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Genetic Approach to Actor Critic Algorithm in 

Ping Pong 
1Deepak Singh ,B.E Student at GCET Jammu, India. 

Abstract - Actor Critic method where the “Critic” estimates the value function and the “Actor” updates the policy 

distribution in the direction suggested by the Critic (such as with policy gradients). I will initially discuss about my 

approach with a simple actor critic solution for the pong game , And then I will go on to discuss some shortcomings , And 

end with my solution to overcome this issue which is having a genetic approach on top of actor critic model, In which 

models diverging from the solution are rejected . Initially, I will create 10 actor critic models and then based on the 

rewards after running an episode for them , I will substitute the poorest performing models with new models with random 

weights and run optimiser on the top six , until I find a model that crosses the reward threshold . I conclude by discussing 

how this approach out performs the basic actor critic algorithm and eliminates the issue of diverging too far. 

Keywords – Critic Algorithm, Genetic, Random model. 

I. INTRODUCTION 

Actor Critic Algorithm was first introduced in 1983 as a 

Reinforcement Learning Algorithm. In Reinforcement 

learning , an Agent learns to make correct decisions based on 

the rewards which it gets from interacting with the 

environment . Which is in contrast to supervised learning 

where an agent is given a dataset of correct behaviour to 

learn from. In the actor critic algorithm, Based on the action 

taken by the agent, the critic makes an approximation of the 

possible future rewards. The actor uses the approximation to 

update its policy in an approximate gradient direction. I will 

be running this algorithm in a pong game to test how well it 

does . In the pong environment , I will be collecting episodes 

with respect to both the paddles in order to have a more 

diverse set to train the policy on and reach convergence 

faster. 

II. PONG ENVIRONMENT 

In the 2 player pong environment, 

I will be Collecting trajectories in the form of state ,reward 

and if the episode ended(lost the game) . 

 
                 Figure : 1 

State will have 3 parameter,Y position of paddle , ball.y - 

paddle.y and ||ball.x - paddle.x|| . 

Reward is calculated based on the fact 

1)if it hit the paddle the rewards= 1000 , 

2)if it just in the environment not touching wall or paddles 

reward =1 , 

3) if it hit the walls= 

-((||paddle.y- ball.y||*||paddle.y-ball.y|| )/10) 

Giving a -1000 reward for both when the difference between 

y position of paddle and ball was 2 px and 200px doesn’t 

make sense so squaring the difference between their y values 

makes much more sense as negative reward. Episode end is 

a Boolean if hit the wall is True, else it is False. Trajectories 

are collected for the 2 paddle separately and later they will 

be appended together, to get a better collection of trajectories 

to train the policy. 

III. ACTOR CRITIC ALGORITHM 

Actor-Critic methods are temporal difference (TD) learning 

methods that represent the policy function independent of the 

value function. The actor is the policy πθ(a∣s) with 

parameters θ which conducts actions in an environment. The 

critic computes value functions to help assist the actor in 

learning. These are usually the state value, state-action value, 

or advantage value, denoted as V(s) Q(s,a), andA(s,a), 

respectively. We will be using a basic actor critic method -> 

Vanilla Policy Gradient with learned baseline function. 

Vanilla Policy Gradient Algorithm 

Initialise policy parameter θ ,baseline b For iteration 

I=1,2,......do 

Collect a set of trajectory by executing the current 

policy 

At each time step in each trajectory compute and, 

Then return R = ∑T 𝛾𝑡′−𝑡𝑟𝑡′ 

the advantage estimate At = Rt -b(st) 

Refit the baseline by minimising the 
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|| Rt - b(st)||2 , 

 

summed over all trajectories and time step 

Update the policy ,using a policy gradient estimate 

g, 

which is a sum of terms  

∇ θlogπ(at ,st , θ )At 

End for 

The actor-critic loss 

Since a hybrid actor-critic model is used, the chosen loss 

function is a combination of actor and critic losses for 

training, as shown below: 

𝐿=𝐿𝑎𝑐𝑡𝑜𝑟 + 𝐿𝑐𝑟𝑖𝑡𝑖𝑐 

The actor loss is based on policy gradients with the critic as 

a state dependent baseline and computed with single-

sample (per- episode) estimates. 

 

𝐿𝑎𝑐𝑡𝑜𝑟=−∑𝑡=1.𝑇log𝜋(𝑎𝑡|𝑠𝑡)[𝐺(𝑎𝑡|𝑠𝑡)−𝑉𝜋𝜃(𝑠𝑡)] 

 

Issues with this approach 

Running the particular algorithm over and over in the pong 

environment , I have seen that some time models will 

converge in a few iterations of training while in some cases , 

it will diverge and never reach the optimum solution. I 

figured that the reason is possibly due to how the weights and 

biases are assigned , when the model is created each time I 

run the script, Also there is how well it interact with 

environment and is able to recognise how to gain positive 

rewards in the game that can affect how soon it converge or 

would just go on a tangent , also there is fine tuning of 

discount factor and learning rate 

Genetic Approach on Actor Critic Model: 

So far I have establish that one of the reasons to reach 

convergence faster is getting lucky with right weights and 

biases for our model ,So I figured out an approach that can 

speed up the process , I will create a list of models , train 

each model using traditional approach and then test these in 

the environment and store the score for each model and sort 

them in descending order. I will eliminate the worst 

performing model and replace them with the newly 

initialised model which should remove the possibility of 

models diverging too far from the solution and can help reach 

solution faster. 

It’s Survival of The Fittest , the models that are doing good 

in comparison to others will be passed to the next generation 

, while poorly performing ones will be discarded and 

replaced with new models with randomised policy as to stop 

wasting time on models that will never converge. 

So I created a list of models and scores each model hold . 

def __init__(self, numActions ,hidden_units ) 

self.common = layers.Dense(1024 ,activation = 

'relu') 

 self.common1= layers.Dense(num_hidden_units 

,activation = 'relu') 

 self.actor = layers.Dense(num_actions ,activation 

= "tanh")  

self.critic = layers.Dense(1 ) 

def call(self,inputs): 

x = self.common(inputs) 

x1 =self.common1(inputs) 

return self.actor(x) , self.critic(x1) 

 

Lt = [] 

score=0 

numAction =2 // move paddle up or down 

hidden_units = 32 

for i in range(10) 

Lt.append([score ,Model(numActions 

,hidden_units),i+1]) 

Also I started Collecting multiple episode for one model to 

have better set and also I had one policy for for both paddle 

so I had shared experience to train my model 

 

For model in the list Run the algorithm 

Initialise policy parameter θ ,baseline b For 

iteration I=1,2,......do 

Collect a set of trajectory by executing 

the current policy 

At each time step in each trajectory 

compute, 

, and 

The return R = ∑T 𝛾𝑡′−𝑡𝑟𝑡′ 

t 𝑡′=𝑡 

the advantage estimate At = Rt - b(st) 

Refit the baseline by minimising the || Rt 

- b(st)||2 , summed over all trajectories 

and time step 

Update the policy ,using a policy gradient 

estimate g, 

which is a sum of terms ∇ θlogπ(at ,st , θ 

) 

At End for 

After running an episode for each model and updating the 

policy ,I sorted the model list based on the scores , 

removing the last 4 models and creating 4 new ones . 

Resetting the scores to zeroes and running the episode again 

for each model until a model crosses the reward threshold. 

Lt = sorted(Lt , key = lambda l : l[0] , reverse = True) Lt = 

Lt[:5] 

for i in range(5): 

Lt.append([0 , Actor_Critic_A(numActions 

,hidden_units) , 6+i]) 

for i in range(10):  

Lt[i][0]=0 
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IV. RESULT 

So based on my approach lets see how well our model plays 

the game in comparison to the traditional approach . We will 

be using rewards as the number of times the pedal 

successfully sends the ball to the other side in an episode, 

which ends when the ball touches the wall.After each 

episode we train the model as discussed above. 

 
Graph 1, depicts the score pattern over 50 episodes in 

Classical Approach. Here you can notice that the score 

peaked at 12 and diverged from the solution . 

 

Graph 2 ,depicts the score pattern over 24 episodes using 

Genetic Approach on Actor Critic. 

Here we can see that if the model diverges from the 

solution they are discarded and replaced with a better 

performing model. 

V. CONCLUSION 

In Conclusion , Using actor critic algorithm without some 

sort of clipping will lead to model diverging from the 

solution , In my approach I let the model explore without 

clipping which will cause some models to diverge from the 

solution but will also increase the chances of model doing 

better and figuring out a way to maximise the reward . Also 

sharing experience between the paddles made the dataset 

better on which I was training my model. Since I discard the 

model deviating from the solution and focus on improving 

the model doing good .It speeds up the process of finding a 

solution significantly and even in the worst case scenario you 

will have a solution but it may take some time. 
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