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Abstract: Intrusion detection system has become the next step for many organizations as current tools often fail to 

adapt to ever-growing threats. The number of threats rising exponentially presents increasing challenges due to 

extensive growth and usage of networks. Therefore, there is a need for adaptive and robust technique to detect 

complicated and powerful attacks. To tackle these problems, a novel approach to network intrusion detection using 

Deep Reinforcement Learning (DRL) is proposed. Thus, DRL opens up a new application in computer network domain. 

To guarantee a better performance for multi-class classification, Deep Q-learning, a variant of Q-learning, has been 

applied extensively to solve a wide range of complex decision-making tasks. This work also presents a hybrid learning 

system of applying DRL to labelled data. Unlike real-life scenario, where the algorithm is said to interact with a live 

environment, this approach is trained and evaluated in a simulated environment. This IDS not only detects local 

intruders but can also detects outside intruders. Thus, the system with its ability of self-updating to unknown attacks is 

capable of identifying new patterns also. The proposed model has achieved an overall accuracy of 82.9% successfully. 
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I. INTRODUCTION 

With the increase in the number of data and connected 

devices in a system, a variety of security challenges are 

encountered. Various security tools such as firewalls, anti-

malwares help prevent unauthorized traffic entering the 

network which affects the integrity of the network. 

Although these solutions help detect and report 

any unauthorized intrusions successfully, they fail to 

identify the security breaches within the organization. As a 

result, a valuable security tool called Intrusion Detection 

System (IDS) was developed to identify any suspicious 

activities and detect attacks that originate from within the 

network.  

IDS can be classified into two categories i.e., (1) Network-

based and (2) Host-based IDS. A network-based IDS 

(NIDS) usually monitors all the traffic in the network. 

While the host-based IDS (HIDS) can only monitor 

hosts/devices in a system for network activities.  

Network-based Intrusion Detection System (NIDS) is a 

security tool which examines the patterns for the known and 

unknown attacks in the entire network. Network IDS has an 

extensive range of applications when it comes to protecting 

the network and securing the data. NIDS takes upper hand 

over traditional methods in monitoring the  

network expansion and availability in case increase in 

demand. Two other approaches are used for attacks: 

Signature-based intrusion detection system for identifying 

patterns of with known attacks. Anomaly-based network 

intrusion detection system to alert suspicious behavior 

associated with unknown attacks. 

Many Machine Learning (ML) and Deep Learning (DL) 

techniques are adopted for designing NIDS. But the models 

based on these types of learning are vulnerable to 

complicated and powerful attackers. Even though many 

research has been made in exploring different techniques for 

intrusion detection, there are certain issues related to the 

existing system. The issues are (1) large amount of data and 

incorrect information affects the performance of the system, 

and (2) the ability to store information for a long time. This 

paper develops a reinforcement learning (RL) system for 

intrusion detection as the solution. Reinforcement Learning 

(RL) is a very general framework for learning problem by 

interacting with the environment. It is said to make 

sequential decision according to the feedback from the 

environment. The agent in RL chooses an action based on 

its current state and receives reward/penalty and new state 

from the environment.  Through trial-and-error, the agent 

learns the optimal policy (choosing the best action) to 

maximize the reward over time. Recently, Deep 

Reinforcement Learning (DRL) algorithm, a combination of 
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Deep learning and Reinforcement Learning has shown 

excellent result in the field of robotics, computer vision, 

manufacturing, healthcare, but less explored in networking 

domain. The proposed system introduces Deep Q-learning 

based approach to develop an efficient Network Intrusion 

Detection System.  The objectives of the proposed system 

are (1) Study the existing techniques in IDS and identify 

their strengths and weaknesses, (2) Explore the field of RL 

and extend its application to networking domain, and (3) 

Develop a hybrid learning system by infusing 

Reinforcement learning to supervised learning problems. 

The system is designed to have the ability to automatically 

learn from changing attack patterns in the environment. The 

network traffic data, called NSL-KDD dataset, is extracted 

from the network sources. The proposed method will be 

trained on labelled data collected from a private and 

isolated environment. The deep Q-learning approach is 

implemented in python programming language. Once the 

learning is complete, the performance of the proposed 

system is evaluated by testing it on NSL-KDD test set 

which includes additional attack types that did not appear in 

the train set. This approach addresses the issues discussed 

earlier by (1) selecting a subset of data from bigger samples 

with the help of a technique called ‘minibatch’, and (2) the 

use of Replay memory capable of storing experiences, thus 

helping speed up the learning process. 

Paper organization. The rest of this paper is organized as 

follows: The literature survey is described in Section 2. 

Reinforcement learning is introduced in Section 3. The 

proposed system with technical details is described in 

Section 4. Section 5 demonstrates the implementation of the 

proposed system and presents the experimental setup and 

simulation results. Finally, the paper is concluded in Section 

6. 

II. RELATED WORK 

There are many related works using existing machine 

learning and deep learning models for intrusion detection 

with different datasets. In this section, we discuss the works 

applied to the NSL-KDD dataset, deep reinforcement 

learning in various domains. 

Various machine learning classifiers [1], [2] were employed 

for classification of data as malicious or not. Four feature 

subsets were analyzed by removing irrelevant features. The 

model found to be effective with higher prediction rate and 

lower computational complexity. Abnormal activities were 

recognized by a WEKA tool [3] on two different datasets. 

Another scheme [4] using ANN was used to evaluate the 

performance of NSL-KDD dataset. Higher detection rate is 

81.2% and 79.9% was achieved. [5] discusses challenges 

with datasets used for IDS.  

Deep learning models are also explored in developing a 

flexible IDS. A scalable, hybrid framework called Scale-

Hybrid-IDS-AlertNet (SHIA) has been proposed [6] to 

monitor the network traffic and host-level attacks. [7] 

presents a comparative study of deep learning approaches 

and datasets used for intrusion detection. Two types of 

categories (binary and multi) have been analyzed by seven 

deep learning models. 

Q-learning has become the driving force in the innovations of 

intelligent systems [8]. Deep reinforcement learning [9] has 

been applied to various fields such as robotics [10], [11], 

manufacturing [12], [13], [14] and one of its types, Deep Q-

learning has been massively applied on gaming applications 

[15], [16], [17], [18], [19] and also used to exploit the 

trained labelled data in real-world stock markets [20].  

III. BACKGROUND 

A. Reinforcement Learning 

Reinforcement learning is a technique of Machine Learning 

where the agent is trained to make a sequence of decisions. 

The agent learns to take actions by interacting with the 

environment in order to maximize the total rewards as 

shown in Figure 1. The machine is trained through a 

reward-based feedback mechanism to continuously improve 

the action. RL is modelled with a set of constraints such as 

states, actions, policy and rewards. At each step, the agent 

identifies the state, chooses random action, and receives a 

reward from the environment. The agent’s policy maps 

states to actions. As a result, Reinforcement learning 

provides solution by correlating immediate actions with the 

delayed outcomes. Reinforcement learning finds a diverse 

set of applications in the field of Robotics, Natural 

Language Processing, Computer vision, Manufacturing 

and Healthcare.  

 

 

B. Deep Reinforcement Learning 

DRL, a sub-field of RL, is a combination of Deep learning 

and Reinforcement Learning. Reinforcement learning when 

combined with deep learning yields phenomenal results. 

The “deep” in reinforcement learning refers to the layers 

of artificial neural networks.  

The DQN (Deep Q-Network) algorithm, developed by 

Google DeepMind in 2015 [18], is the most successful DRL 

algorithm. Most of the Atari games have been implemented 

by Deep Reinforcement Learning algorithms. The algorithm 

Figure 1. Block diagram of Reinforcement Learning 
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comprises Q-Learning in combination with deep neural 

networks and a buffer called Experience replay as shown in 

Figure 2. 

 

 

Deep Q-learning algorithm is the modified version of Q-

Learning algorithm. It replaces the regular Q-table with the 

neural networks [21]. A DQN uses neural network as a 

functional approximation with Q-Learning. A technique 

called Experience Replay is used as a memory for storing 

the episode steps in case of off-policy learning from which 

samples are drawn at random. 

The Deep Q-Network is used to implement 1) deep neural 

network classifier which approximates the value function, 2) 

replay memory for the training phase, and 3) a q-network to 

estimate the predicted values and a target network to 

estimate the target values. 

C. Neural Network 

Neural network consists of several nodes that are 

interconnected in multiple layers as shown in Figure 3. 

These layers comprise the following: 

1. Input Layer: The input layer refers to the number of 

states (input data) in an environment [22]. 

2. Hidden Layers: The neural network architecture is 

comprised of one or more hidden layers. It is the layer 

of mathematical functions. 

3. Output Layer: The output layer refers to the number of 

actions (output data). 

 

 

In Deep Reinforcement Learning, neural networks are 

function approximators that maps state to action-value pairs. 

The agent implements a classifier (Deep Q-Learning 

algorithm). The fully connected neural network is used for 

Q-function approximation. There are two phases: 1) the 

training phase for training the neural network, and 2) the 

test phase for testing the DRL algorithm [23]. During the 

training phase, the DRL will train the neural network, learns 

an optimal policy and stores the NN parameters in the 

replay memory. Once the training stage is completed, the 

RL agent will use the learned optimal policy for the best 

actions. The complete steps for training DQN are presented 

in Algorithm 1. 

IV. METHODOLOGY 

In this section, the proposed system using deep 

reinforcement learning is presented. Before presenting the 

processing steps of the system, the detailed description of 

various components of DQN architecture related to the 

system is introduced. 

Agent: An agent is the one responsible for taking actions 

(or decisions) in the environment. The algorithm used for 

training is the agent. 

Replay memory: It is a technique to store the agent's 

experiences at each time step. It has the ability to store past 

and new experiences. First, the observed transitions are stored. 

During the neural network training, samples are randomly 

extracted in order to update the network. It helps stabilize the 

learning algorithm by breaking the temporal correlations 

among parameters [24]. 

Q-Network (MainNet): It is a multi-layer neural network in 

DQN algorithm, used to approximate the action value 

function. 

Target Network: It is copy of Q-Network, used to calculate 

a target value and is updated by the Q function at regular 

intervals. Training the main Q-network helps stabilize the 

learning process. 

Environment: It is the world with which the agent interacts 

frequently. It can either be live or simulation. The current 

state is returned by the environment. Since the data is 

already available, the model is integrated with a simulation 

environment for automatic interactions between the agent 

and the environment. 

The basic concepts in reinforcement learning that describes 

the interaction between an agent and the 

environment: state, action, and reward. 

State (s): It describes the current situation of the network. 

The state (or observation) in the environment corresponds 

to each instance in the training data. Here, state ‘s’ is taken 

as the network traffic samples (features).  

Action (a): Action is the set of all possible decisions that an 

agent takes. Only discrete, possible actions are chosen by 

the agent. In the proposed work, the action ‘a’ corresponds 

to network intrusion label predictions.  

Figure 2. DQN Architecture 

 

Figure 3. Architecture of a typical neural network for 

intrusion detection system 
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Reward (r): It is the feedback used to evaluate the agent’s 

action. The reward is the immediate information given to the 

agent in the given state by the environment during learning. Here, 

the reward ‘r’ corresponds to the measures the success or 

failure of the prediction. 1/0 reward signifies how well is the 

agent’s action. For every correct label prediction, a reward 

of 1 is obtained and for incorrect prediction, a reward of 0 

is obtained. 

Other important concepts: 

Discount factor ( : It describes the importance of future 

rewards to those in the immediate future. The value of 

discount factor is in the range 0 and 1. 

Policy: The epsilon-greedy approach is followed throughout 

the training phase. It is used to select the best action with 

the highest estimated reward over time. This method 

balances exploration and exploitation by choosing between 

them randomly. 

Loss: Loss function evaluates how well the algorithm 

models the dataset. It estimates the error between the 

predicted and actual value. Higher the loss if the predictions 

are not up to mark. It outputs low value if the predictions 

are good. 

 

The processing steps of the proposed system is as follows: 

A. Data Collection 

The NSL-KDD dataset used in this study is collected from 

an online resource called Kaggle. The data used for 

implementation shows how effective a DQN algorithm is 

when detecting the anomalies in the network. The data 

consists of 41 features and 1 label. The dataset comprises 

both numeric and categorical values. There are 39 attack 

types which are categorized into 5 class labels i.e., ‘normal’, 

‘DoS’, ‘Probe’, ‘R2L’ or ‘U2R’. 

B. Data Pre-processing 

Data pre-processing is an important step in data mining that 

defines the success rate of the prediction. It involves data 

cleaning, reduction and transformation. Since the dataset 

contains no duplicate records, only transformation is 

applicable. Technique such as Normalization is used for 

data transformation. This means the data is transformed into 

an appropriate format suitable for data mining. Since the 

dataset contains different datatypes, Normalization and 

One-hot encoding are carried out on the samples for 

speeding up the learning. In min-max normalization, the 

minimum values get transformed to 0, maximum values to 1 

and the rest of the values between 0 and 1. Min-max 

normalization is performed on numeric values and One-hot 

encoding on categorical values.  

C. Training phase 

The input layer corresponds to the number of states in the 

environment. The input to the neural network is the one-hot 

encoded state-input vector got after data pre-processing 

step. There are two fully connected hidden layers with 80 

units(nodes) per layer and Rectifier Linear Unit (ReLU) is 

used as an activation function in the hidden layer. Finally, 

the output layer comprises of 5 nodes (i.e., representing 5 

class labels), corresponding to the number of actions in the 

environment.  

 

The training process is performed in two parts. During the 

pre-training phase, the agent selects action according to the 

ε-greedy policy. Probability ε selects the action randomly 

while probability 1− ε selects the action according to the 

maximum Q-value [25]. In the process, agent’s experience 

(state, action, rewards, next state) is stored into the replay 

memory at each time step. 

During the training phase, we randomly sample a batch of 

experiences from Replay memory. Each batch is called as 

“minibatch”. Mean Squared Error loss is computed between 

Q-network and Target network. Q-value is said to be the 

total cumulative reward for an action at a given state. The 

loss function is the square of difference between the 

predicted and the target Q-value. Loss function outputs 

lower value if the predictions are not up to mark. Higher the 

loss function if the predictions are good. Only the Q-

network is trained in the process and the Target network is 

used to train the Q-network in order to obtain the maximum 

Q-value. The target value is calculated using the prediction 

for the new state based on the Bellman equation. The target 

Q-value is given by the sum of immediate reward and 

the discounted max Q-value for the next state over time. 

 

 

 

 

 

Stochastic gradient descent is an optimization algorithm 

used in this study to minimum the loss and update the 

network weights. By periodically fixing the weights and 

updating the network parameters, maximum value of Q-

Target Q-value = r +  max a’ Q(s’, a’)                      

Loss [{(r +  max a’ Q(s’, a’)) – Q(s, a)}2] 

                   

 
Target Prediction 
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values can be obtained. This determines the corresponding 

action to be outputted. 

D.   Testing phase: 

The Q-table scores from the training phase is used for 

testing. The trained model is used for testing on test dataset. 

The model’s performance is the evaluated. The flowchart is 

depicted in Figure 4. 

 
Figure 4. Flowchart illustrating the training and test phase of the 

proposed system 

V. EXPERIMENTS AND RESULTS 

In this section, the proposed DRL method is evaluated 

based on the methodology discussed in the previous section. 

The experiments are conducted to evaluate whether the 

model is successful in intrusion detection and how well it 

learns the patterns with respect to existing as well as new 

types of attacks. This section describes the experimental 

setup covering the dataset description, study requirements 

and the result analysis. 

A. Dataset Description: 

The selection of an appropriate data plays an important role 

in data analysis. Different datasets have different impact on 

the performance of the system and some result in generating 

poor prediction outcomes. In order to address this problem, 

NSL-KDD, a new dataset has been used in this work. NSL-

KDD is the most commonly used data for network intrusion 

detection. Network Security Laboratory Knowledge 

Discovery and Data Mining is abbreviated as NSL-KDD. It 

is the modified version of KDD99 dataset.  

 

 

Table 1. The class distribution of NSL-KDD dataset for training and 

testing 

Dataset Normal Class Anomaly Class 

 Label               Instances Label                       Instances 

Train Normal            67,343 DoS                          45,927 

Probe                        11,656 

R2L2                        995 

U2R       2                 52 

Test Normal            9711 DoS                          7458 

Probe                        2421 

R2L                          2754 

U2R                          200 

The advantages of NSL-KDD dataset over KDD99 dataset 

are as follows: 

a. No redundant records in the train set making the 

classifier to not produce any biased result 

b. No duplicate record in the test set resulting in better 

detection rates 

c. The number of train and test set records being rational 

makes the system run on complete set without having 

to worry about selecting the subset of it randomly 

NSL-KDD dataset comes in two separate files for training 

and testing. There are 1,25,973 training samples and 22,544 

test samples, both containing 41 features and 1 label. Each 

record is labelled as either normal and specific attack type. 

Table 1 shows in detail the class distribution of NSL-KDD 

dataset. In total, there are 38 attack types and 1 normal type 

in the dataset. The training dataset consists of one normal 

type and 22 attack types as shown in Table 2. Along with 

the attack types in training dataset, additional attack types 

(making it in total 38 attack types) and one normal type are 

present in test set. Thus, this determines how effective the 

model is in handling the unknown attacks. The attack types 

are categorized into 5 class labels: normal, DoS, Probe, 

U2R and R2L. 

 

 

Attack 

Labels 

Attack types in training 

dataset 

Additional attack types in 

test dataset 

DoS back, land, neptune, pod, 

smurf, teardrop 

 

worm, apache2, udpstorm, 

mailbomb, processtable 

Probe ipsweep, nmap, portsweep, 

satan 

saint, mscan, 

U2R buffer_overflow, 

loadmdoule, perl, 

rootkit 

ps, sqlattack, xterm 

R2L ftp_write, guess_passwd, 

imap, multihop, phf, spy, 

warezclient, warezmaster 

http_tunnel, named, 

sendmail, 

snmpgetattack, snmpguess, 

xclock, xsnoop 

 

 

Table 2. NSL-KDD attack types and classes 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-07,  Issue-04, JULY 2021 

190 | IJREAMV07I0476059                          DOI : 10.35291/2454-9150.2021.0395                    © 2021, IJREAM All Rights Reserved. 

 

B. Experimental setup: 

The experiment study was implemented on an AMD Ryzen 

2.10 GHz processor and with 8 GB of RAM. Keras, 

a higher-level library along with TensorFlow was used to 

build the algorithm with the neural network. The experiment 

was carried out on Anaconda Spyder IDE via Python. 

Python version 3.8 is used. The complete training period is 

divided into episodes. Episode refers to the number of 

iterations taken by the algorithm during the training 

procedure to arrive at a desired solution. Inside this loop, 

another loop referring to the number of steps is chosen to 

mark the end of each iteration. Network parameters are said 

to update their weights after every iteration. Necessary 

hyperparameters for setup: 200 steps and 400 episodes.  

 

 

 

 

In the experiment, 125973 instances of records have been 

used as training data to build the training models for the 

DQN classifier. The testing phase is implemented based on 

22544 instances of records. 

With exploration and exploitation strategy, the experiment 

demonstrates that agent learns better policies by exploiting 

actions and modifying the Q-values. Results are reported 

based on the agent’s transformation of maximizing rewards 

during the training period. After the first few episodes, 

performance improvement of the model can be seen. Figure 

5 shows decrease in loss function over time increased 

agent’s ability to handle efficiently all the types of attacks 

by attaining higher rewards.   

After the training, the robustness and adaptiveness of the 

trained model was tested on a set of 22544 test samples that 

have an additional types of attacks present. The DQN model 

has an 82.99% accuracy on the test set. The scores represent 

the maximum total reward over episodes during testing 

time. The final output conveys information about DQN’s 

scores of actual labels present in the samples over correctly 

predicted labels. Figure 6 depicts the test set scores’ 

comparison of total labels and correct label predictions. 

 

 

VI. CONCLUSION AND FUTURE WORK 

Most of the state-of-the-art IDSs designed using existing 

approaches to intrusion detection suffer from performance 

degradation due to the lack of autonomous learning. To 

handle the complex traffic patterns, a deep reinforcement 

learning method which implements frequent updates from 

the system is proposed. With the continuous interactions of 

agent and environment, the system is capable of 

autonomously learning new attack patterns and give proper 

responses. The approach not only detects if there is an 

attack or not, but also diagnoses the exact class of attacks 

with its optimal decision-making solution. 

In future studies, this approach can be implemented using 

adversarial examples, which is small perturbations added in 

input samples to fool the model, and check the effectiveness 

of the system. NIDS using several deep reinforcement 

learning algorithms, such as Double DQN, Dueling Q-

Network, Prioritized experience replay, Policy-based and 

Actor-critic algorithms can also be explored.  
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