
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-05, AUG 2021

226 | IJREAMV07I0577035 DOI : 10.35291/2454-9150.2021.0456 © 2021, IJREAM All Rights Reserved.

Integration of Salesforce through MuleSoft Using

Batch Processing
*Prakruthi P S, #Sunil Kumar R

*,#MuleSoft Certified Developer – Software Engineer, Apisero, Inc. Bangalore & India,

*prakruthishekar29@gmail.com, #sunilrudrakumar@gmail.com

Abstract: MuleSoft provides the ability to batch process messages. It breaks down big messages into individual records,

which are then handled asynchronously in batch tasks. Large volumes of incoming data from any upstream system may

be extracted, transformed, and loaded (ETL) into any destination system in real time using the batch method. Facebook

Graph API is utilized as the upstream system in this article (The Facebook Graph API is the primary way for apps to

read and write to the Facebook social graph), while Salesforce is used extensively as the destination system. Salesforce is

a cloud computing platform that uses data objects to store data. This article discusses the problems that arise when

upstream systems have complicated data storage formats, as well as the transformations that are required to

accomplish efficient data transfers. Batch Processing may be used to combine big or small databases and process

records in a parallel manner. Additionally, individual records can have variables added or removed so that Mule can

route or act on records in a batch based on a record variable during batch processing. This article addresses numerous

components that are highly unique to batch processing and may be utilized to build business logic, as well as certain

generic situations that form the core of every batch flow, to assist offer a better understanding. Uses Cases where up to

6 million entries were successfully fetched from a database, converted, and upserted to Salesforce, as well as suitable

error handling methods, are presented.

Keywords — MuleSoft, Batch Processing, Error Handling, Salesforce, ETL, Object Store, Send Module

I. INTRODUCTION

Data-driven decision-making is extremely important in

today's organizations as it is the most important aspect of

the organization. Data-driven decision making is critical

because it allows us to analyze real - time data and derive

predictive insights. It enables you to conduct research and

determine what is or is not working for your company.

Organizations must gather data from a variety of sources

and change it into a format that can be used for downstream

analysis. Given the range of data repositories and complex

formats used in businesses, the design of systems that can

achieve these goals can quickly become complicated to

build and maintain.

Figure 1 shows the Architecture of batch job.

It's usually tough to process each individual record

separately when loading vast amounts of data from one

system to another. As a result, processing data in batches is

always advised; most systems also support this.

Figures 2 shows how MuleSoft’s batch process phase works

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-05, AUG 2021

227 | IJREAMV07I0577035 DOI : 10.35291/2454-9150.2021.0456 © 2021, IJREAM All Rights Reserved.

MuleSoft, on the other hand, has a number of built-in

interfaces that help reduce time to market by allowing batch

processes to run asynchronously and in multithreading

mode. We hope to address this complicated data processing

mechanism in this work, as well as rapid real-time

procedures for transmitting millions of entries. This paper

also includes a generic method for dealing with errored

records that may be applied to any batch flow.

II. BATCH JOB PROCESSING PHASES

Each batch job contains three different phases:

1. Load and Dispatch.

2. Process.

3. On Complete.

Load and Dispatch: This initial stage is self-evident. The

runtime does all of the "behind the scenes" work to establish

a batch job instance at this step. This is the stage at which

Mule converts a serialized message payload into a

collection of records that can be processed in a batch and

it does not require any configuration, however it is helpful

to understand the tasks Mule completes during this phase.

1. Mule uses Data weave to separate the message. A

new batch task instance is created in the first step.

The batchJobInstanceId variable in Mule exposes

the batch job instance ID. This variable is present

in each step as well as the on-complete phase.

2. Mule produces a record for each item generated by

the splitter and places it in the queue. This

activity is "all or nothing" – Mule either generates

and queues a record for each item correctly, or

the entire message fails during this phase.

3. Mule sends the batch job instance to the first batch

step for processing, along with all of its queued

records.

After this phase is over, the flow continues without having

to wait for the batch job to finish processing all of the

records. Because the next phase, Process, is asynchronous,

this behavior occurs.

Process: Mule completes the following steps during this

phase.

1. Mule begins extracting records from the stepping

queue during the Process phase to create record

blocks of the configured batch block size. Mule

then delivers the record blocks to the batch step

that corresponds to them and processes them

asynchronously.

2. Each batch step processes numerous record blocks

in parallel, but the records within each block are

processed sequentially.

After processing all of the data in a block, a batch step

transfers the records to the stepping queue, where they

await processing by the next batch step (each record keeps

track of the steps it completed).

This process continues until every record in the batch job

instance has passed through all of the batch steps.

It's worth noting that a batch job instance doesn't wait for

all of its queued records to complete processing in one

batch step before moving on to the next. If you configure

an aggregator, however, the batch job step's behavior while

processing records changes depending on how the

aggregator is configured.

On Complete: There are two ways to work with the output.

1. Create a report using Data Weave in the On

Complete phase, including the number of failed

records and successfully processed records, as well

as where any mistakes occurred.

2. To collect and use batch metadata, such as the

number of records that failed to process in a given

batch job instance, use the batch job result object

elsewhere in the Mule application.

If you leave the On Complete phase empty and do not

reference the batch job result object elsewhere in your

application, the batch job simply completes, whether failed

or successful.

The following parameters for the batch connector should be

determined based on the input and its size:

1. Block Size:

To figure out how big the block that will be used for the job

instances should be. Instead of queuing each record

separately, they are queued in blocks of 100 records, which

reduces I/O overhead but increases working memory

requirements. There is a block: 1 relationship between each

record and a working thread instead of a 1:1 relationship.

Each job has 16 threads by default (this can be changed

using threading-profile element)

 Each of these threads is assigned a 100-record

block.

 Each thread goes over the block one by one,

processing each record.

 Each block is returned to the queue, and the process

continues.

 Default value: 100

2. Max Failed Records:

 Value 0 accepts no errors and instantly stops the

batch operation.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-05, AUG 2021

228 | IJREAMV07I0577035 DOI : 10.35291/2454-9150.2021.0456 © 2021, IJREAM All Rights Reserved.

 Value -1 accepts all failures and never halts

processing due to a failed record.

 Any integer value specifies the maximum number of

unsuccessful records that a batch can process

before ending.

3. Batch Step Filters:

Accept Expressions limits the number of records that can be

processed depending on a condition.

Accept the following policies for each step:

 ALL takes all records

 NO_FAILURES takes only successful records

 FAILURES_ONLY takes only failed records

4. Batch Commit:

The number of records that can be committed to the

destination at one time.

 Fixed-sized commit:

Commit blocks are used to combine a bunch of records

together so that bulk activities can be performed. Inserting

records one by one would be inefficient due to I/O costs

(network overhead, disc overhead, etc.).

As a result, it's preferable to use batch commit to conduct

only one bulk operation that aggregates a subset of records

within a batch.

a) Salesforce Upsert Operation: Max value 200.

b) Salesforce Bulk Upsert Operation: Max value

10,000.

 Streaming commit:

The streaming feature – one-read, forward-only iterator is

returned – assures that all records received are the records

in a batch job without running out of memory, rather than a

list of elements received with a fixed-size batch commit.

III. USE CASES

a) Loading large amount of data:

We're pulling a huge number of records from the Graph

API, converting them to Salesforce format, then upserting

them with a batch commit size of 200.

Values are kept in properties file as-

 ${batch.failedRecords} : -1

 ${batch.size} : 200

There are two upsert possibilities in Salesforce:

(Shown in Fig3)

 Upsert: a maximum of 200 records can be pushed

to a salesforce object at once.

 Bulk Upsert: a maximum of 10,000 records are

provided to be upserted.

Figure 3 shows the batch job configuration.

Input Data :

Figure 4 shows Example response from Graph API.

Response from Salesforce in logger:

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-05, AUG 2021

229 | IJREAMV07I0577035 DOI : 10.35291/2454-9150.2021.0456 © 2021, IJREAM All Rights Reserved.

Figure 5 shows Example Response from Salesforce after

upserting a record.

Result after the execution in batch job in On-Complete

phase:

Figure 6 shows sample response after completion of batch

job

This flow upserts records in Salesforce and logs the

response that is sent by salesforce as the success response

which will have Salesforce ID for the records created.

b) Handling failed records:

Accept policy as "ONLY FAILURES" in batch step failed

records configuration settings to know all records that have

failed in previous batch stages. This will just show you the

records that failed, not the actual error trail. The actual error

trail will be saved in log files that can be examined later.

Figure 7 shows overall mule flow.

Figure 8 shows Configuration of batch step for failed

records

 All the failed records payload will be fetched in the

seconds batch step which is Batch Step-failed-

records.

 The variables or payload of batch step are not

accessible in the on complete phase of batch Job.

Here comes the need of using Object store.

In Mule, an object store is a location where objects can be

stored. When Mule needs data to be saved for later

retrieval, it employs object stores. This notion can be used

to save data in the object store and retrieve it later in

another batch step, batch phase, or even in another flow.

Figure 9 shows Object store configuration

Object store expects a unique key to be configured. In this

case we’re using BatchJobInstanceId as a unique identifier

and the value is going to the failed records.

In the on complete phase retrieve module of object store

connector is used to retrieve the stored failed records by

taking the key.

Mule provides Email (Email Connector) to send messages

over SMTP and SMTPS servers by using the Send

operation. Along with the batch summary which we get in

on complete phase additional attachment can be sent to the

concerned person over an email as an alert if there are any

failed records present.

IV. RESULTS

No of records: 6 million

Input Phase: 0 minute 2 seconds.

Load phase: 0 minute 43 seconds

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-05, AUG 2021

230 | IJREAMV07I0577035 DOI : 10.35291/2454-9150.2021.0456 © 2021, IJREAM All Rights Reserved.

Process Phase: 1 minute 9 seconds

Limitation: Only 1 million records stored due to Salesforce

sandbox storage limit

V. CONCLUSION

MuleSoft allows you to process messages in batches using

the batch scope feature. A mule application's batch scope

can split the input payload into individual records, conduct

actions on those records, and then transmit the processed

data to destination systems.

This paper explains the MuleSoft batch processing

components in detail, including how concepts like Batch

step, object stores, send email, Salesforce Connector, and

others may assist in creating efficient techniques for

transforming and loading massive datasets into systems like

Salesforce. Because Salesforce uses complicated systems to

store data, data integrity and error handling are critical. It

took around a minute to load and process 6 million records.

MuleSoft Batch tasks are designed for high-throughput,

real-time processing of millions of records, and similar

techniques can be used to any other upstream and

downstream platforms not mentioned in this document.

REFERENCES

[1]. Batch Processing - Mule Runtime - MuleSoft

Documentation https://docs.mulesoft.com/mule-

runtime/4.3/batch-processing-concept

[2]. ERROR HANDLING IN BATCH JOB

https://mulesy.com/error-handling-in-batch-job/

[3]. Batch Processing in Mule 4 - Apisero

https://apisero.com/batch-processing-in-mule-

4/#:~:text=Batch%20scope%20in%20a%20mule,1

6%20threads%20at%20a%20time.

[4]. Mule Batch Processing - Part 1: Introduction -

DZone Integration https://dzone.com/articles/part-

1-mule-batch-processing-introduction

[5]. Part 1: Mule Batch Processing - Introduction -

{Java}

Streetshttps://javastreets.com/blog/2017/9/mule-

batch-processing-part1-introduction.html.

[6]. Mule ESb -

https://www.tutorialspoint.com/mulesoft/mulesoft_

introduction_to_mule_esb.htm

[7]. Salesforce connector - https://mulesy.com/create-

records-in-salesforce/

[8]. Object Store - https://vanchiv.com/what-is-object-

store-in-mule-4/

[9]. Mule Flow - https://www.baeldung.com/mule-esb-

flows#:~:text=There%20are%20three%20different

%20types,strategy%20of%20the%20parent%20flo

w&text=Asynchronous%20Flows%20%E2%80%9

3%20an%20asynchronous%20flow%20with%20it

s%20processing%20and%20exception%20handlin

g%20strategy

[10]. Anypoint Studio -

https://dzone.com/articles/introduction-to-

mulesoft-anypoint-studio

[11]. Mariano Gonzalez, Tech Lead in the core Mule

Runtime;

https://blogs.mulesoft.com/dev/connectivity-

dev/batch-improvements-in-mule-3-8-mutable-

commit-blocks/

Batch%20Processing%20-%20Mule%20Runtime%20-%20MuleSoft%20Documentation
Batch%20Processing%20-%20Mule%20Runtime%20-%20MuleSoft%20Documentation
https://apisero.com/batch-processing-in-mule-4/#:~:text=Batch%20scope%20in%20a%20mule,16%20threads%20at%20a%20time.
https://dzone.com/articles/part-1-mule-batch-processing-introduction
https://dzone.com/articles/part-1-mule-batch-processing-introduction
https://javastreets.com/blog/2017/9/mule-batch-processing-part1-introduction.html
https://javastreets.com/blog/2017/9/mule-batch-processing-part1-introduction.html
https://javastreets.com/blog/2017/9/mule-batch-processing-part1-introduction.html

