

Structure Optimization Valuation for Steel Trusses Using Stadd Pro Tool

Sanjeev P Kumar, Dr Kapil Soni, Sachin S Nagayach.

<u>Abstract</u> - The requirement of this study arises where sometimes it is difficult for taking too much time to choose an effective and economical truss shape or truss geometry during the design period. Now a day, our study about the steel structures, steel trusses make one of the major structural systems, which require for accurate and reasonable design. The shape and configuration mainly depend upon the span of trusses and a variety of loads. We have proposed to optimize the steel truss pattern for increase structural efficiency. Long span structures are needed to resist lateral forces over the span length without vertical members at the mid spans, for such structures truss arrangement is more beneficial to distribute tension and compression of each member. We have tested the considered models using Staad.Pro. The designed steel truss structures are analyzed for increasing structural efficiency. The present investigation will encourage the utilization of steel truss arrangement for long span structures which may be cost effective, easy and fast in assembling. and concluded that in truss arrangement howe type truss is comparatively best suitable whereas in terms of sections beam section is more resistible and economical.

Keyword:- optimize, structural efficiency, models, valuation, truss arrangement, encourage and utilization.

I. INTRODUCTION

Steel frames are usually the choice when constructing a larger building that needs a big open space because of the economical aspect and efficiency of building a single-story unit. However, a problem that might occur is when designing for a cost-effective solution the slenderness may be decreased, that in the end may contribute to an instability of the entire structure.

Structural steel is a category of steel used as a construction material for making structural steel shapes. An auxiliary steel shape is a profile, framed with a particular cross segment and keeping certain models for substance structure and mechanical properties. Basic steel shapes, sizes, piece, qualities, stockpiling rehearses, and so forth., are managed by principles in most industrialized nations. Basic steel individuals, for example, I-shafts, have high second snapshots of region, which enable them to be exceptionally hardened in regard to their cross- sectional territory.

There is an assortment of basic steel frameworks accessible for use in multi-story private construction. Common models incorporate show pillars and supports, Girder-Slab, stunned bracket, and stub support. Traditional shafts and supports are not ordinarily utilized in multi- story private construction because of the profundity and huge load of the individuals that would be required. The Girder-Slab is a protected surrounding and floor framework created in the 1990's to contend with the cast set up solid industry. The amazed support is a non- licensed effective surrounding framework created in the 1960's, however has never observed across the board use. Be that as it may, the framework has as of late picked up consideration as it has been utilized to construct various mid-ascent inns, lofts, and quarters. AISC distributed a Design Guide Series on the amazed support in 2002. The stub brace framework was created in the mid 1970's essentially for office construction, however it never again contends monetarily in the present construction advertise because of high work costs and was never effectively utilized in private construction because of the huge floor profundities.

In this study we are presenting nonlinear analysis of three different type of truss arrangement i.e., Flink, Howe and King post for long span open area of dimension 35m x 25m. In this study we will also discuss the variations occur due to different type of sections such as ISMB, Channel section and Angle section. For analysis purpose we will use staad.pro.

Truss Roof

Long span rooftops are commonly characterized as those that surpass 12 m in span. Long span rooftops can make adaptable, section free inside spaces and can lessen substructure expenses and development times. They are generally found in a wide scope of building types, for example, production lines, distribution centers, horticultural buildings, overhangs, huge shops, open lobbies, exercise rooms and fields.

Fig 1: Truss arrangements

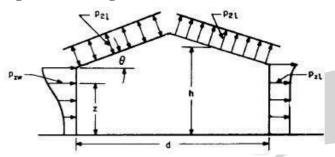


Fig 2: Wind pressure over the truss

Staad.Pro

STAAD.PRO is a refined, yet simple to utilize, unique reason investigation and configuration program grew explicitly for building frameworks. STAAD.PRO 2017 highlights an instinctive and amazing graphical interface combined with unparalleled demonstrating, explanatory, structure, and specifying methodology, all coordinated utilizing a typical database. Albeit fast and simple for straightforward structures, STAAD.PRO can likewise deal with the biggest and most complex building models, including a wide scope of nonlinear practices essential for execution-based plan, settling on it the device of decision for auxiliary designers in the building business. STAAD.PRO included computationally complex investigative alternatives, for example, dynamic nonlinear conduct, and incredible CAD-like attracting devices a graphical and item-based interface.

In many buildings, the elements of the individuals are huge in connection to the narrow's widths and story statures. Those measurements significantly affect the solidness of the edge. STAAD.PRO remedies for such impacts in the definition of the part firmness, not at all like most universally useful projects that work on centerline-tocenterline measurements.

II. METHODOLOGY

Case I- Howe Truss:

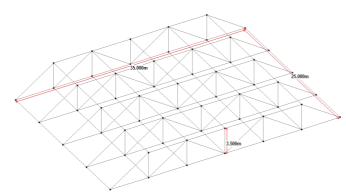


Fig 3: Howe truss

Case II- King Post Truss:

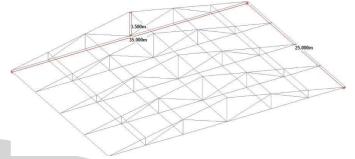


Fig 4: King post Truss Case III- Flink Truss:

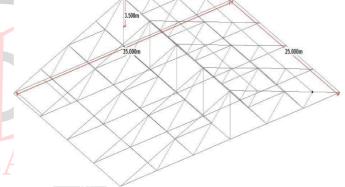


Fig 5: Flink Truss <u>Steps Followed in this study are as</u> follows:

Step-1: Modelling of the structure in Staad.pro

A Truss arrangement is a combination of structure joined in vertical, inclined and horizontal members working together to distribute compression and tension.

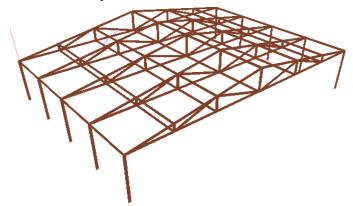
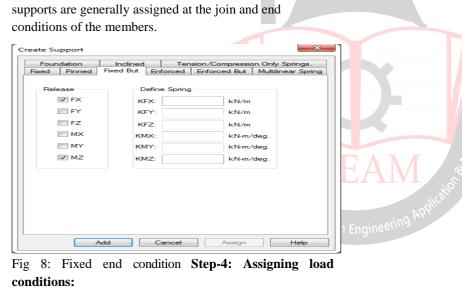
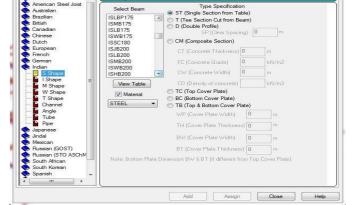




Fig 6: Modelling of truss in staad.pro

Step-2: Assigning Sectional properties and members as

Staad.pro give us access to Indian steel tables as well as other countries and companies' tables. This helps us to provide suitable section types which are available and valid

per Steel Table.

as per Standard provision.

Fig 7: Steel Table in

staad.pro Step-3: Assigning Support Condition

Support conditions are assigned to retrain loads in direction, Supports are provided at the joints using node cursor, these supports are generally assigned at the join and end

In this study we are considering Dead load of the structure, super dead load of the shed and other attached members, lateral load considered as per wind pressure in Bhopal region i.e., 39 m/s as per appendix A (I.S. 875-III).

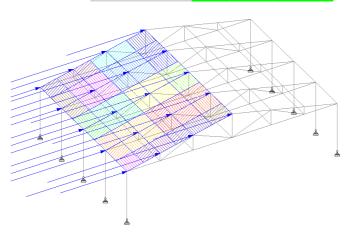
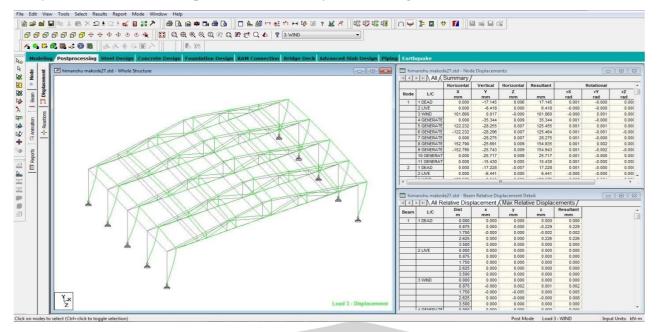
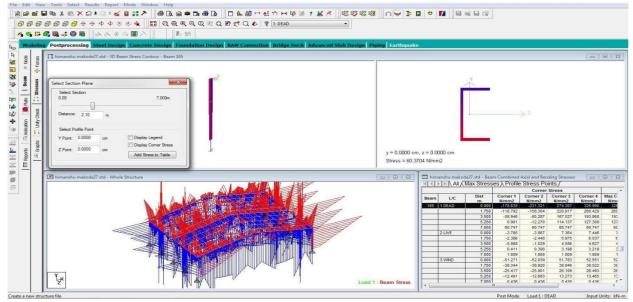
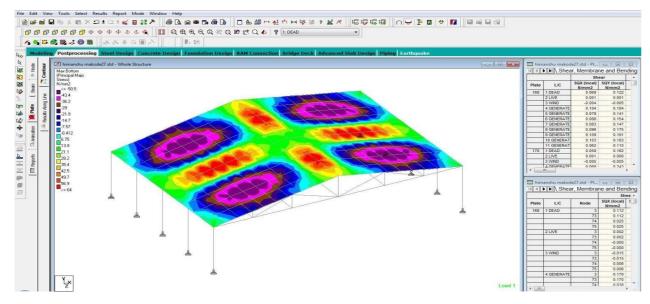



Fig 9: Lateral load

Step-5: Analysis of structure


Analysis of structure is done as per finite element analysis considering lateral forces

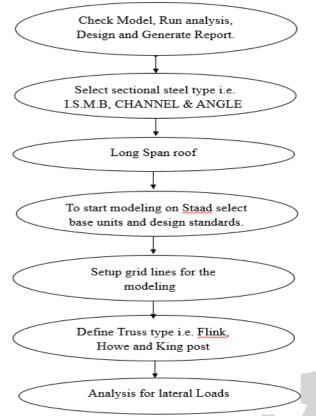
a. Lateral Load Analysis


File Edit View Tools Select Results Report Mode Wir 0000 ★ ☐ Q Q Q Q Q Q D 2 Q ↓ ? 1.DEAD 1. 2 2 年 第 日 發 会 べ 長 会 会 中 き || 引 点 目 日 真 目 日 o Node Beam Plate mation. 0.04 Ē 0.04 0.08 200 100 Y_x 200 Post Mode Load 1 : DEAD ts: kN-m

b. Member stresses

c. Sectional Stresses

d. Plate Analysis Fig 10: Analysis


Step-6: Cost Analysis

EL TAKE-OFF					
PROFILE	LENGTH (METE)	WEIGHT (KN	>		
ISLC75	39.50	2.203			
18JC150	25.00	2.203			
ISMC400	763.82	374.357			
ISLC350	11.00	4.183			
ISJC175	22.00	2.400			
ISMC100	11.00	1.031			
ISLC400	16.50	7.390			
ISLC125	13.00	1.368			
1010120	13.00	1.300			
	TOTAL =	395.370			
addaddad PNT	OF DATA FROM INTERNAL STO				
END	OF DRIN FROM INTERNED DI	RAGE LILLILL			
. FINISH	of Data From Internal St	DRAGE SECTOR	***		
. FINISH			***		
. FINISH	MEMBER 31283 HAVE CHANGE	SINCE LAST AN	ALYSIS.		
- FINISH ARNING** SOME IN T	MEMBER SIZES HAVE CHANGE HE POST PROCESSOR, MEMBER	QUERIES WILL T	ALYSIS. SE THE LAST	- ± ± ± ±	
. FINISH ARNING** SOME IN T ANAL	MEMBER SIZES HAVE CHANGEN HE FOST PROCESSOR, MEMBER YSIS FORCES WITH THE UPDAT	SINCE LAST AN QUERIES WILL T VED MEMBER SIZE	ALYSIS. SE THE LAST S.	- * * * *	
. FINISH ARNING** SOME IN T ANAL TO C	MEMBER SIZES HAVE CHANGE HE POST PROCESSOR, MEMBER YSIS FORCES WITH THE UPDAT ORRECT THIS INCONSISTENCY.) SINCE LAST AN QUERIES WILL U TED MEMBER SIZE FLEASE DO ONI	ALYSIS. SE THE LAST S. MORE ANALYSIS.	* * * * *	
. FINISH ARNING** SOME IN T ANAL TO C FROM FILE	MEMBER SIZES HAVE CHANGEN HE FOST PROCESSOR, MEMBER YSIS FORCES WITH THE UPDAT	D SINCE LAST AN QUERIES WILL T FED MEMBER SIZE PLEASE DO ONT SULTS, UPDATE I	ALYSIS. SE THE LAST S. MORE ANALYSIS. THEN		

Fig 11: Cost Analysis

Flow Chart of the Study:

Fig 12: Flow chart of the study

III. PROBLEM FORMULATION

Modelling of Building Frame

Staad.pro is a multipurpose program for investigation of structure. The accompanying three exercises must be performed to accomplish that objective.

- Modeling of the diverse cases in Staad.pro
- Calculation and Provisions according to Indian principles can be connected.
- Analysis of structure to decide powers, uprooting and minute producing in a casing.

Problem Statement

In present work with the end goal to do make Comparative investigation of different truss arrangements examination for lateral forces with different sections type, and structure with practical materials which are as per Indian steel table. In the present work cost investigation is additionally included to decide the most conservative truss structure.

Table 1: Geometrical details

Design data of building	Dimension
Plan dimension	25 x 35 m
No. of bay in X direction	6 Bay
No. of bay in Y direction	4 Bay
Typical storey height	3.50 m

I.S.M.B, CHANNEL & ANGLE
Howe, Flink & King Post
Fe-345

Loading conditions

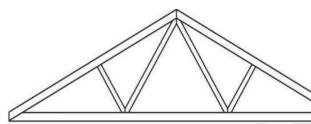
Following loading is adopted for analysis: - a). **Dead Loads**: as per IS: 875 (part-1)-1987.

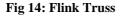
b). Live Loads: as per IS: 875 (part-2) 1987. Live Load on truss members = 4.50 KN

c). Wind Pressure: All frames are analyzed for (39 m/s) wind speed. The wind load calculation is as per IS: 875 (part-3)-2015.

Table 2: Load Combinations as per I.S. 875-III-2015

Load cases
D-L
L-L
Wx
Wz
Wx –ve
Wz –ve
1.5(D-L+L-L)
1.5(D-L+ Wx)
1.5(D-L- Wx)
1.5(D-L+ Wz)
1.5 (D.L- Wz)
1.2(D.L+L.L+ Wx)
1.2 (D.L+L.L- Wx)
1.2 (D.L+L.L+ Wz)
1.2 (D.L+L.L-Wz)


Howe Truss:


Howe supports are basically something contrary to Pratt brackets regarding geometry. Truth be told, taking a gander at a Pratt support topsy turvy will picture a Howe bracket of sorts. The whole structure is still generally the equivalent, yet the corner-to-corner props are presently involving the inverse or the vacant joints. This switch in situation of the corner-to-corner individuals has a significant impact basically.

Flink Truss:

The Fink support in its most essential structure has web individuals that pursue a V-design which can be rehashed a few times. As the top harmonies are slanting descending from the inside, the V example turns out to be discernibly littler. As Fink brackets depend more on corner-to-corner individuals, they can be extremely productive at transmitting burdens to the help.

King post Truss:

King post truss is utilized when there is a need to help the heaviness of an extensive rooftop. This rooftop gives practically, yet additionally includes excellence also. The ruler post truss is likewise utilized for straightforward rooftop lines and limited ability to focus. It is utilized in flying machine construction. In planes, the lord post bolsters the top links and supports the heaviness of the plane's wings. Trusses are components where its whole part takes either just pressure or strain part are not in bowing.

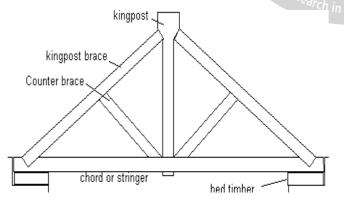


Fig 15: King post Truss

ISSN : 2454-9150 Vol-07, Issue-11, FEB 2022

IV. ANALYSIS & RESULTS

Parameters on which study was done are-

- 1 Shear force in KN.
- 2 Axial Force in KN.
- 3 Support reaction KN
- 4 Maximum deflection due to vehicle loadings.

Analysis Results:

Flink Truss:

Table 3: Flink truss with angel section

OutputCase	Global FX	Global FY	Global FZ	Deflection X	Deflection Y	Deflection Z
Unit	KN	KN	KN	Mm	mm	mm
NODAL	-1.2407	3.921	8.7607	0.34	1.35	0.98
NODAL	-3601.175	1.3506	0.033	0.25	1.21	1.05
NODAL	-7.3106	-802.93	-1.54905	0.16	1.07	1.12
NODAL	133.13	-15.071	-9.561	0.07	0.93	0.32
NODAL	180.773	-5.1605	-339.059	-0.02	0.79	0.21
NODAL	680.661	1.8605	2.082	-0.11	0.65	0.1
NODAL	1090	-826.638	-0.011	-0.2	0.51	-0.01
NODAL	159.906	0.001067	1742.263	-0.29	0.37	-0.12
NODAL	-13957.37	7.6105	-34.765	-0.38	0.23	-0.23
NODAL	-1275.911	33.13	-279.003	0.47	0.09	-0.34
NODAL	-2.03E-05	3.162	0.001781	0.56	-0.05	-0.45
NODAL	910.178	-0.0001389	-5621.168	-0.65	-0.19	-0.56

Table 4: Flink truss with Channel section

Analysis of Flink Truss (Channel Section)							
OutputCase	Global FX	Global FY	Global FZ	Deflection X	Deflection Y	Deflection Z	
Unit	KN	KN	KN	Mm	mm	mm	
NODAL	-2.2407	1.921	5.2307	0.34	0.75	1.03	
NODAL	1094	1.98	-3.497	0.25	0.89	0.96	
NODAL	-7.3106	38.06	-5.07905	0.16	1.03	0.89	
NODAL	0.01333	-13.071	-13.091	0.07	1.17	0.82	

NODAL	10.773	-6.1605	-342.589	-0.02	1.31	0.75
NODAL	106.661	2.605	-1.448	1.3	0.55	0.68
NODAL	-0.184	-716.638	-3.541	2.66	0.12	0.61
NODAL	739.906	0.001067	1738.733	2.17	-0.31	0.54

_							
	NODAL	- 121.365	6.105	-38.295	1.68	-0.74	0.47
	NODAL	-13.911	1.05	-282.533	1.19	-1.17	0.4
	NODAL	-2.0305	15.162	-3.528219	0.7	-0.05	-0.45
	NODAL	43.178	- 0.0001389	- 59624.698	0.21	-0.19	-0.56

Table 5: Flink truss with Beam section

	Analysis of Flink Truss (Beam Section)							
OutputCase	obal FX	obal FY	obal FZ	tion X	tion Y	tion Z		
Unit	KN	KN	KN	mm	mm	mm		
NODAL	-5.7707	-16.601	1.7007	0.03	0.21	0.043		
NODAL	1024.21	-9.6905	-7.027	0.1	-0.25	0.098		
NODAL	-10.8406	-0.925	-8.60905	0.16	-0.71	0.153		
NODAL	-3.51667	-720.168	-16.621	0.07	-1.17	0.208		
NODAL	7.243	-3.528933	-346.119	0.135	1.32	0.263		
NODAL	103.131	2.575	-4.978	0.153	1.25	0.318		
NODAL	- 3.530184	-2.48	-7.071	0.171	1.18	0.373		
NODAL	736.376	11.632	1735.203	0.189	1.11	0.428		
NODAL	-124.895	- 3.5301389	-41.825	0.207	1.04	0.483		
NODAL	- 1349.441	30.605	-286.063	1.19	0.97	0.538		
NODAL	-3.53002	2003.162	-7.058219	0.7 ₂	0.9	0.593		
NODAL	39.648	- 0.0001389	- 59628.228	0.21	0.83	0.648		

: Howe Truss

 Table 6: Howe truss with Angel section

arch in Engineer(119									
OutputCase	Global FX	Global FY	Global FZ	tion X	tion Y	tion Z			
Unit	KN	KN	KN	Mm	mm	m			
NODAL	-7.6207	-18.451	-0.1493	0.56	2.56	0.5			
NODAL	1022.36	-11.5405	-8.877	0.6	2.32	0.8			
NODAL	-12.6906	-2.775	-10.45905	0.64	2.08	1.2			
NODAL	-5.36667	-722.018	-18.471	0.68	1.84	1.			
NODAL	5.393	-5.378933	-347.969	0.72	1.6	-0.			
NODAL	1082	0.725	-6.828	0.76	1.36	-0.			
NODAL	-5.3801837	-4.33	-8.921	0.8	1.12	-0.			
NODAL	734.526	9.782	1733.353	0.84	0.88	-0.			
NODAL	-126.745	- 5.3801389	-43.675	0.88	0.64	-0.			
NODAL	-1351.291	23.13	-287.913	1.2	0.4	-1.			
NODAL	- 5.38002033	30.35	-8.908219	-1.41	0.16	-1.			

it le trig	WC24						
	NODAL	37.798	- 1.8501389	- 59630.078	-1.58	-0.045	-1.41
l							

Table 7: Howe truss with Channel section

	Analysis of Howe Truss (Channel Section)								
OutputCase	Global FX	Global FY	Global FZ	tion X	tion Y	tion Z			
Unit	KN	KN	KN	Mm	mm	mm			
NODAL	-4.8407	-15.671	2.6307	0.29	1.34	0.24			
NODAL	1088	-8.7605	-6.097	0.12	1.21	0.15			
NODAL	-9.9106	0.005	-7.67905	-0.05	1.08	0.55			
NODAL	-2.58667	-719.238	-15.691	-0.22	0.95	0.13			
NODAL	8.173	-2.598933	-345.189	-0.39	0.82	-0.29			

NODAL	104.061	3.505	-4.048	-0.56	0.69	-0.71
NODAL	-2.6001837	-1.55	-6.141	-0.73	0.56	-1.13
NODAL	737.306	12.562	1736.133	-0.9	0.43	-1.55
NODAL	-123.965	- 2.6001389	-40.895	-1.07	0.3	-1.97
NODAL	-1348.511	32.5	-285.133	-1.24	0.17	-2.39
NODAL	- 2.60002033	2004.092	-6.128219	-1.41	0.04	-2.81
NODAL	40.578	0.9298611	59627.298	-1.58	-0.09	-3.23

Table 8: Howe truss with Beam section

		Analysis of Ho	we T <mark>ru</mark> ss (Beam S	Section)		
OutputCase	Global FX	Global FY	Global FZ	tion X	tion Y	tion Z
Unit	KN	2 KN	KN	Mm	mm	mm
NODAL	-7.1507	-17.981	-0.3207	0.021	0.19	0.021
NODAL	1018	-11.0705'Search	8.407	0.09	0.24	-0.24
NODAL	-12.2206	-2.305	9.98905	0.159	0.29	-0.501
NODAL	-4.89667	-721.548	18.001	0.228	0.34	-0.762
NODAL	5.863	-4.908933	347.499	0.297	0.39	0.14
NODAL	101.751	1.195	6.358	0.366	0.44	0.05
NODAL	-4.9101837	-3.86	8.451	0.435	0.49	-0.04
NODAL	734.996	10.252	-1733.823	0.504	0.54	-0.13
NODAL	-126.275	- 4.9101389	43.205	0.573	0.59	-0.22
NODAL	-1350.821	19.85	287.443	0.642	0.64	-0.31
NODAL	- 4.91002033	20.05	8.438219	0.711	0.69	-0.4
NODAL	38.268	- 1.3801389	59629.608	0.78	0.74	-0.49

King Post Truss:

Table 9: King post truss with Angel section

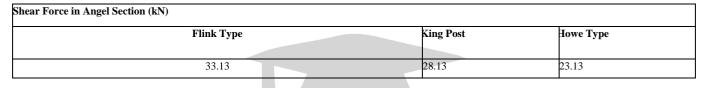
			Analysis of King	post Truss (Angel Sec	tion)	
OutputCase	Global FX	Global FY	Global FZ	Deflection X	Deflection Y	Deflection Z
Unit	KN	KN	KN	Mm	mm	mm
NODAL	-1.2407	3.921	8.7607	0.051	0.12	1.23
NODAL	-3601.175	1.3506	0.033	0.42	0.32	0.6
NODAL	-7.3106	-802.93	-1.54905	0.789	0.52	0.89
NODAL	133.13	-15.071	-9.561	1.158	0.72	0.98
NODAL	180.773	-5.1605	-339.059	1.527	0.92	1.07
NODAL	680.661	1.8605	2.082	-0.552	-0.71	1.16
NODAL	1087	-826.638	-0.011	0.23	-0.79	1.25
NODAL	159.906	0.001067	1742.263	0.12	-0.87	1.34
NODAL	-13957.365	7.6105	-34.765	0.01	-0.95	1.43
NODAL	-1275.911	28.13	-279.003	-0.1	-1.03	1.52
NODAL	- 0.00002033	3.162	0.001781	-0.21	0.69	1.61
NODAL	910.178	- 0.0001389	- 59621.168	-0.32	0.71	1.7

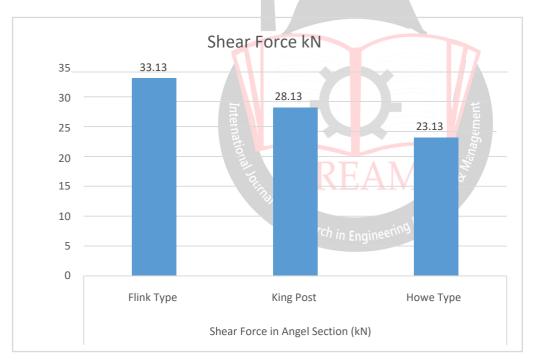
Table 10: King post truss with Channel section

		Analysis of King	g post Truss (Chani	nel Section)		
OutputCase	Global FX	Global FY	Global FZ	tion X	tion Y	tion Z
Unit	KN	E KN	KN	Mm	mm	n
NODAL	-1.2427	3.884	7.496	0.057	0.45	0.
NODAL	-3611.121	1.2967	0.029	0.42	0.21	0
NODAL	-8.111	-898.21	-1.59547	0.783	-0.03	0
NODAL	132.49	-16.451	-10.979	1.146	-0.27	1
NODAL	178.243	-7.3124	-340.01	0.297	-0.51	0
NODAL	675.745	1.671	ch in E1.921eerim	-0.552	-0.75	-0
NODAL	1090	-819.398	-0.069	-1.401	-0.99	
NODAL	154.74	0.001045	1741.263	0.504	0.54	-0
NODAL	- 13967.757	6.156	-35.452	0.409	0.59	
NODAL	-1281.633	35.69	-287.55	0.314	0.44	-0
NODAL	- 0.0000214	2.789	0.001756	0.219	0.69	-0
NODAL	901.545	- 0.0001411	- 60121.168	0.124	0.71	-0

Table 11: King post truss with Beam section

	Analysis of King Post Truss (Beam Section)						
OutputCase	Global FX	Global FY	Global FZ obal MX		lobal MY	obal MZ	
Unit	KN	KN	KN	KN	KN-m	KN-m	
NODAL	-3.8127	1.314	4.926	-2.513	-2.12	-2.12	




NODAL	-3613.691	-1.2733	-2.541	-2.15	-2.36	2690.59
NODAL	-10.681	-900.78	-4.16547	-1.787	-2.6	-1.68
NODAL	129.92	-19.021	-13.549	-1.424	-2.84	-1.46
NODAL	175.673	-9.8824	-342.58	-2.273	-3.08	-2.43
NODAL	673.175	-0.899	-0.649	-3.122	-3.32	-3.4
NODAL	1020	-821.968	-2.639	-3.971	-3.56	-4.37
NODAL	152.17	-2.568955	1738.693	-2.066	-2.03	-2.7
NODAL	- 13970.327	3.586	-38.022	-2.161	-1.98	-2.77
NODAL	-1284.203	30.65	-290.12	-2.256	-2.13	-2.68
NODAL	- 2.5700214	0.219	-2.568244	-2.351	-1.88	-2.81
NODAL	898.975	- 2.5701411	- 60123.738	-2.446	-1.86	-2.98

: Comparative Analysis Angel Section

Shear Force KN

Table 12: Shear Force

Fig 16: Comparison of Shear Force (KN) for Different trusses with Angel Section

Axial Force (KN)

Table 13: Axial Force

Axial Force in Angel Section (kN)					
Flink Type	King Post	Howe Type			
1090	1087	1082			

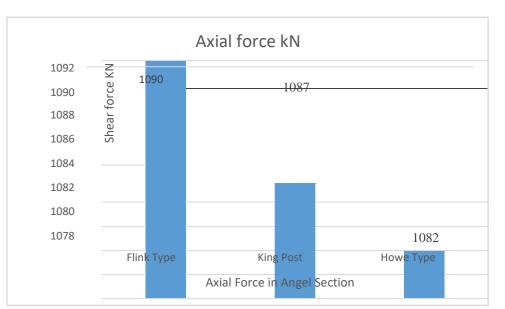
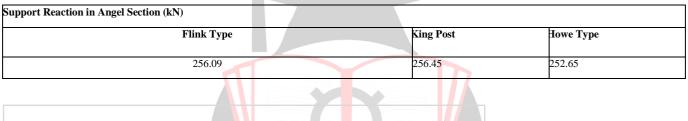
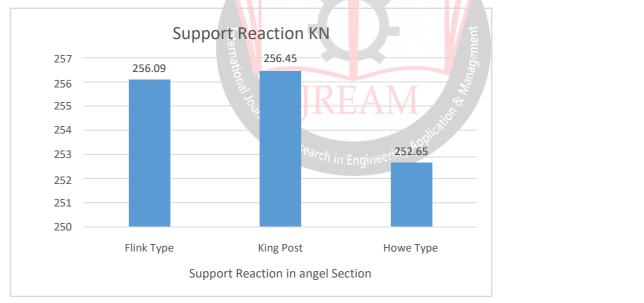




Fig 17: Comparison of Axial Force (KN) for Different trusses with Angel Section

Support Reaction

Table 14: Support Reaction (KN)

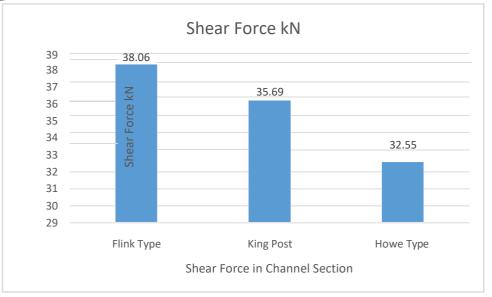


Fig 18: Comparison of Support reaction (KN) for Different trusses with Angel Section Channel Section: Shear Force

Table 15 : Shear Force (KN)

Channel Section in Shear Force kN				
Flink Type	King Post	Howe Type		
38.06	35.69	32.55		

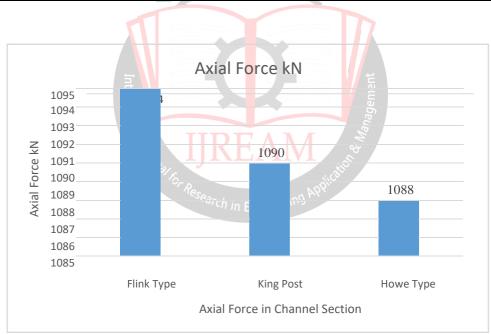


Fig 19: Comparison of Shear Force (KN) for Different trusses with Channel Section

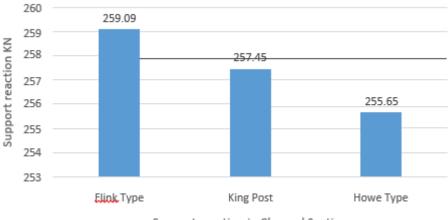
Axial Force (KN)

Table 16: Axial Force (KN)

Axial Force in Channel Section (KN)		
Flink Type	King Post	Howe Type
1094	1090	1088

Fig 20: Comparison of Axial Force (KN) for Different trusses with Channel Section Discussion:

Support Reaction (KN)

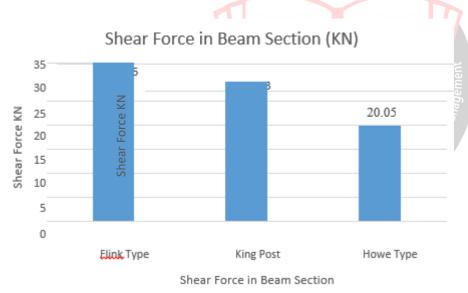

Table 17: Support reaction (KN)

Support Reaction in Channel Section (KN)

Flink Type	King Post	Howe Type
V A	0	
259.09	257.45	255.65

Support Reaction KN

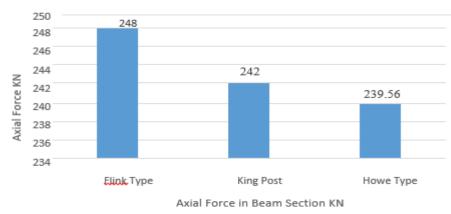
Support reaction in Channel Section


Fig 21: Comparison of Support Reaction (KN) for Different trusses with Channel Section

Beam Section:

Shear force (KN)

Table 18: Shear Force (KN)


Fig 22: Comparison of Shear Force (KN) for Different trusses with Beam Section

Axial Force (KN)

Table 19: Axial Force (KN)

Axial Force in Beam Section (KN)					
Flink Type	King Post	Howe Type			
1024	1020	1018			

Axial Force

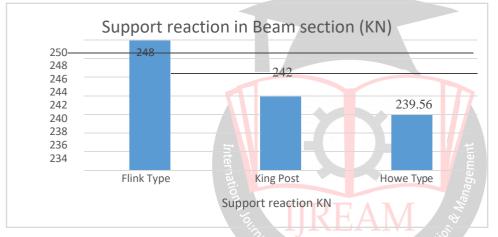


Fig 23: Comparison of Axial Force (KN) for Different trusses with Beam Section. **Support Reaction**

Table 20: Support Reaction (KN)

Support Reaction in Beam Section (KN)

Support Reaction in Death Section (Ref)		
Flink Type	King Post	Howe Type
248	242	239.56

Fig 24: Comparison of Support Reaction (KN) for Different trusses with Beam Section.

Cost Analysis

Table 21: Cost Analysis Cost Analysis				
Angel Section	Flink Truss	438.97	470	206316
	King Post Truss	439.21	470	206429
	Howe Truss	411.45	470	193382
Channel Section	Flink Truss	464.85	470	218480
	King Post Truss	437.2	470	205484
	Howe Truss	423.55	470	199069
Beam Section	Flink Truss	461.99	470	217135
	King Post Truss	428.68	470	201480
	Howe Truss	395.37	470	<mark>185824</mark>

٦.

V. CONCLUSIONS & FUTURE SCOPE

Following Conclusions are made as per the results observed in above chapter are:

- 1. It has been observed that stability in terms of resisting axial force and shear force is comparatively 18.5% more in Howe type truss arrangement in comparison to other two types.
- 2. As observed in above chapter Beam section is best suitable for truss arrangement than angel and channel section.
- 3. It is observed that howe type truss arrangement with beam section is comparatively more economical by 14.95% than others. Whereas Flink type truss with channel section is observed as most costly.
- 4. In this study it is observed that deflection is 4.8% less in beam section than other two.

Summary:

In this study, it is concluded that in truss arrangement howe type truss is comparatively best suitable whereas in terms of sections beam section is more resistible and economical.

Future Scope

- i) In the present study long span truss arrangement is considered whereas in future long span truss with unsymmetrical divisions can be consider.
- ii) The effect of seismic analysis can be included in future as in this study wind pressure is considered.
- iii) In this study cost analysis is done as per S.O.R whereas in future it can include the cost of construction, material and maintenance too.

REFERENCES

- [1] D. Harod and S. Pahwa, "Static Structural Analysis of Pratt, Flink and Howe Steel Truss using Ansys Software", International Journal of Advances in Engineering Research", Volume 7 Issue III, Mar 2019
- [2] Pathan, "Design of Large Span Roof Truss under Medium Permeability Condition", "IJSTE -International Journal of Science Technology & Engineering", Volume 4, Issue 10, April 2018
- [3] Chitte, "Analysis and Design of Pratt Truss by IS 800:2007 & IS 800:1984" "International Journal of Computational Engineering & Management", Vol. 21 Issue 2, March 2018.
- [4] H. Dewangan & K. Majumdar "A review on comparision of different types of trusses in vibration analysis using staad pro", "International Journal of Engineering and Research", ISSN: 2277-9655, CODEN: IJESS, 2018.

- [5] M.Indrajit, standardization of truss profile for various span and loading conditions, ISSI, 2018.
- [6] C. Jha and M.C. Paliwal, "Fully Stressed Design of Howe Truss using STAAD.Pro Software", "International Journal of Research and Development", Volume 5, Issue 3, ISSN: 2321-9939, 2017.
- [7] O. Qasim, "Analysis and Design of Steel Truss Stadium", "World Conference on earthquake science", IInd edition, 2017
- [8] T. Parekh, D. Parmar, Y. Tank, "Analysis of Howe Roof Truss using Different Rise and Span", "International Journal of Engineering Trends and Technology (IJETT)", Volume 47 Number 3 May 2017
- [9] R. Palya & D. Raghuvanshi, "Study on different truss structures for ware house design", "International journal of research and development", Volume- 5, Issue-11, Nov.-2017
- [10] Patrikar & K. K. Pathak, "Fully Stressed Design of Fink Truss Using STAAD.Pro Software", "Open Journal of Civil Engineering", 2016, pp. 631-642.
- [11] Y. Chhasatia, Y. Patel, S. Gohil and H. Parmar, "Analysis and Design of Conventional Industrial Roof Truss and Compare it with Tubular Industrial Roof Truss", "International Journal of Engineering and Advances", Volume- 5, Issue-11, Sept. 2016.