQLIA:

⮚ Injection by passing malicious strings in for user input in

web forms.

⮚ Through cookies; modifying cookie fields so that they

contain attack strings.

⮚ Through server variables where headers are modified to

contain attack strings.

⮚ Second Order SQLI; where the attack is designed to run

at a later stage and not immediately [12].

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

273 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

I. Database Communications Protocol Vulnerabilities:

Proprietary protocols are created by database vendors for

the communication between database client and servers

through data and commands. Vulnerabilities in these

protocols can lead to various fraudulent activities like

unauthorized data access, denial of service, data corruption.

In addition to these threats, what makes them worse is the

fact that no record of these fraud activities will be there in

the native audit trail since these protocols are covered by

database native audits. Attacks based on protocols can be

prevented by using protocol validation which audits and

protects against attacks by comparing live protocol to

expected protocol structure [15].

J. Weak authentication:

If the authentication procedure of any database is weak, an

attacker can acquire the identity of a legitimate database

user by using any of the following techniques: Brute force,

social engineering and direct credential theft. Two step

authentication procedures are a must for database security.

III. SECURITY TECHNIQUES

Database security deals with all issues to guarantee the

confidentiality, integrity and availability of data stored

within database systems. Access control, as a major aspect

of database security, aims at ensuring confidentiality (the

protection from unauthorized disclosure) and up to a degree

also integrity2 (the protection from unauthorized

modification) of data. Access rights are used to allow or

forbid subjects (the active entities of a system, i.e. processes

running on behalf of users) to execute a particular action (or

operation) on a protection object (the assets to be protected

from unauthorized accesses, e.g. relations, types or classes,

tuples or objects, attributes, etc.). Access control comprises

all system mechanisms that are required to check whether a

request, issued by a particular subject, is allowed or not, and

all mechanisms that are required to enforce the

corresponding decision. It is based on a chosen policy (a set

of rules as authoritative regulations or directions

determining what should be protected using which

principles). The same mechanisms can be used to enforce

different policies, and the same policy can be enforced by

different mechanisms [16]. Database is the backbone of any

organization. Therefore it is important for the organization

to implement any security solution. The security technique

must ensure the safety of not only the data inside the system

but also the database hardware, software and human

resources. Database security techniques can be broadly

classified into four categories, namely: Access Control,

Techniques against SQLIA, Data Encryption and Data

Scrambling [5].

A. Access Control (Mechanism):

Data confidentiality can be ensured by using Access Control

Mechanism. Most users are assigned or have authorized

privileges to specific database resources and every time a

user tries to access any data from the database, the access

control mechanism will compare the required privileges to

assigned privileges. Through this technique users can only

access that data object for which they are adequately

authorized. For example, for a university database teachers

and students can be two categories of users with different

access privileges. A student can only read grades and

courses offered and the teacher can update grades of

students. A student can’t make changes in the grades

obtained whereas a teacher can’t make changes in the

courses offered.

Access Control in databases can be maintained in

different ways such as:

Discretionary Access Control (DAC):

DAC grants or restricts the access to a data object based on

an access policy created by the owner of the data object. It

is discretionary because the owner can transfer the

authenticated objects and information access to other users.

Object’s owner group has complete control over the access

of the object [7]. Discretionary access control (DAC) is

based on subject and protection object identities. Access

rights are explicitly granted. An access right can be

represented as a tuple (only the first three components are

mandatory) (grantee, protection object, action, kind of right,

grantor, grant option) indicating that the grantee3 is

allowed (permission) or forbidden (prohibition) to execute

the action on the protection object. The grantor is the user

who has granted that access right. If grant option is set and

the access right is permission, the grantee is allowed to pass

on that access right to other subjects. This kind of access

control is often combined with an ownership paradigm,

where each protection object has an owner (a user) who is

responsible for granting and revoking access rights

concerning this object. Since this happens at her discretion,

the policy is called "discretionary". However, the same

discretionary mechanisms can be combined with an

administration paradigm, where only the security

administrator is allowed to grant and revoke access rights.

In this case, the policy is mandatory.

Depending on the access rights that can be granted, several

kinds of discretionary systems can be distinguished:

– positive systems: only permissions can be granted

– negative systems: only prohibitions can be granted

– mixed systems: permissions as well as prohibitions can be

granted (in this case, a policy to solve conflicts is required)

Usually, the authorization base (the set of explicitly granted

access rights) is not complete, i.e. there are some requests

where neither a permission nor a prohibition applies. Hence,

a closure assumption is necessary:

– closed world assumption: a request is forbidden unless an

appropriate permission exists or can be inferred

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

274 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

– open world assumption: a request is allowed unless an

appropriate prohibition exists or can be inferred

Meaningful combinations are:

– positive/mixed system with the closed world assumption

– negative/mixed system with the open world assumption

Mandatory Access Control (MAC):

MAC allows a user to access a data object only when the

authority level of the user matches the security level of the

needed data item. Access control in MAC is based on the

following two principles:

No read up: Users can only read a data object when the

access class of user is higher than the access class of that

object.

No write down: Users can write a data object only if the

access class of the object is higher than that of the user.

Mandatory access control (MAC) policies were developed

to enforce organization-wide security policies

automatically. The most popular one is multilevel security

(MLS) based on the model of Bell and LaPadula /BeLa 75/.

Multilevel security does not rely on explicitly granted

access rights; instead access decisions depend on so-called

security classes (or labels) that are associated with subjects

(clearance levels) and protection objects (confidentiality

levels). Security classes are organized as partial ordered

sets. The main property of those models is that data never

flows from higher to lower security classes (unless the

initiating subject is "trustworthy"). Thus, this model is

inherently unidirectional with respect to data flows. The two

main rules for MLS systems are the following:

– simple property: A subject is allowed to read a data item

if its clearance level dominates the confidentiality level of

the data item.

– *-property: A subject is permitted to write into a data item

if its clearance level is dominated by the confidentiality

level of the data item.

In recent years, "nonstandard" policies have been proposed,

which have some practical relevance outside the military

world (for which MAC was originally conceived). The most

important ones are the Clark/Wilson model /ClWi 87/ and

the Brewer/Nash model /BrNa 89/ (Chinese Walls).

Content Based Access Control:

In this model, the access control decisions are based on the

contents of data objects. For example, the Employee table

has salary details of all the employees of the organization.

So only those employees of the accounts department who

are working on the employee salary part should be able to

access that data. This approach is implemented using views.

Users are presented with the temporary view of the table

with only those data they are authorized to access and not

the complete table itself.

Fine Grained Access Control (FGAC): General access

control for databases is coarse grained, i.e. it grants access

to all the rows of the table or none at all. In contrast to this

is fine grained access control that implements access control

at the tuple level of the database. It enforces access control

at the granular level. In this scheme each data object is

given its own access control policy. This is implemented

using specialization of views [12]. Oracle Virtual Private

Database (VPD) is one such database implementing FGAC.

B. Preventing SQLIA - Fighting Techniques

SQL injection attack gives complete control of our database

to the attacker and thus it is one of the most dangerous

security threats. The detection approaches for SQLIA can

be categorized as:

Pre-Generated: Implemented during the testing phase of

web application of database.

Post-Generated: Used when the dynamic SQL generated by

a web application is analysed.

Post Generated Approaches:

Positive tainting and Syntax Aware Evaluation: In this

technique valid input strings are provided to the system

initially to detect SQLIA. Positive tainting here means

identifying, marking and tracking of trusted SQL queries

and differentiating malicious queries from the legitimate

ones using taint marking. Syntax aware evaluation allows us

to actually use taint marking to identify trusted queries for

the database. It allows the use of untrusted input data in a

SQL query as long as it does not lead to SQLIA. Syntax

evaluation of a query string is performed before the string is

sent to the database for execution [8].

Context Sensitive String Evaluation: It works on simple

classification of data, User based data is considered as

unreliable and data given by application is considered as

reliable. Un-reliable data is then sent for syntax evaluation

where string and numeric constants are differentiated from

each other and all unsafe characters are removed from the

strings identified [1].

Parse Tree evaluation based on grammar: This approach

defines a predefined grammar which is used to parse all the

queries generated from users. A parse tree is a data structure

that represents a parsed statement. Parsing a statement

requires the grammar of the language it was written in [9].

When a malicious user injects a SQL query into the

database, the parse tree of the legitimate query and injected

query will not match and this is how the SQLIA would be

detected using parse tree.

Pre Generated Approaches:

Pixy: The first open source tool to statically detect cross-

site scripting (XSS) [10]. It follows a data flow analysis

approach to create information and statistics for each

program point. For example, the constant analysis computes

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

275 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

for all program points, the values that variables can hold.

After data flow analysis parse trees are created and a taint

analysis tool is applied to find out all the points in the

database which are vulnerable to attacks and malicious data

entry.

Program Query Language: It is a language having pre-

defined grammar to express patterns of events on data

objects. It provided a static and dynamic program analysis

to find the sequence of programs as it runs. These are

recorded in data logs which provide support for detecting

malicious queries.

C. Data Encryption

The technique used to secure any kind of data or

information can also be used to protect the data stored in the

database. Data encryption is a technique of transforming a

plain text to intelligible form. This resulting information is

known as encrypted data which can be converted back to its

original form using encryption key. This technique can be

used to secure the database by saving encrypted data in the

database instead of plain text and converting the encrypted

data to its original form when it is required for processing

purposes. There are two different approaches to data

encryption technique:

Symmetric Encryption: One common key is used for both

encryption of data and decryption of data as well.

Asymmetric Encryption: Two keys are used, one key for

encryption and the other for decryption.

There are three aspects to be considered while

encrypting data for database security:

Encryption Algorithm: First aspect of encrypting a

database is to identify the algorithm to be used. Various

data encryption algorithms supported by DBMS are: AES,

DES, Triple DES, RC2, RC4 and DESX. Second aspect is

to identify the encryption level of database from the

following:

File system Encryption – Encrypting the physical disk

where the data is stored.

DBMS level Encryption – Encrypting tables, rows or fields.

Application level Encryption – A middleware is used to

translate user query into new queries to work on encrypted

data.

Client Side Encryption – It is used when the database is

being used as a service and the organization outsources the

complete database and data privacy is a major concern [14].

Place of encryption: Second aspect is to identify different

levels where Data encryption can be done. The encryption

of data can be done either inside the database as its part or

outside the database. When the encryption is carried out

inside the database then the impact on the database

application environment is less. One problem area of this

approach is that the encryption keys are stored along with

the database itself which can pose a security concern.

Another way to encrypt a database is to perform it on

separate encryption servers. The liability of encryption and

decryption is now not on the database and done on

independent servers thus maintaining the database

performance [14]. In this approach Encryption keys and

Data is stored separately and not on the same database.

Granularity of Encryption: Third aspect is to identify the

encryption level of the data to be encrypted. Different

granularity levels of encryption can be Cell, Column,

Tablespace and File with cell-level being the most specific

level and File level being the most general level of

encryption for the database. More granular level of

encryption can result in performance degradation for the

database. Column-level is the most commonly used

encryption level since it includes less processing than that

required at cell level and still provides encryption at a

specific level of database.

D. Data Scrambling

It is a process of deliberately changing or removing the data

saved in the database so as to make sensitive data safer for

wider visibility. It is also known as Data masking, Data

sanitization and Data obfuscation. It is used in the scenario

where a user has access to a certain data but still the data

needs to be protected from the user. For example, testers

and third party developers involved in working on the data

in the database [1]. Even though they require working on

the data, the actual values of data can be changed to hide

the sensitive information. Basically, data is changed but the

changed data resembles the actual data. Relationships

between the columns in the original data would exist in the

scrambled data as well. This way the actual sensitive

information would be hidden from third party developers

and they can still work with the data

IV. VARIOUS DATABASE MANAGEMENT SYSTEM

MODELS WITH THEIR CHARACTERIZATION,

SECURITY ISSUES AND EXISTING APPROACHES

4.1 Object-Oriented DBMS

Characterization An object-oriented DBMS is a database

management system implementing an object oriented data

model at the logical level. Object-orientation suggests that

the universe of discourse is modeled as a collection of

cooperating, interrelated and distinguishable units, called

objects, which are instances of types (or classes) that are

organized in type hierarchies supporting inheritance /Atki

89/. An object has an identity independent of its value, and

is an abstraction unit characterized by a state (it’s – usually

structured - value) and behavior (the requests an object is

able to answer). Usually, objects are encapsulated, i.e. the

state can only be observed and modified via a well-defined

interface. This way, information hiding is ensured; other

objects only see the behavior of an object, whereas the state

is hidden (although there are systems supporting weaker

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

276 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

forms of encapsulation). Further, it is possible to define

associations (interrelations) between objects, in particular

so-called complex object relationships. Such a relationship

is not only a pointer that can be used for "pointer chasing",

but also influences the semantics of operations. Complex

object relationships allow for treating sets of objects, being

declared as one complex object, as a single unit, i.e.

operators applied to an object are propagated to all

component objects, too. Finally, object-oriented DBMS (as

any DBMS) provide for schema information about the

structure of objects, and support collections of similar

objects, i.e. they provide for a type (or class) concept.

Types, including the operations, can also be defined by

users. Super-/subtype relationships between these types are

used to inherit properties from super- to subtypes,

supporting the reuse of structure and code. Polymorphism,

i.e. the ability to send the same request to objects of

different types (and getting a semantically meaningful

answer), is implemented by overriding, overloading and late

binding. Optionally, object-oriented DBMS support features

like object versions and query languages [17].

Security Issues

Access control for database systems obviously has to reflect

the data units handled by the respective data model. Hence,

known database access control features at least have to be

adjusted to the notion of "object", i.e. the unit of access

control - the protection object - has to coincide with

(complex) objects of the data model. It has turned out that

this is not as easy as might seem at first glance, particularly

due to object structures and their variety of semantics.

Furthermore, if in DAC systems an ownership approach is

applied, components of a single complex object may have

different owners. Shared components cause additional

problems to ensure a consistent authorization state.

In MLS systems, the complexity of the arising problems

depends on whether single-level or multi-level objects are

supported. In both cases, restrictions have to be identified

that must be imposed upon complex object relationships5

(including the propagation of operators, in particular the

delete operator) according to the MLS rules without

introducing covert channels. Since access control

mechanisms have to comply with the logical data model of

the DBMS, encapsulation requires that access control is

based on the actions of the data model, i.e. on methods (and

not on lower level read or write operations). Depending on

how strict the encapsulation principle is enforced within a

concrete DBMS, basic access operations (like reading or

writing an attribute) have to be considered, too.

Encapsulation and a method-based authorization imply the

lack of generic access rights in DAC systems. In a relational

DBMS, only select-, insert-, delete- and update-rights can

be specified for "basic accesses" to relations. It is thus easy

to specify generic rights for sets of protection objects. In

object-oriented systems, however, it is simply by chance (or

due to intended polymorphism) that a right to execute

method XYZ on type A makes also sense for type B (with

the exception of generic operators like copying or deleting

an object). Access rights are therefore type-specific, and

additional concepts are required to define more abstract

access rights (e.g. for whole domains of protection objects).

Moreover, it is conceivable that there are types providing

for hundreds of methods. In this case, authorization

becomes a very cumbersome issue if rights can only be

granted for individual methods. In order to support security

administration, additional abstraction concepts are required.

The access control concept must fit the inheritance

paradigm. It would not be meaningful if the data model

supports inheritance of structure and code, but the access

control mechanisms require explicit authorizations for

inherited methods (or do even prevent inheritance). This

problem appears in both areas, DAC and MLS. In case of

discretionary mechanisms ownership restrictions may

contradict inheritance (if two types in a super-/subtype-

relationship have different owners). In MLS systems,

constraints have to be imposed upon the classification of

sub- and super types, as well as upon their instances. This

problem is very complicated, even more since there is no

inheritance paradigm. Several different kinds of inheritance

can be distinguished along a variety of dimensions:

– single vs. multiple inheritance

– strict vs. default inheritance /MaMM 91/

– inclusion, specialization, substitution or constraint

inheritance /Atki 89/

– selective inheritance /MaMM 91/

– type vs. object inheritance6

Existing Approaches

There already are too many papers on access control for

object-oriented DBMS to give an overview here.

Consequently, we only provide for references in this

section. A lot of work has been done to develop - in parts

very elaborate - DAC concepts for object oriented database

systems (/Ahad 92, BeOS 94, Bert 92a, Brüg 92, FaSp 91,

FeGS 89, FeWF94, GaGF 93, GuSF 91, HuDT 94, JoDi

93b, LGSF 90, NyOs 92, NyOs 93, PfHD 88, RaWK 88,

RBKW 91, Spoo 88, TiDH 92b, TiDH 92a, HuDT 93/).

Some of these concepts have been implemented in ITASCA

(the commercial version of the ORION prototypes) and

HP's Open OODBMS (based on the IRIS concepts).

However, most of the systems which are Now on the market

(like ObjectStore or ONTOS) do not provide for any access

control mechanism at all beyond the operating system's

mechanisms, which are (at best!) inappropriate for database

systems. Some issues that are in our opinion still not

completely solved concerning DAC (not even in /JoDi

93b/), are the incorporation of weaker forms of

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

277 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

encapsulation into the security concepts, and the

reconciliation of ownership on the one hand, and complex

objects or inheritance on the other. The situation is similar

in the MLS area. Examples for existing approaches include

/JaKo90, JaKS 92, KeTT 89, KeTs 90, Lunt 90, Lunt 92,

MiLu 92, Morg 91, RWHT 94, SaTJ 92, ThSa 93, Thur 89,

Thur 92/. It seems that the conceptual security aspects are

somewhat easier here compared to DAC concepts (as usual

for level-based systems). However, appropriate

architectures and protocols (e.g. for object deletion) to

prevent covert channels are still under consideration /BeMJ

94/. A first attempt to incorporate MLS into a commercial

object-oriented DBMS is presented in /SaWa 94/. A good

overview of both research directions is given in /BeJS 93/

(although focusing on the message-filter approach /JaKo 90/

and the ORION concept /RBKW 91/ and its extensions

/Bert 92a/). A preliminary attempt to adapt the

Clark/Wilson model for object-oriented DBMS is presented

in /Hern 94/. Additional ideas on how dedicated methods

can be used to support access control can be found in /Ahad

92/.

4.2 Active DBMS

Characterization Active mechanisms are another

promising concept that is now being integrated into

commercial systems (e.g. Sybase and Oracle 7). Whereas

(classical) passive DBMS only react to user requests, active

DBMS include a monitoring facility, allowing an automatic

reaction of the system in case of well-defined situations (see

Fig. 3). Active DBMS allow – beyond providing all regular

DBMS-features – the recognition of user-defined situations

in the database, and the execution of user-defined reactions

when such a situation occurs. The most popular

specification paradigm for active DBMS are so-called

event/condition/action rules (ECA-rules) /Chak 89/

ON <event> IF <condition> DO <action>

which can be defined in addition to the regular database

schema. When an event is detected by the system, the

condition is checked on the database and if it holds, the

specified action is executed. The combination of an event

and a condition specifies the situation when the rule has to

be fired. Many details have to be considered in such

systems, including, e.g., the kinds of events, conditions and

actions that are supported. In particular, the power of active

DBMS is highly dependent on the event model, which may

include the occurrence of database operations (accesses to

data, or transaction events), but also externally raised

events, time events, and various combinations thereof. In

many research prototypes (e.g. HiPAC /Chak 89/, Ode

/GeJS 92/, SA MOS /GaDi 94/ or Sentinel /CKAK 94/) so-

called complex events can be specified, which are

iteratively built from basic events, using predefined

constructors like sequence, conjunction, disjunction, closure

or even the negation of events ("non-occurrences" of

situations)[18].

 Figure 3: Passive vs. Active DBMS

Furthermore, rule processing has to be incorporated into

transaction processing. Nested transactions /Moss 81/

(which are now also available in some commercial database

systems, e.g. ObjectStore) have proven to be a viable

concept for integrating both technologies into a coherent

system. Usually, it is possible to specify coupling modes to

declare when a fired rule should be executed /Chak 89/:

– immediate mode: The triggering transaction is suspended

until the fired rule has been finished (including rules which

are transitively fired). Each rule is executed within a sub-

transaction of its own.

– deferred mode: The triggering transaction is not

suspended, but is completely executed until it reaches its

commit point. All rules which are fired by this transaction

are queued and not executed before the triggering

transaction is ready to commit. At this "pre commit point",

all fired rules are executed (in sub transactions of their own)

and if they have successfully been finished, the triggering

transaction is committed.

– decoupled mode: The fired rules should neither interrupt

the triggering transaction nor be delayed until this

transaction reaches its commit point. In this case, rules are

processed in top-level transactions of their own, which are

concurrently scheduled as any other transaction within the

system.

Security Issues

Obviously, active rules and their execution have to be

subject to security, too. Two aspects have to be taken into

consideration. On the one hand, rules as elements of the

database are protection objects. It thus has to be determined

who is permitted to define, modify, enable/disable or delete

a rule, as well as to query the set of defined rules. This is a

rather simple question, because rules can be represented as

"ordinary" database objects. Hence, the usual mechanisms

of a DBMS can be used to restrict which user can access a

rule. On the other hand, if a rule is fired, it issues several

accesses (during the evaluation of the condition and the

execution of the action) which have to be checked by the

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

278 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

access control system. The problem arises which access

rights should be used to evaluate the accesses issued by a

rule. Three solutions are possible (and combinations

thereof):

1. A rule inherits the access rights/clearance level from the

subject that has defined the rule.

2. The rule inherits the access rights/clearance level from

the subject that has fired the rule.

3. A rule is a subject of its own, and access rights can thus

be granted/revoked to/from the rule (or a clearance level

can be associated with a rule) as for any other subject within

the system.

The second approach is rather odd considering that rules are

usually used for change propagation (to enforce integrity

constraints), for monitoring purposes, etc. Usually, the

subject, having fired the rule, will not even notice that it has

done so. Thus, it will usually not have the access

rights/clearance level required to execute the rule

successfully. The first solution so far is the prevailing one.

However, it also has several disadvantages, in particular in

DAC environments. If rules are used for change

propagation, it is necessary to give the user who has defined

the rule the rights to access the affected objects arbitrarily,

although only a very restricted (and well-defined) access via

the rule would be required. Therefore, we firmly

recommend the third solution, which is in our opinion not

only the most powerful but also the most natural one. All

three schemes require considerable extensions of existing

access control concepts. Moreover, the tight connection of

rule and transaction processing has to be kept in mind.

Supposing, e.g., the coupling mode "immediate" is applied,

and a rule does not have the rights of the triggering subject.

In this case, the transaction needs to be executed in a

different security context (in MLS systems, it has to change

its clearance level, and in DAC systems, it needs to get a

new access control identifier). Even more important, it has

to be ensured that the original context is restored if the rule

processing is finished, and the transaction resumes. It

obviously has to be investigated which coupling modes are

tolerable in MLS systems if a rule has to be processed at a

higher level than the triggering transaction. In case of the

coupling mode "immediate", e.g., it would be necessary to

decrease the level of the process executing the transaction

when the rule processing is finished, which contradicts the

usual MLS philosophy.

Existing Approaches

In the context of DAC systems, very little has been done so

far. The approach of Oracle 7 is quite simple. System

privileges are required to define rules (called triggers in

case of Oracle: "create trigger" to define rules for own

relations, "create any trigger" as a wildcard for defining

rules for any relation within the system). The user who has

defined a rule becomes its owner. Only the owner (or a user

having the "alter any trigger"/"drop any trigger" system

privilege) can modify/delete a rule. It is not possible to

grant access rights concerning rules to other users. An

exception concerns the enabling/disabling of rules, because

this is also possible for users having the "alter table"

privilege for the relation the rule is attached to. Rules are

always executed using the access rights which were directly

granted to the owner. The Starburst mechanisms /WiCL 91/

are a bit more elaborated. There is an explicit "control"-

right for relations which allows for authorizations

concerning this relation (which usually is only in the

possession of the owner). In order to create a rule, "attach"-

and "read"-rights are required for the relation the rule

should be attached to. Having a "control"-right for the rule,

or an "attach"- as well as a "control"-right for the relation

allows for deleting a rule. Modifying a rule requires an

explicit "alter"-right for the rule itself (but not for the

relation). Analogously, explicit "activate/deactivate"-rights

are required to enable/disable a rule. Similar to Oracle, a

rule always has the access rights of its owner. Much more

has been done in the MLS area. In /SmWi 92a/ and /Smit

92/, a successful combination of the active data model (of

Starburst) with MLS has been found, addressing questions

like which events are visible to a rule. These concepts have

been extended in /Smit 94/ to consider the integration of

multi-level secure rules into a transaction paradigm.

4.3 Federated DBMS

Characterization Another very active area of database

research is the integration of existing "information islands"

into coherent systems. Since legacy applications have to be

preserved (in most cases, it is economically infeasible to re-

code them for using a new system), very particular

requirements have to be met. Database federations are

considered as being a promising approach for solving the

arising problems. A federated DBMS (FDBMS) provides

for the interoperation of (probably heterogeneous)

component DBMS (CDBMS) under one "common roof", by

preserving local autonomy. The architecture of an FDBMS

is shown in Figure 2. Note that the FDBMS has its own data

model (possibly different from any data model used by the

involved CDBMS). It may also have its own database.

Autonomy means that CDBMS retain a separate and

independent control over their data, even if they join a

federation. In a sense, the FDBMS is an "ordinary"

application from the local systems' point of view.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

279 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

 Figure 4: Architecture of a database federation

The FDBMS provides a uniform interface to global users,

ensures location transparency, hides heterogeneity, and

offers the usual DBMS functionality (like transaction

processing, query languages, etc.). In particular, it has to

care for the mapping between the global and the local data

models. There are several ways to achieve this. One

possibility is to apply the 5-level schema architecture /ShLa

90/, where export schemas of component systems are

translated into generic schemas according to the global data

model. Afterwards, the generic schemas are integrated into

the global schema of the FDBMS. A simpler, and currently

more practical approach, if heterogeneous CDBMS have to

be integrated, is based on object-oriented technologies.

Global types are presented to global users, and the

integration of component systems is buried ("hard-wired")

within the code of global methods /HäDi 92/ (operational

integration). In either case, integration is a tedious job.

FDBMS may also help to allow the introduction of, e.g., an

object-oriented DBMS into an environment where a more

traditional DBMS already is in use, and where both kinds of

systems have to interoperate.

Security Issues

Since database federations are special cases of interoperable

systems connected by a network, network security issues

have to be taken into consideration (for tightly coupled as

well as for loosely coupled federations /ShLa 90/). Database

federations need strong and reliable mechanisms to identify

and authenticate remote users (including mutual

authentication and continuous authentication), as well as to

encrypt sensitive data which are transmitted between the

FDBMS and CDBMS. This does not mean that the required

mechanisms have to be implemented by the FDBMS itself.

It is also possible to apply security services offered by the

network or by specialized systems like Kerberos. A typical

aspect, however, is that access rights may depend on the

kind of connection of the user requesting the data (local,

remote, dial-up, etc.). Most of the additional security

problems only arise for tightly coupled systems, providing

for a global integration layer and a global authority to

enforce a global security policy. Global access control is

enforced by an independent reference monitor that is

integrated into the FDBMS and has to cooperate with local

reference monitors (two-level access control, see Fig.4). An

access control system at the global layer is essential due to

several reasons:

– Integrated systems aggravate security problems. This is

quite obvious in case of personal data. The more data are

available about humans, the better they have to be protected

against misuse.

– Several new protection objects "emerge" at the global

layer, e.g. global relationships between data of different

component systems (in particular aggregated data). Their

proper protection can only be ensured by the FDBMS, since

no component system alone is aware of these protection

objects.

– The FDBMS usually has a storage area of its own. At

least data which are stored there have to be protected by

global mechanisms.

The problems we are faced with mainly stem from the

heterogeneity and autonomy of CDBMS. The FDBMS has

to cope with heterogeneous local security policies and

mechanisms (besides heterogeneity with respect to data

models, semantic heterogeneity, different query languages,

different transaction mechanisms, etc.). Consequently, the

FDBMS needs at least to understand the local concepts in

order to cooperate with the local systems in a meaningful

way. In case of MAC systems, the following problems can

arise:

– Local systems use different security classes (semantic

differences).

– Local systems may have defined different partial

orderings between their security classes. Some systems may

even only support total orderings.

– Different classification granules may be supported

(single-level vs. multi-level protection objects; e.g. tuple

classification vs. attribute classification).

– Different security policies may be applied (support for

polyinstantiation with different operational semantics

(/LuHs 90, JaSa 90, SmWi 92b/), support for trusted

subjects or dynamic changes of a process' clearance level,

etc.).

DAC systems are mainly faced with the following aspects of

heterogeneity:

– CDBMS can support different kinds of access rights

(permissions, prohibitions or even both, with different

conflict resolution policies in the latter case), and can apply

different closure assumptions (open vs. closed world

assumption).

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

280 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

– Different authorisation units may be supported (users,

groups, nested groups, roles with different role paradigms,

role hierarchies, subject domains, etc.).

– The protection object granules are usually different

(databases, protection object domains,

types/classes/relations or objects/tuples, etc.), and different

actions are supported to access these objects (relational

operators, methods, etc.).

– Some systems may support value-dependent access rights

(either via a view concept /GrWa76/ or by applying another

technique like query modification /Ston 75/).

– The local systems can enforce different authorization

paradigms (centralized vs. decentralized authorization,

ownership vs. administration paradigm), and in case that

decentralized authorization is supported, it may be based on

different mechanisms (grant options vs. explicit grant

permissions).

The situation becomes even more complicated if multiple

CDBMS have to be integrated where some only support

DAC, whereas others only support MLS. Hence, access

control for database federations needs a formal foundation,

i.e. a canonical security model subsuming DAC and MLS.

Information flow control is required if the FDBMS is

allowed to store data of component systems in its own data

storage areas or in other component database systems.

Probably, this problem can only be solved using

classification-based techniques. The opportunities database

federations offer for solving security problems are not that

obvious. If access control is more important than

performance, it is possible to integrate a CDBMS offering

either no or only very restricted security mechanisms into a

secure database federation. This way, the FDBMS acts as a

secure interface to the data kept by an insecure DBMS.

Furthermore, tightly coupled federations can be used to

enforce system-wide security policies. Note that both

examples require low authorization autonomy for CDBMS

to prevent users from circumventing the FDBMS.

Existing Approaches

MLS for database federations has so far not been

considered in much detail. The results of a panel discussion

on security issues for database federations were published in

/MLTS 92/ (also including some notes on DAC). An

approach for tightly coupled federations has been presented

in /IdQG 94/ and /IdGC94/. During the integration process,

data from component systems are reclassified - if needed to

get a consistent global schema. Since this reclassification

tends to over classification, the authors do not only consider

"static security" (the classification of subjects and

protection objects is static), but also describe some ideas to

support "dynamic security". The latter means that a group of

subjects is able to get a higher clearance level (resulting in

the ability to access more sensitive data) under predefined

circumstances. This approach is based on Shamir's scheme

of sharing a secret /Sham 79/ (or so-called "shadow keys''

according to /Denn 82/). A predefined number of users has

to combine their shares in order to get temporarily a higher

clearance. A scheme for loosely coupled database

federations has been presented in /Oliv 94/. This approach

is very interesting, because it introduces the notion of trust

between sites being involved in a database federation.

CDBMS can selectively decide which other sites are

allowed to access their data. The first attempt to develop a

canonical security model for database federations

comprising MLS as well as DAC has been presented in

/Pern 92/. Local systems can apply a discretionary policy, a

mandatory policy or a combination of both. The global

canonical model comprises the functionality of local

systems and allows for defining additional access

restrictions at the global level. Concerning DAC for

federations, most approaches that have so far been

developed focus on traditional database technology (mostly

relational technology) and are based on view concepts

/ShLa 90, Pern 92/. The first DAC concept for database

federations has been implemented in Mermaid /TeLW 87/,

which is a front-end system to integrate multiple

homogeneous relational DBMSs by ensuring distribution

transparency. Authorisation autonomy has been preserved.

Access rights are individually granted at the global level,

but do not imply any right for involved CDBMSs (i.e. the

corresponding local rights have to be granted explicitly).

Access control is based on access control lists which are

associated with certain schemas. A user having an entry

within such an access control list is allowed to carry out the

corresponding relational operator for any relation that

belongs to this schema. Local access validations are carried

out independently. Mermaid provides for a two-level access

control and supports full authorization autonomy. In /WaSp

87/ an access control mechanism for heterogeneous

federations (supporting relational and network CDBMS)

has been described, which is based on views and an

ownership paradigm. Authorization autonomy is achieved

by providing only snapshots of local data to global users.

Thus, global write accesses are not supported. Recently, a

discretionary scheme for tightly coupled federations has

been presented /JoDi 94/, supporting the integration of

heterogeneous CDBMS, different degrees of local

autonomy (within the same federation), and decentralized

authorization based on a pessimistic protocol. Since

federations are special cases of interoperable systems, the

efforts of the OMG (and related committees like the

ODMG) have to be taken into consideration. For the OMG

CORBA /OMG 91/, some security issues have been

considered /OMG 93/, which have so far concentrated on

network security issues like authentication and encryption

services. However, it is also planned to define a security

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

281 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

service for CORBA environments, probably including

access control.

V. ABOUT THE VULNERABILITIES IN

DATABASE MANAGEMENT SYSTEM (VDBMS)

Based on our survey conducted the vulnerabilities in the

database are defined as: poor architecture,

misconfigurations, and vendor bugs incorrect usage [2].

5.1 Vendor bugs refer to buffer overflows and other

programming errors that result in users executing the

commands they are allowed to execute. Furthermore

Downloading and applying patches usually fix vendor bugs

and viruses.

5.2 Poor architecture refers to the result of inadequate

factoring security into the design of how an application

works there. These vulnerabilities are typically the hardest

to fix because they require a major rework by the vendor.

We can give an example of poor architecture; it would be

when a vendor utilizes a weak form of inscription.

5.3 Misconfigurations are caused by not accurately locking

down databases. Mostly the configuration options of

databases can be set in a way that compromises security and

safety for that database. Some of these parameters are

concluded insecurely by default. But mostly it is not a

problem unless you unsuspectingly change the configuration

and setting. An example of this in Oracle is the

REMOTE_OS_AUTHENT parameter. When you set

REMOTE_OS_AUTHENT to true you are allowing

unauthenticated users to connect to your database, so that he

can do his task correctly.

5.4 Incorrect usage means building applications utilizing

developer tools in ways that can be used to break into a

database. SQL injection is an example of incorrect usage for

developers.

The authors Marco Vieira and Henrique Madeira [3] have

defined that the vulnerabilities in DBMS are an internal

factor related to the set of security mechanisms available or

not available in the database, the correct configuration of

those mechanisms (it is a responsibility of the DBA), and

the hidden flaws on the system configuration. He has

described that security in database can be violated due to

points as given below:

5.5 Irresponsible DBA: Refers to deactivation of the

necessary security mechanisms such as user privileges,

authentication, auditing, data encryption which allows

intruders to find a way to get access to the data into the

database.

5.6 Incorrect configuration: Permits unauthorized users or

hackers to access the data in our system.

5.7 Hidden flaws in the database: May allow hackers to

connect to the database server by exploring those faults.

5.8 Unauthorized users: Means these users “still” the

credentials of authorized users in order to access the

database server for searching the data.

5.9 Misused Privileges: Refers to authorized users taking

advantage of their privileges to maliciously access or

destroy our data in a database. Vulnerabilities are also

defined by Hassan A.

 Afyouni [4] in the following manners:

5.10 Configuration and Installation: Using a default

installation and configuration that is known publicly. For

example failure to change default password or default

privileges or permissions.

5.11 User Mistakes: Sometimes Carelessness in

implementing procedures failures to follow directly, or

accidental errors with some faults. For example users lack a

bad authentication process, technical information or

implementation, untested disaster recovery plan in a

database.

5.12 Software: Refers to vulnerabilities found in

commercial software for all types of programs such as all

applications, operating systems, database management

systems and network systems with other different programs.

5.13 Design and Implementation: Inaccurate software

analysis and design as well as coding problems and faults

may lead to vulnerabilities in a database.

VI. ABOUT THE THREATS IN DATABASE

MANAGEMENT SYSTEM (TDBMS)

Threat in databases is defined by Aziah Asmawi in [5] as a

set of policies, measures and mechanisms to provide safety,

availability and integrity of data and to combat possible

attacks on the system from outsiders as well as insiders,

both accidental and malicious. Aziah Asmawi has

mentioned about SQL injection which can be executed by

two ways by unauthorized user accessing the database via

web page connected network:

Access through login page: This is the easiest technique in

which it bypasses the login forms where users are

authenticated by using password. This type of technique can

be done by the attackers through: ‘or’ condition, ‘having’

clause, multiple queries and extended stored procedure

with package.

Access through URL: The attackers use this technique:

manipulating the query string in URL and using the

SELECT’ and UNION statements. Further Ravi Sandhu [1]

has described in his paper that threat to the database can be

internal or external. By this technique he has characterized

the security breach as incorrect data modification,

unauthorized data observation and data unavailability.

As mentioned in [4] types of threats are following:

People: At this point the different people involved in the

database management system can be a government authority

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

282 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

, an employee or a person-in-charge, consultants,

contractors, visitors, hackers, organized criminals, spies,

terrorists and social engineers may deliberately or

unintentionally exact damage on any of the database

environment factors.

Malicious Code: Refers to Software code , in6 which most

cases is intentionally written to damage or violate one or

more of the database environment components are boot

sector worms, viruses, spoofing code Trojan horses, denial-

of-service flood, bots, rootkits, bots, E-mail spamming,

macro code.

Natural disaster: Calamities caused by nature can destroy

any or the entire database environment components.

Technological disasters: Refers to Some sort of

malfunction in hardware or equipment, technological

disorders like media failure, hardware failure, power failure,

or network failure can inflict damage to database

management systems, data files or data or whole database.

VII. SECURITY METHODS IN DATABASE

MANAGEMENT SYSTEM (SMDBMS)

Here we will discuss some security methods in DBMS. In

early days security methods in database management

systems focused only on role based access control or

maintaining the confidentiality or authenticity of the

database. But in the current scenario the unauthorized user

working on a web page which is connected via internet

connection has access to the database, since all the queries

sent by the user are converted to SQL query in that

database. The user may send malicious queries and confirm

or modify the transactions of the database without affecting

the performance of the database. This type of attack is

called SQL injection. But in the current scenario the

security method of the database should focus on role based

access control and maintain the CIA and avoid attacks due

to the network. This section emphasizes the same, based on

various papers and books available on similar topics or the

same issue.

SECURING DATABASE BASED ON ACCESS CONTROL:

In this section we will discuss database security based on

access control. The role based access control method has

been proposed by Guoliang Zou, Jing Wang, Dongmei

Huang [6] where he has implemented security using the

following points:

Preventing illegal users from logging the system

 Identify validation

 Access Control Interface

Verification codes

Database security: storage procedure

Database security: oracle parameter

The author Ravi Sandhu has created various security

approaches [1] where he has considered that access control

policies in early days were based on the development of two

different classes of models, the discretionary access control

policy and on the required access control policy and

procedure. Based on these models of early days [7] have

proposed two assumptions: The first assumption was that

the access control models for databases should be defined in

terms of the logical data model; hence authorizations for a

relational database should be defined in terms of relational

model such as relations, relation attributes and tuples etc.

The second assumption is that for databases, in accession to

name-based access control, where the secure and protected

objects are categorized by giving their names, content-based

access control has to be promoted. Discretionary access

control policy has subsidized the creation and development

of System R access control for relational database

management systems which altered strongly on some key

features such as distributed authorization administration,

effective grant and revoke of authorizations and the use of

views for supporting and developing content-based

authorizations. Furthermore the access control policies of an

object oriented database (OODBMS) are defined in [8].

Here in this point the author has discussed two proposed

security models for OODBMS. They are given below as:

 Sorion Security Model: This is a security model proposed

by Thurainsingham to associate a secure access control into

the ORION model system.

 Jajodia-Dogan Security Model: Jajodia-Dogan (6, 12) has

proposed a security model for OODBMS that controls

access by using the encapsulation characteristic of object

oriented databases. Henceforth using the access control

policies and procedure the confidentiality of the database

can be supported.

The second security issue of database management systems

has various fields of database integrity as described in [5]:

Physical database integrity protection: It manages data

integrity through physical obstacles such as fires and power

failures. Logical data integrity protection: It refers to the

assertion that information can be changed only by users.

Data element integrity protection: It involves data

efficiency and data regularity. And the third security issue

availability as described above belongs to the data

availability from the database management system.

Henceforth, Due to the availability of the company's whole

information on the web page which is connected via Internet

to its database, the whole data of that company is available

using the SQL injection. The below section describes the

security methods to prevent SQL injection in that scenario.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

283 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

VIII. SOME SECURITY METHODS TO PREVENT

SQL INJECTION

Hence as a protection from SQL injection many Intrusion

Detection Systems (IDS) have been suggested. A brief

description of these IDS is discussed below:

Misuse Detection System for DBMS

 (DEMIDS): This method has been proposed by Chung et

al. (1999). It is called a misuse-detection system, created for

relational databases. It uses audit data log to retrieve

profiles describing typical behavior of users in Database

Management System. The method is presented by Lee et al.

(2000). This method is based on intrusions. Hence this

method has used time signatures to discover database

intrusions. On the other way similar work was proposed by

Low et al.(2002).This method is used for Detecting

Intrusion in Databases through Fingerprinting Transactions

(DIDAFIT).It is a system created using misuse detection

approach to show database intrusion detection at the

application level in a database. But another approach

towards a database specific intrusion detection mechanism

is by Hu and Panda (2003). They proposed and developed a

mechanism that is more capable of finding data dependency

relationships among transactions and use this information to

find hidden anomalies in a database log. Ke Chen et al.

(2005) developed an intrusion detection model for a

database system based on digital amnesty. It gives an

additional layer of security against DBMS misuse. On other

hand a real-time intrusion detection mechanism based on

the profile of user roles has been prescribed by Bertino et

al. (2005). This total approach is based on mining SQL

queries stored in audit log files in a database. Rietta (2006)

described an application layer intrusion detection system,

which should take the form of a proxy server and apply an

anomaly detection model based on distinct characteristics of

SQL and the transaction history of an appropriate user

application and user. Aziah Asmawi has proposed SQL

Injection and Insider Misuse Detection System (SIIMDS) in

2008 to define both types of intrusions from external and

internal threats. Malicious users may access a series of safe

information and then apply different techniques to retrieve

sensitive data by using that information. To address these

inference problems,Yu Chen in [9] has created a semantic

inference model (SIM) that symbolizes all the possible

inference channels from any attribute in the system to the

set of elevated sensitive attributes. Hence based on the SIM,

the violation detection system keeps track of a user’s query

history in a database. When a new query is stiffed, all the

channels where sensitive information can be stored will be

recognized. If the probability of inferring sensitive

information increases to a more specified threshold, then the

current query request will be revoked. Using the security

methods mentioned in section A and B secure and safe

databases can be created. It may be accessed from anywhere

and the security would be managed. Even though there is no

such thing as a 100 percent guarantee in network security,

awful obstacles can be placed in the path of SQL injection

attack. Anybody of these defenses extremely reduces the

chances of a successful SQL injection attack to prevent our

data. Implementing all four is a best practice that will

supply a high degree of protection and safety. Despite its

extensive application, your web site does not have to be

SQL injection's next suspect. The next section briefs up all

the vulnerabilities, threats and security methods of database

management systems in tabular format which will be

beneficial for the development of secure and safe databases.

There actually are a lot of methods that web site owners can

do to secure against SQL injection attacks[19].

Table 1: Comparison details of VDBMS, TDBMS and

SMDBMS

Vulnerabilitie

s (VDBMS)

THREATS

(TDBMS)

SECURITY

METHODS SDBMS)

V

e

n

d

o

r

B

u

g

Buffer

Overflow,

Programming

errors

May damage

or violate the

database

Unauthorized access

control policy

Poor

Architect

ure

Weak form of

encryption

May damage

database

environment

components

(networks,

applications,

operating

systems,

DBMS and

data)

1.Sorion Security Model

2.Jajodia-Dogan

Security Model

Miscon

figurati

on

Not properly

locking

database

Loss of

integrity of

the database

1.Physical database

integrity protection

2.Logical data integrity

protection

3.Data element integrity

protection

Incorr

ect

usage

SQL injection Misuse of

availability of

database

Intrusion Detection

System like

1. A Misuse Detection

System for Database

System (DEMIDS)

2.SQL Injection and

Insider Misuse Detection

System (SIIMDS)

3. Detecting Intrusion in

Databases through

Fingerprinting

Transactions (DIDAFIT)

4. Semantic inference

model (SIM)

 Deactivation Easy access Two principles should

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

284 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

Irrespon

sible

DBA

of necessary

security

mechanism

of data be followed:

1. The access control

models for databases

should be expressed in

terms of the logical data

model; thus

authorizations for a

relational database

should be expressed in

terms of relations,

relation attributes, and

tuples.

2. For databases, in

addition to name-based

access control, where the

protected objects are

specified by giving their

names, content-based

access control has to be

supported.

Hidden

Flaws in

DB

Undetected

defects

Allow

hackers to

connect to the

database

server by

exploring

those defects.

Intrusion Detection

System

Unautho

rized

Users

Unauthorized

users “still”

the

credentials of

authorized

users

Easy access

to database

servers.

Intrusion Detection

System

Misused

Privileges

Authorized

users take

advantage of

their

privileges.

Maliciously

access or

destroy data

Database Administrator

should provide security

on the basis of above

mentioned principles.

IX. CHALLENGES - WHY PROTECTING

DATABASES IS EVEN MORE DIFFICULT TODAY

Despite the increased focus by research and industry toward

improving security of our cyber infrastructures, today the

protection of data, entrusted to enterprise information

systems, is more challenging than ever. There are several

factors underlying this trend. Data security concerns are

evolving. In addition to the traditional requirements of data

Confidentiality, integrity and availability, new requirements

are emerging such as data quality [69], completeness,

timeliness, and provenance [35]. In particular, it is

important that data be complete, correct, and up-to-date

with respect to the external world. The increasing quality of

data will make data more valuable. Highly valuable data

increases the potential to be gained from unauthorized

access and the potential damage that can be done if the data

is corrupted. The amount of data is increasingly large: “It is

estimated that the amount of information in the world is

doubling every 20 months, and the size and number of

databases are increasing even faster” [1]. Therefore,

protection mechanisms must be able to scale well. The

intermediate information processing steps typically carried

out by corporate employees such as typing an order

received over the phone are removed. Users who are outside

the traditional corporate boundary can have direct and

immediate online access to business information which

pertain to them. In a traditional environment, any access to

sensitive information is through employees. Although

employees are not always reliable, at least they are known,

their access to sensitive data is limited by their function, and

employees violating access policies may be subject to

disciplinary action. When activities are moved to the

Internet, the environment drastically changes. Today, due

also to the offshoring of data management functions and the

globalization of business enabled by the Internet, companies

may know little or nothing about the users (including, in

many cases, employees) accessing their systems and it is

more difficult for companies to deter users from accessing

information contrary to company policies. Finally, as a

result of trends toward ubiquitous computing, data must be

available to users anywhere anytime. Because of these

increased risks, the adequate protection of information

systems, managing and making available large data

volumes, is not an option any longer. Not only will damage

to the data affect a company’s businesses and operations, it

could also have legal consequences on companies especially

if, as discussed by Schneier [83], laws were to be promoted

enforcing liability of software products and applications. As

Schneier argues in his paper, in the very near future

insurance companies will move into cyber-insurance and we

can certainly expect that “they will start charging different

premiums for different security levels.” All the above

motivations are thus strong drives for the systematic

adoption of solutions that are more articulated and

comprehensive than the ones available today. Not only must

adequate solutions be developed and deployed,

but organizations also need to show that they comply with

security and privacy requirements. In particular, research

efforts need to be devoted to a large number of topics

including: Data Quality and Completeness. Users

increasingly rely on information they find on the Web. This

is the case for example of medical information. However,

users do not, in general, have guarantees that the data is

complete and of acceptable quality. We need techniques

and organizational solutions to assess and attest the quality

of data. Techniques in this respect may include simple

mechanisms such as quality stamps that are posted on

Websites. Other techniques include providing more

effective integrity semantics verification and the use of tools

for the assessment of data quality, based on techniques such

as record linkage. Application-level recovery techniques are

also needed for automatically repairing incorrect data.

Intellectual Property Rights (IPR). Data in many cases are

the results of intellectual activities of individuals and

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

285 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

organizations. Questions concerning IPR are thus becoming

increasingly relevant. To address some of these concerns,

watermarking techniques for relational data have been

recently proposed [84], [85] which can be used to detect

IPR violations. Research is however needed to assess the

robustness of such techniques and to investigate different

approaches aimed at preventing IPR violations. Access

control and privacy for mobile users. Users will be

increasingly mobile and will have a large variety of devices

available to them. Moreover, the deployment of computing

power and sensors in every-day environments will make it

possible for users to be always connected, sometimes

without even being aware of it. In such contexts, several

issues are relevant. Users will execute many more activities

online; information about user identities, profiles,

credentials, and permissions will be more frequently

required. Such information will need to be secure and

reliable; reliable user identification will be increasingly

crucial. It is thus important on one hand to develop

techniques for efficient storage of security relevant

information on small devices; a relevant example in this

respect is represented by the notion of portable access rights

recently proposed by Bykova and Atallah [29]. On the other

side, it is important that access control mechanisms be

integrated with standards being developed for identity

management [57] as well as with trust negotiation

techniques [23]. Because large-sized streams of data are

generated in such environments, efficient techniques for

access control must be devised and integrated with

processing techniques for continuous queries. Finally, the

privacy of user location data, acquired from sensors and

communication networks, must be assured. Database

survivability. This is an important topic which has been

largely unexplored, despite its relevance. Survivability

refers to the ability of the database system to continue its

functions, may be with reduced capabilities, despite

disruptive events, such as information warfare attacks. To

date, issues related to database survivability have not been

investigated much. Liu [58] has proposed four database

architectures for intrusion-tolerant database systems that

focus on the containment of malicious transactions. Even

though this is an important initial step, much more research

needs to be devoted to techniques and methodologies

assuring database system survivability.

X. CONCLUSION

Frameworks for DBMS construction can be used to develop

special purpose active or object-oriented DBMS, and may

also help to implement database federations. Active

mechanisms are the most promising technology for solving

problems in many areas of software systems in general, in

particular also in database security. Although the

technology is still premature and not very well understood,

it may turn out to trigger a revolution in the design,

construction and maintenance of software systems.

Depending on the event model and the expressiveness of the

conditions, very complex situations within a computer

system can be monitored (which can also be used for

intrusion detection /Denn 86, LuJa 88/) and an appropriate

reaction can be triggered. Moreover, since active rules

subsume deductive rules /Wido 93/, they can also be

applied to represent knowledge about any kind of

application (e.g. how to map abstract concepts onto

concrete mechanisms). Database systems support the

controlled and integrated inspection and modification of

such information. Standard mechanisms are provided that

can be used by several applications, so that even the reuse

of functionality is supported. As a side-effect, numerous

calls to the DBMS often can be saved.11 The applications

"simply" send very abstract requests to the DBMS, and

powerful servers (not necessarily mainframes, but perhaps

"clusters" of high-end workstations) where these DBMS are

running on process the data locally. Only the results the

applications are really interested in have to be transmitted

over the network. In summary, current trends in database

technology do indeed have considerable impact on security

concepts, in terms of both, better solutions that can be

supported, and new problems that need to be solved.

Unfortunately, commercial products in this area are – once

again! – very slow to incorporate security features that are

as advanced as the rest of the system from the very

beginning. At best, they are going to retrofit them to the

system in later releases. The security community is thus

challenged not only to devise and evaluate appropriate

concepts, but also to push for and foster the necessary

technology transfer to DBMS builders and users.

Organizations like the OMG in case of object-oriented

technology can support the transmission of know-how from

the research community to the software industry.

REFERENCES

[1] Current trends and new challenges of databases and web

applications for systems driven biological research, December

2010, frontiers in Physiology, DOI:10.3389/fphys.2010.00147

 [2] Current Trends in Database Technology and Their Impact on

Security Concepts Klaus R. Dittrich and Dirk Jonscher Institut für

Informatik, Universität Zürich, Winterthurerstr. 190, CH-8057

Zürich {dittrich,jonscher}@ifi.unizh.ch

 [3] Database Trends and Directions: Current Challenges and

Opportunities

 [4] A Relative Study on different Database Security Threats and

their Security Techniques

 [5] Security Of Database Management Systems

 [6] A Relative Study on Different Database Security Threats and

their Security Techniques January 2020

DOI:10.13140/RG.2.2.11657.60000

 [7] Security Issues and Their Techniques in DBMS - A Novel

Survey, December 2014, Inter- national Journal of Computer

Applications 85(13), DOI:10.5120/14905-3402

https://www.researchgate.net/journal/Frontiers-in-Physiology-1664-042X
https://www.researchgate.net/journal/Frontiers-in-Physiology-1664-042X
http://dx.doi.org/10.3389/fphys.2010.00147
http://dx.doi.org/10.13140/RG.2.2.11657.60000
https://www.researchgate.net/journal/International-Journal-of-Computer-Applications-0975-8887
https://www.researchgate.net/journal/International-Journal-of-Computer-Applications-0975-8887
http://dx.doi.org/10.5120/14905-3402

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-03, JUNE 2021

286 | IJREAMV07I0375114 DOI : 10.35291/2454-9150.2021.0349 © 2021, IJREAM All Rights Reserved.

[8] A Relative Study on Different Database Security Threats and

their Security Techniques

 [9] Data Breach Investigation Reports

 [10]https://www.ictsecuritymagazine.com/wp-

content/uploads/2016-Data-Breach-Investigations-Report.pdf

 [11]https://www.ictsecuritymagazine.com/wp-

content/uploads/2017-Data-Breach-Investigations-Report.pdf

 [12]https://www.ictsecuritymagazine.com/wp-

content/uploads/2018-Data-Breach-Investigations-Report.pdf

 [13]https://www.ictsecuritymagazine.com/wp-

content/uploads/2019-Data-Breach-Investigations-Report.pdf

 [14] A study on SQL injection techniques, December 2016,

International Journal of Pharmacy and Technology 8(4):22405-

22415

 [15]https://www.blackhat.com/presentations/bh-dc-

07/Shulman/Paper/bh-dc-07-Shulman-WP.pdf

 [16] Security in Database Systems, Global Journal of Computer

Science and Technology Network, Web & Security Volume 12

Issue 17 Version 1.0 Year 2012 Type: Double Blind Peer

Reviewed International Research Journal Publisher: Global

Journals Inc. (USA) Online ISSN: 0975-4172 & Print ISSN:

0975-4350

 [17] Study on Database Management System Security Issues,

November 2017,DOI:10 .3063 0/joiv.1.4-2.76

 [18] Active Database Systems, March 1999, ACM Computing

Surveys 31(1):63-103, DOI: 10 .1145/311531.311623

 [19] A Literature Review on Evolving Database, March 2017,

International Journal of Computer Applications 162(9):35-41,

DOI:10.5120/ijca2017913365

https://www.ictsecuritymagazine.com/wp-content/uploads/2017-Data-Breach-Investigations-Report.pdf
https://www.ictsecuritymagazine.com/wp-content/uploads/2017-Data-Breach-Investigations-Report.pdf
https://www.ictsecuritymagazine.com/wp-content/uploads/2017-Data-Breach-Investigations-Report.pdf
https://www.ictsecuritymagazine.com/wp-content/uploads/2017-Data-Breach-Investigations-Report.pdf
https://www.ictsecuritymagazine.com/wp-content/uploads/2017-Data-Breach-Investigations-Report.pdf
https://www.ictsecuritymagazine.com/wp-content/uploads/2017-Data-Breach-Investigations-Report.pdf
https://www.ictsecuritymagazine.com/wp-content/uploads/2017-Data-Breach-Investigations-Report.pdf
https://www.ictsecuritymagazine.com/wp-content/uploads/2017-Data-Breach-Investigations-Report.pdf
https://www.researchgate.net/journal/International-Journal-of-Pharmacy-and-Technology-0975-766X
https://www.blackhat.com/presentations/bh-dc-07/Shulman/Paper/bh-dc-07-Shulman-WP.pdf
https://www.blackhat.com/presentations/bh-dc-07/Shulman/Paper/bh-dc-07-Shulman-WP.pdf
http://dx.doi.org/10.30630/joiv.1.4-2.76
https://www.researchgate.net/journal/ACM-Computing-Surveys-0360-0300
https://www.researchgate.net/journal/ACM-Computing-Surveys-0360-0300
http://dx.doi.org/10.1145/311531.311623
https://www.researchgate.net/journal/International-Journal-of-Computer-Applications-0975-8887
http://dx.doi.org/10.5120/ijca2017913365

