
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-07, OCT 2021

163 | IJREAMV07I0779042 DOI : 10.35291/2454-9150.2021.0577 © 2021, IJREAM All Rights Reserved.

A Study on Messaging Systems- Kafka,

KubeMQ, IBMMQ and RabbitMQ

Rujula Singh R, Computer Science Student, RV College of Engineering, Bangalore India,

rujulasinghr.cs17@rvce.edu.in

Nikhil S Nayak, Computer Science Student, RV College of Engineering, Bangalore India,

nikhilshivakn.cs17@rvce.edu.in

Abstract A messaging system is responsible for movement of data from one application to another so the application

can focus on data without wasting time on data transmission and sharing. Message systems play a vital role in data

driven application with huge amount of data needs to be transferred between the applications. The crux of many big

data streaming applications, cloud native based applications and microservices-based architecture is distributed

messaging system. In the era of time critical applications and real time based applications there is a need for highly

efficient, fault tolerant with graceful degradation, scalable and low latency messaging systems. Different applications

require different features of the messaging system therefore an in-depth study of popular messaging systems is

necessary. This survey paper dives deep into state of art messaging systems-Apache Kafka, KubeMQ, RabbitMQ and

IBMMQ. This is to help users decide among many messaging systems. We discuss similarities, use cases and differences.

It is of seminal importance for future development and research.

Keywords — IBMMQ, Kafka, KubeMQ, Messaging Systems, Publish-Subscribe, RabbitMQ.

I. INTRODUCTION

Data pipelines help you migrate data from wherever it has

been created to various other places where there is a

possibility of processing it. This is a central idea of a data-

driven application. In messaging systems data consumption

and data transmission are two different processes, that is, it's

not carried out by the same process as, there is no direct

connection between a sender and a receiver. This is a smart

concept as it prevents applications from wasting time on

consuming and transmitting data. Messaging systems should

be able to improve performance, scalability, manageability,

and reliability. Messaging is a wide term that encompasses a

variety of methods each of which differ in terms of how this

data is transferred from sender to receiver. Publish-

subscribe and message queuing are the two main types of

messaging models.

A. Publish/Subscribe

Publish subscribe model also popularly known as a

pub/sub model is an asynchronous communication between

services. This model is not only popular with serverless but

also microservices based architecture. Immediate responses

to the receivers are obtained when the corresponding topic

has been populated by the publisher. If your application is

event-driven or decoupling is of cardinal importance, then

pub/sub messaging can boost performance reliability and

scalability.

The Publish/Subscribe messaging pattern brings many

benefits like Implementing the publisher and subscriber

parties independently from each other, publishers and

subscribers aren’t required to know each other, one

Subscriber could receive data from many different

Publishers and a single Publisher could send data to many

different Subscribers. Figure 1 shows the pattern of a

pub/sub, where we have a single publisher and many

subscribers for a given channel.

Fig. 1. Pub/Sub Pattern

B. Messaging Queue Paradigm

In serverless and microservices systems, a message queue is

a type of asynchronous service-to-service communication.

Messages are queued until they are processed and then

discarded. A single consumer processes each message just

once. Message queues are useful for decoupling heavy

processing, buffering, or batching work, and smoothing

spiky workloads. This paradigm is useful when we want to

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-07, OCT 2021

164 | IJREAMV07I0779042 DOI : 10.35291/2454-9150.2021.0577 © 2021, IJREAM All Rights Reserved.

converse via short message formats. When many processes

communicate at the same time, shared memory data must be

secured via synchronization. If the frequency of writing and

reading from shared memory is high, then implementing the

functionality will be difficult. What if most processes don't

need to access shared memory, but only a few do? In all the

above scenarios message queues would be a preferable

solution. The first message inserted in the queue is the first

one to be retrieved. (FIFO)

II. RELATED WORK

This section recapitulates previous research on message

queuing systems. In [2], [3] the authors have qualitatively

distinguished the important differences within message

queuing systems. [2] compared system usage among many

other things which includes download, installation, and

documentation. [3] compares the communication and design

of many message queuing systems. [5] and [6] investigate

the performance differences between Kafka and RabbitMQ.

[1], [7] undertake a quantitative and qualitative review,

although their experimental results are based on each

system's built-in test tools, which may cause fairness

difficulties other resources have compared KubeMQ and

IBMMQ based on portability, configuration requirements,

deployment time, availability, payload size, dependencies

on external systems.

The majority of existing research has concentrated on at

the most two to three message queuing systems. After an in-

depth literature survey, it was found that there is no

comprehensive study that compares the four prominent

systems on multiple dimensions. Furthermore, while a

quantitative comparison is carried out for the systems being

tested, the experimental findings are produced utilizing the

systems' built-in test tools. Therefore, this produces biased

results. We try to bridge the gap by using a general test

framework which provides an unprejudiced comparison.

We also go over the best use cases for the four different

systems under consideration, which will aid users in

selecting the right message queuing system for their needs

III. OVERVIEW

In this section we discuss in detail about messaging

systems that is, publication-subscribe model or message

queuing model. It also helps understand prominent features

of four of the most pervasive messaging systems.

A. Apache Kafka

Apache Kafka is an open-source software platform. It is

written in Java and Scala. It is a product of Apache

Software Foundation. It has many applications in streaming

analytics and integrating data pipelines. It is also useful for

mission critical applications. This distributed system

consists of multiple servers and clients. Communication

between them is facilitated through a TCP network which is

highly efficient. It comprises of Producers and Consumers.

Producers write data into topics whereas consumers read

data from these topics. Each and every topic has a log

associated with it that exists on a disk in the form of a data

structure. Records are appended to a topic log which is

generally added at the end of file without replacing existing

data usually from single or multiple producers in Kafka. A

single topic can have many partitions. Each partition is not

necessarily stored on the same node. Consumers can read or

consume data from any topic log and can pick up where

they have left off. Consumers belong to a particular

consumer group. Each group maintains offsets to enable

consumption of new data. Kafka provides high performance

and horizontal scalability by storing data on different nodes.

Kafka provides two models - one is message queuing and

the other is publish subscribe. Kafka messaging queue has a

single server that can act as a source for a pool of

consumers. Each record is only sent to a single consumer to

prevent duplication. In publish subscribe, the record is

available to all consumers that is, the data is broadcasted for

everyone to consume. Figure 2. shows the high-level

architecture of Kafka with a cluster, producer and consumer

group coordinated with the help of zookeeper.

Fig. 2. Kafka Architecture

B. RabbitMQ

RabbitMQ is an open-source software. It is written in

Erlang. RabbitMQ like many other messaging systems uses

a cluster-based approach with usually a single broker.

RabbitMQ is a highly available and flexible system.

Effective queuing is achieved with the help of a pliable

routing system. Customize routing is available for

convoluted operations. It is also available in other powerful

languages apart from Erlang and multiple protocols can be

utilized.

RabbitMQ can be implemented using many protocols.

AMQP 0-9-1 is a protocol with two states, and messaging

semantics that are far from tenuous. It is a developer

friendly protocol and has robust client libraries which are

adaptable to a variegated number of programming

languages and environments. STOMP is a basic protocol

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-07, OCT 2021

165 | IJREAMV07I0779042 DOI : 10.35291/2454-9150.2021.0577 © 2021, IJREAM All Rights Reserved.

which underscores simplicity as it uses text messages. It can

also leverage protocols that are built on top of telnet.

MQTT similarly is a protocol with two states that

underscores the importance of high speed publish /

subscribe messaging, popular among clients using highly

constrained devices. However, it is only well suited for

publish/subscribe systems. HTTP can also be used as the

messaging protocol.

RabbitMQ uses modifications of request/reply,

publish/subscribe and point to point messaging patterns. It

utilizes a Fast broker/slow consumer model — that provides

a reliable delivery of messages while simultaneously

monitoring the consumer state. It is adaptable to popular

languages such as Java, .NET, Scala, Ruby and node.js. It

can leverage synchronous or asynchronous distributed

systems. It is an implementation of the Advanced Message

Queuing Protocol (AMQP). With this type of message

model, the producer, in our case, checks out the service that

produces the messages. Instead of producing directly to a

message queue, it's going to produce to exchange. We can

think of the exchange as a post office; it's going to receive

all messages and then distribute them according to how they

are addressed. Figure 3 shows high level architecture of

RabbitMQ with three brokers in a mirror cluster enabling

communication between multiple producers and consumers.

Fig. 3. RabbitMQ Architecture

C. KubeMQ

It is written in GO. Kubernetes is central to KubeMQ. It is a

high-quality message broker with plug-and-play connectors

and distributed monitoring. It enables transparency in

private as well as public clouds, with easy integration to

microservices. It is a modern messaging queue with a high-

speed broker, certified in the Cloud Native Computing

Foundation ecosystem. These systems are easily deployable

in Kubernetes cluster which can have a down time of less

than one minute. DevOps operations are largely simplified

with the help of client friendly SDKs and libraries. The four

messaging themes used by KubeMQ are - Message

Queuing, Streaming, Publish/Subscribe, and Remote

Procedure Calls. It is a viable solution for a myriad of use

cases because of its flexibility. It's hybrid infrastructure

provides a solution that is robust to many different types of

environments across public and private clouds.

D. IBMMQ

It provides two alternative application programming

interfaces (APIs) for use in Java applications: classes for

JMS as well as for microservice based Java applications. It

is highly popular among leading organizations and has a

good reputation in the developer community. IBMMQ has

the largest market presence among products in Message

Queuing Systems. IBMMQ architectures range from simple

architectures using a single queue manager, to more

complex networks of interconnected queue managers.

Multiple queue managers are connected together using

distributed queuing techniques. IBMMQ provides two

different release models The Long-Term Support (LTS)

release is most suitable for systems requiring a long-term

deployment and maximum stability and The Continuous

Delivery (CD) release is intended for systems which need to

rapidly exploit the latest functional enhancements for

IBMMQ. The four messaging themes used by IBMMQ are -

Message Queuing, Streaming, Publish/Subscribe and File

transfer. Applications can also broadcast messages. Figure 4

shows a high-level architecture of IBMMQ with two queue

managers in a cluster enabling communication between

multiple publishers and subscribers.

Fig. 4. IBMMQ Architecture

IV. FEATURE COMPARISON

The four technologies mentioned above are all popular,

and they have so many similarities that choosing the correct

framework might be challenging. Here, the Quality of

Service (QOS) is investigated in-depth for the different

messaging systems mentioned above. This will help

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-07, OCT 2021

166 | IJREAMV07I0779042 DOI : 10.35291/2454-9150.2021.0577 © 2021, IJREAM All Rights Reserved.

determine the extent of scalability and quality of the system

and its ability to fulfill the requirements of the customer. On

many QoS criteria, a full comparison is done between all

four. Table-1 shows the comparison on popular features.

A. Message Delivery

The guarantee of message delivery is at the heart of

service excellence. The delivery method known as 'at most

once' is one in which the message may or may not be

delivered resulting in high throughput. 'Exact once' delivery

is when the message is received by the consumer only once.

This necessitates time-consuming calculations. When a

message is sent at least once, but it can possibly be

delivered several times, it is referred to as 'at least once'

delivery. This is helpful in the event of a failure. Multiple

types of delivery like 'at-most once', 'exactly once' and 'at-

least once' delivery is provided by Kafka [10]. Similarly, 'at

most once' and 'at least once' delivery is provided by

RabbitMQ. KubeMQ supports asynchronous and

Synchronous messaging with support for guaranteed

message delivery, 'At Most Once' Delivery and 'At Least

Once' Delivery models. IBMMQ provides 'once and once

only' delivery of messages to ensure messages will

withstand application and system outages.

B. Message Persistence

It is the capacity to save messages so that they can be

retrieved even if the broker is restarted. In the case of

Kafka, the log can be saved on disc and a message retention

period can be configure Persistence is an option in

RabbitMQ, and it can be saved in memory or on disc. [12].

Message persistence is not guaranteed even if a queue is set

to be persistent in RabbitMQ. KubeMQ provides

customizable features to configure the expiry time and delay

of messages at granular level of a single message. Also,

unprocessed messages are added to a dead-letter queue for

debugging and logging purposes. In IBMMQ, when queue

manager recovers from a failure the messages are persisted

as necessary from the dead-letter queue. However, if the

messages are not recorded in the dead-letter queue, either

due to failure of the system or because of a command issued

by the user, the messages are lost without being persisted.

C. Message Ordering

Within a partition, there is ordering in Kafka. For

worldwide ordering, high cost configurations must be set up

which lowers performance. KubeMQ follows FIFO (First In

First Out) ordering of messages in case of durable queues.

IBMMQ follows FIFO ordering of messages but also

maintains priority within the queue of messages.

D. Latency

Latency is defined as delay incurred in a process. Kafka

and RabbitMQ generally provide very low latency. The

authors in [10], [15] observed that in Kafka's 'at least once'

delivery pattern, for a medium load the latency doubles,

whereas in RabbitMQ's 'at most once' and 'at least once'

delivery there is no noticeable change in the latency.

Accessing data from the disc would further increase the

latency in Kafka. KubeMQ supports high volume messaging

with low latency [11]. IBMMQ also supports low latency.

E. Availability

It is a system's ability to maximise its uptime. For high

availability, the system must provide fault tolerance.

Experiments on queue replication in RabbitMQ are

undertaken in to investigate the impact on availability and

scalability. It has been noticed that performance is best for a

single queue, and that when the queue is duplicated, the

performance takes a hit, but the upside of this trade-off is

increase in fault tolerance of the system. Replication to

increase reliability is characteristic of Kafka which is

configurable by the developer. The replicated data is stored

on multiple brokers. This also has the added advantage of

increased fault tolerance. Kafka uses the hadoop ecosystem

resource manager in zookeeper [17], which manages the

communication between all the available brokers, producers

and consumers to coordinate the working of the entire

system. Replication also means highly available systems

which further provide better performance. High availability

translates to critical reliability which enables KubeMQ to

transfer large amounts of data without any hassle. If you

want to operate your IBMMQ queue managers in a high

availability (HA) configuration, you can set up your queue

managers to work either with a high availability manager,

such as PowerHA for AIX or the Microsoft Cluster Service

(MSCS), or with IBM MQ multi-instance queue managers.

On Linux systems, you can also deploy replicated data

queue managers (RDQMs), which use a quorum-based

group to provide high availability.

F. Scalability

It describes a system's ability to adapt to a rising number

of producers, consumers, or brokers. RabbitMQ enables

clustering, which allows several nodes to function as a

single message broker. This is beneficial for balancing

demand and scaling the system to handle a huge number of

messages. Kafka was created as a horizontal scaling system

from the bottom up. Kafka is easy to grow thanks to the

zookeeper's coordination in adding and deleting brokers.

KubeMQ is adopted for seamless container management; it

provides high scalability and enhances communication or

messaging. It can also allow for the addition of many

lifetime applications when building a microservice. In

IBMMQ, by adding instances of service queues we can start

to scale applications. IBMMQ Clustering allows instances

to be added or removed without modifying client or server

applications.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-07, OCT 2021

167 | IJREAMV07I0779042 DOI : 10.35291/2454-9150.2021.0577 © 2021, IJREAM All Rights Reserved.

V. DISCUSSION

Section 4 delves into the feature comparisons in depth.

Table-1 does a comparison of the four messaging systems

with respect to some features. The section also includes a

list of common features shared by the four systems, which

can be studied further by comparing them to other

messaging frameworks. While coming up with a design

solution or establishing a distributed architecture, the

important considerations were elaborated in the previous

sections.

Feature Messaging Systems

Kafka KubeMQ RabbitMQ IBMMQ

Run anywhere yes yes yes

Persistence yes yes yes yes

High Availability yes yes yes yes

Exactly once

Delivery

 yes yes

Message

Expiration

 yes yes yes

Delayed Delivery yes

Long Polling yes yes

At most once

delivery

 yes yes

Consumer groups yes yes yes

Table 1. Feature Comparison

When it comes to distributed log systems, Kafka is more

mature, and it is the leading solution for real-time data

analytics where high throughput and low latency are of

cardinal importance. KubeMQ is preferable for relatively

simple and high-speed applications. It has a small support

network that is continuously expanding as new releases are

released. More features are added with each version, which

will soon make it competent with Kafka on all fronts. Kafka

can be utilized in situations when real-time data is not

crucial, such as when the system is not affected even when a

small number of messages are lost during transmission.

Examples of such situations are: Advertisements on

websites, social media and user tracking using cookies.

RabbitMQ is a basic message broker that can handle

sophisticated routing via exchanges and queues. In order to

create intelligent applications with a large number of

sensors that are connected to the internet, unique routing is

required. For financial transactions where each message is

of paramount importance, the acknowledgement of each

transaction is useful which is provided by RabbitMQ. The

four messaging themes used by IBMMQ are - Message

Queuing, Streaming, Publish/Subscribe and File transfer.

Using multicast, applications can send messages to a large

number of people.

VI. CONCLUSION

This paper explores the publisher/subscriber and

messaging queue concepts in detail. The article gave a

quick overview of four major messaging frameworks,

including Apache Kafka, RabbitMQ, KubeMQ and

IBMMQ. Then there were feature comparisons concerning

message durability and ordering, throughput, and latency.

Also, this paper emphasizes the importance of scalability

and availability in distributed messaging systems. These

aspects are critical in deciding whether a framework is

suitable for a certain application. As a result, the paper

provides guidelines on how to choose the most suitable

messaging system for different scenarios. Non-compliance

with these standards will result in additional charges during

the application development process. As more powerful

silicon devices with great processing capabilities become

available, messaging frameworks will become the backbone

of future technologies. Future study will include a deeper

dive into the technological advances in the field with

emphasis on some of the newer messaging systems.

ACKNOWLEDGMENT

We would like to thank all the faculty of RV College of

Engineering and others for their knowledge transfer and the

support provided for this work on Survey of Messaging

Systems.

REFERENCES

[1] G. Fu, Y. Zhang and G. Yu, "A Fair Comparison of

Message Queuing Systems," in IEEE Access, vol. 9,

pp. 421-432, 2021, doi:

10.1109/ACCESS.2020.3046503.

[2] B. R. Hiraman, C. V. M and C. Karve Abhijeet, "A

Study of Apache Kafka in Big Data Stream

Processing," 2018 International

[3] V. M. Ionescu, "The analysis of the performance of

RabbitMQ and ActiveMQ," 2015 14th RoEduNet

International Conference - Networking in Education

and Research (RoEduNet NER), 2015, pp. 132-137,

doi: 10.1109/RoEduNet.2015.7311982.

[4] M. Y. Afanasev, Y. V. Fedosov, A. A. Krylova and S.

A. Shorokhov, "Performance evaluation of the message

queue protocols to transfer binary JSON in a

distributed CNC system," 2017 IEEE 15th International

Conference on Industrial Informatics (INDIN), 2017,

pp. 357-362, doi: 10.1109/INDIN.2017.8104798.

[5] John, Vineet & Liu, Xia. A Survey of Distributed

Message Broker Queues.2017, arXiv:1704.00411

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-07, OCT 2021

168 | IJREAMV07I0779042 DOI : 10.35291/2454-9150.2021.0577 © 2021, IJREAM All Rights Reserved.

[6] T. Treat. Benchmarking Message Queue Latency,

http://bravenewgeek.com/benchmarking-message-

queue-latency/,2016

[7] M. Rostanski, K. Grochla and A. Seman, "Evaluation

of highly available and fault-tolerant middleware

clustered architectures using RabbitMQ," 2014

Federated Conference on Computer Science and

Information Systems, Warsaw, 2014, pp. 879-884

[8] J. Kreps, N. Narkhede and J. Rao, "Kafka: A

distributed messaging system for log processing", Proc.

Int. Workshop Netw. Meets Databases, vol. 11, pp. 1-7,

2011.

[9] S. Dixit and M. Madhu, "Distributing messages using

Rabbitmq with advanced message exchanges", Int. J.

Res. Stud. Comput. Sci. Eng., vol. 6, no. 2, pp. 24-28,

2019.

[10] J. Yongguo, L. Qiang, Q. Changshuai, S. Jian and L.

Qianqian, "Message-oriented middleware: A review",

Proc. 5th Int. Conf. Big Data Comput. Commun.

(BIGCOM), pp. 88-97, Aug. 2019.

[11] John, Vineet & Liu, Xia. A Survey of Distributed

Message Broker Queues.2017, arXiv:1704.00411

[12] P. Le Noac'h, A. Costan and L. Bougé, "A performance

evaluation of Apache Kafka in support of big data

streaming applications," 2017 IEEE International Conf

[13] M. Rostanski, K. Grochla and A. Seman, "Evaluation

of highly available and fault-tolerant middleware

clustered architectures using RabbitMQ," 2014

Federated Conference on Computer Science and

Information Systems, Warsaw, 2014, pp. 879-884

[14] S. Skeirik, R. B. Bobba and J. Meseguer, "Formal

Analysis of Fault tolerant Group Key Management

Using ZooKeeper," 2013 13th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid

Computing, Delft, 2013, pp. 636-641.

[15] Martin Toshev, “Learning RabbitMQ” Birmingham,

UK: Packt Publishing, Ltd, 2015

[16] B. R. Hiraman, C. V. M and C. Karve Abhijeet, "A

Study of Apache Kafka in Big Data Stream

Processing," 2018 International Conference on

Information, Communication, Engineering and

Technology (ICICET), Pune, 2018, pp. 1-3.

[17] S. Patro, M. Potey and A. Golhani, "Comparative study

of middleware solutions for control and monitoring

systems," 2017 Second International Conference on

Electrical, Computer and Communication Technologies

(ICECCT), Coimbatore, 2017, pp. 1- 10.

[18] Kamburugamuve, Supun & Fox, Geoffrey. (2016).

“Survey of Distributed Stream Processing.”

10.13140/RG.2.1.3856.2968.

[19] Z. Wang et al., "Kafka and Its Using in High-

throughput and Reliable Message Distribution," 2015

8th International Conference on Intelligent Networks

and Intelligent Systems (ICINIS), Tianjin, 2015, pp.

117-120.

