
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-08, NOV 2021

42 | IJREAMV07I0880011 DOI : 10.35291/2454-9150.2021.0585 © 2021, IJREAM All Rights Reserved.

Genetic Approach to Actor Critic Algorithm in

Ping Pong
1Deepak Singh ,B.E Student at GCET Jammu, India.

Abstract - Actor Critic method where the “Critic” estimates the value function and the “Actor” updates the policy

distribution in the direction suggested by the Critic (such as with policy gradients). I will initially discuss about my

approach with a simple actor critic solution for the pong game , And then I will go on to discuss some shortcomings , And

end with my solution to overcome this issue which is having a genetic approach on top of actor critic model, In which

models diverging from the solution are rejected . Initially, I will create 10 actor critic models and then based on the

rewards after running an episode for them , I will substitute the poorest performing models with new models with random

weights and run optimiser on the top six , until I find a model that crosses the reward threshold . I conclude by discussing

how this approach out performs the basic actor critic algorithm and eliminates the issue of diverging too far.

Keywords – Critic Algorithm, Genetic, Random model.

I. INTRODUCTION

Actor Critic Algorithm was first introduced in 1983 as a

Reinforcement Learning Algorithm. In Reinforcement

learning , an Agent learns to make correct decisions based on

the rewards which it gets from interacting with the

environment . Which is in contrast to supervised learning

where an agent is given a dataset of correct behaviour to

learn from. In the actor critic algorithm, Based on the action

taken by the agent, the critic makes an approximation of the

possible future rewards. The actor uses the approximation to

update its policy in an approximate gradient direction. I will

be running this algorithm in a pong game to test how well it

does . In the pong environment , I will be collecting episodes

with respect to both the paddles in order to have a more

diverse set to train the policy on and reach convergence

faster.

II. PONG ENVIRONMENT

In the 2 player pong environment,

I will be Collecting trajectories in the form of state ,reward

and if the episode ended(lost the game) .

 Figure : 1

State will have 3 parameter,Y position of paddle , ball.y -

paddle.y and ||ball.x - paddle.x|| .

Reward is calculated based on the fact

1)if it hit the paddle the rewards= 1000 ,

2)if it just in the environment not touching wall or paddles

reward =1 ,

3) if it hit the walls=

-((||paddle.y- ball.y||*||paddle.y-ball.y||)/10)

Giving a -1000 reward for both when the difference between

y position of paddle and ball was 2 px and 200px doesn’t

make sense so squaring the difference between their y values

makes much more sense as negative reward. Episode end is

a Boolean if hit the wall is True, else it is False. Trajectories

are collected for the 2 paddle separately and later they will

be appended together, to get a better collection of trajectories

to train the policy.

III. ACTOR CRITIC ALGORITHM

Actor-Critic methods are temporal difference (TD) learning

methods that represent the policy function independent of the

value function. The actor is the policy πθ(a∣s) with

parameters θ which conducts actions in an environment. The

critic computes value functions to help assist the actor in

learning. These are usually the state value, state-action value,

or advantage value, denoted as V(s) Q(s,a), andA(s,a),

respectively. We will be using a basic actor critic method ->

Vanilla Policy Gradient with learned baseline function.

Vanilla Policy Gradient Algorithm

Initialise policy parameter θ ,baseline b For iteration

I=1,2,......do

Collect a set of trajectory by executing the current

policy

At each time step in each trajectory compute and,

Then return R = ∑T 𝛾𝑡′−𝑡𝑟𝑡′

the advantage estimate At = Rt -b(st)

Refit the baseline by minimising the

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-08, NOV 2021

43 | IJREAMV07I0880011 DOI : 10.35291/2454-9150.2021.0585 © 2021, IJREAM All Rights Reserved.

|| Rt - b(st)||2 ,

summed over all trajectories and time step

Update the policy ,using a policy gradient estimate

g,

which is a sum of terms

∇ θlogπ(at ,st , θ)At

End for

The actor-critic loss

Since a hybrid actor-critic model is used, the chosen loss

function is a combination of actor and critic losses for

training, as shown below:

𝐿=𝐿𝑎𝑐𝑡𝑜𝑟 + 𝐿𝑐𝑟𝑖𝑡𝑖𝑐

The actor loss is based on policy gradients with the critic as

a state dependent baseline and computed with single-

sample (per- episode) estimates.

𝐿𝑎𝑐𝑡𝑜𝑟=−∑𝑡=1.𝑇log𝜋(𝑎𝑡|𝑠𝑡)[𝐺(𝑎𝑡|𝑠𝑡)−𝑉𝜋𝜃(𝑠𝑡)]

Issues with this approach

Running the particular algorithm over and over in the pong

environment , I have seen that some time models will

converge in a few iterations of training while in some cases ,

it will diverge and never reach the optimum solution. I

figured that the reason is possibly due to how the weights and

biases are assigned , when the model is created each time I

run the script, Also there is how well it interact with

environment and is able to recognise how to gain positive

rewards in the game that can affect how soon it converge or

would just go on a tangent , also there is fine tuning of

discount factor and learning rate

Genetic Approach on Actor Critic Model:

So far I have establish that one of the reasons to reach

convergence faster is getting lucky with right weights and

biases for our model ,So I figured out an approach that can

speed up the process , I will create a list of models , train

each model using traditional approach and then test these in

the environment and store the score for each model and sort

them in descending order. I will eliminate the worst

performing model and replace them with the newly

initialised model which should remove the possibility of

models diverging too far from the solution and can help reach

solution faster.

It’s Survival of The Fittest , the models that are doing good

in comparison to others will be passed to the next generation

, while poorly performing ones will be discarded and

replaced with new models with randomised policy as to stop

wasting time on models that will never converge.

So I created a list of models and scores each model hold .

def __init__(self, numActions ,hidden_units)

self.common = layers.Dense(1024 ,activation =

'relu')

 self.common1= layers.Dense(num_hidden_units

,activation = 'relu')

 self.actor = layers.Dense(num_actions ,activation

= "tanh")

self.critic = layers.Dense(1)

def call(self,inputs):

x = self.common(inputs)

x1 =self.common1(inputs)

return self.actor(x) , self.critic(x1)

Lt = []

score=0

numAction =2 // move paddle up or down

hidden_units = 32

for i in range(10)

Lt.append([score ,Model(numActions

,hidden_units),i+1])

Also I started Collecting multiple episode for one model to

have better set and also I had one policy for for both paddle

so I had shared experience to train my model

For model in the list Run the algorithm

Initialise policy parameter θ ,baseline b For

iteration I=1,2,......do

Collect a set of trajectory by executing

the current policy

At each time step in each trajectory

compute,

, and

The return R = ∑T 𝛾𝑡′−𝑡𝑟𝑡′

t 𝑡′=𝑡

the advantage estimate At = Rt - b(st)

Refit the baseline by minimising the || Rt

- b(st)||2 , summed over all trajectories

and time step

Update the policy ,using a policy gradient

estimate g,

which is a sum of terms ∇ θlogπ(at ,st , θ

)

At End for

After running an episode for each model and updating the

policy ,I sorted the model list based on the scores ,

removing the last 4 models and creating 4 new ones .

Resetting the scores to zeroes and running the episode again

for each model until a model crosses the reward threshold.

Lt = sorted(Lt , key = lambda l : l[0] , reverse = True) Lt =

Lt[:5]

for i in range(5):

Lt.append([0 , Actor_Critic_A(numActions

,hidden_units) , 6+i])

for i in range(10):

Lt[i][0]=0

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-07, Issue-08, NOV 2021

44 | IJREAMV07I0880011 DOI : 10.35291/2454-9150.2021.0585 © 2021, IJREAM All Rights Reserved.

IV. RESULT

So based on my approach lets see how well our model plays

the game in comparison to the traditional approach . We will

be using rewards as the number of times the pedal

successfully sends the ball to the other side in an episode,

which ends when the ball touches the wall.After each

episode we train the model as discussed above.

Graph 1, depicts the score pattern over 50 episodes in

Classical Approach. Here you can notice that the score

peaked at 12 and diverged from the solution .

Graph 2 ,depicts the score pattern over 24 episodes using

Genetic Approach on Actor Critic.

Here we can see that if the model diverges from the

solution they are discarded and replaced with a better

performing model.

V. CONCLUSION

In Conclusion , Using actor critic algorithm without some

sort of clipping will lead to model diverging from the

solution , In my approach I let the model explore without

clipping which will cause some models to diverge from the

solution but will also increase the chances of model doing

better and figuring out a way to maximise the reward . Also

sharing experience between the paddles made the dataset

better on which I was training my model. Since I discard the

model deviating from the solution and focus on improving

the model doing good .It speeds up the process of finding a

solution significantly and even in the worst case scenario you

will have a solution but it may take some time.

REFERENCES

[1] Actor Critic Algorithm,Vijay R. Konda John N. Tsitsiklis

Laboratory for Information and Decision Systems,

Massachusetts Institute of Technology, Cambridge, MA,

02139.

[2] Playing CartPole with the Actor-Critic Method

TensorFlow.

[3]Evaluation of Policy Gradient Methods and Variants on

the Cart-Pole Benchmark

[4]Proximal Policy Optimisation Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec

Radford, Oleg Klimov. OpenAI

[5] Reinforcement learning

From Wikipedia, the free encyclopaedia

[6]Policy Gradient Methods for Reinforcement Learning

with Function Approximation

[7]SAMPLE EFFICIENT ACTOR-CRITIC WITH

EXPERIENCE REPLAY

[8]A Bounded Actor-Critic Reinforcement Learning

Algorithm Applied to Airline Revenue Management Ryan J.

Lawhead and Abhijit Gosavi Department of Engineering

Management and Systems Engineering Missouri University

of Science and Technology.

