
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-01, APR 2022

190 | IJREAMV08I0185056 DOI : 10.35291/2454-9150.2022.0141 © 2022, IJREAM All Rights Reserved.

AutoCodeApp
1Mr. Japan Chetankumar Gor, 2Mr. Vinay Nagin Panchal, 3Ms. Siddhi Jayesh Shah, 4Mrs. Poonam

Milind Thakre

1,2,3Student, 4Faculty, Universal College of Engineering Vasai, India, 1japangor@gmail.com,

2vinay.npanchal@gmail.com, 3siddhishah231415@gmail.com, 4poonam.thakre@universal.edu.in

Abstract— Much of the changes that take place in the world of software hinge on APIs (Application Programming

Interfaces). Although, we interact with APIs every day, many still underestimate their impact on web applications. An

API is software programming written to bridge the communication between web applications. Hence, it makes services

accessible to outside developers so they can build those services into their programs. There is a need to re-imaging APIs

in the current scenario. Traditionally, APIs always followed the request-response paradigm. That is, an application

sends requests to an API, and the API sends a response back to the application. What we need in this case is a quick

way, where APIs themselves are auto-generated, Auto Code Generation existed only in the Bottom most category in the

early period, for creating code from Objects during the Object-Oriented era and later on, when Object-Oriented Code

became common, Auto code was for Optimizing or Modifying the program Code. Our project sets the future of

Automatic Code generation, by using pre-defined templates, taking inputs from the user, and suggesting

recommendations for better performance. We will be using Python to automatically generate API using predefined

schema and templates.

Keywords — API, Auto, Code, Generation, No code, Program logic, Template, Schema, UML.

I. INTRODUCTION

Certain services help non-programmers to make apps and

websites without implementing a single line of code. What

if a scenario arises wherein the user wants both of them?

There is no such viable ecosystem to maintain and generate

data for multiple apps on different platforms without

coding. So, we have taken the initiative to fill this gap

between website builders and app builders by providing a

back-end builder on which users can attach multiple apps.

So, we have developed a simple API builder with a drag

and drop UI.

The objective of this paper is to develop an API from pre-

defined templates, that will be sufficiently well-defined and

unambiguous. Our entire project is divided into three parts:

- Webapp: Simple click and drag UI for non-programmer

users; Communicator: The one which will send and receive

data, to and from the web app. And create instructions for

the logic executer; Logic executor: Will manipulate pre-

created templates and write code for the user based on

instructions[5].

II. LITERATURE SURVEY

Jeffrey Smith, Mieczyslaw Kokar, Kenneth Baclawski,

"Formal Verification of UML Diagrams: A First Step

Towards Code Generation". UML diagrams can be used for

code generation. Such code should carry the meaning

embedded in a diagram. The goal of this paper is to show a

process in which such translation can be formally verified.

To achieve this goal, the whole checking process has to be

formalized. In this paper, we show such a verification

process and example. UML diagrams are translated into

code by various CASE tools. However, the verification of

the translation correctness is left to either the tool

developers or the programmers, CASE tools don’t enforce a

complete set of UML syntax, let alone semantics and CASE

tools are only capable of translating header files and

constructors/destructors to a programming language. We

are interested in translators that are provably correct

concerning the intended meaning of the UML language,

i.e., such that preserve the intended meaning embedded in

UML diagrams representing various program

specifications.[1]

Gergely Pintér, István Majzik, "Automatic code generation

based on formally analyzed UML state chart models" The

code generation is based on extended hierarchical

automata, the formal description method used as an

intermediate representation of statecharts for model

checking purposes, this way enabling automatic

implementation of formally analyzed models. Since state

charts can automatically be mapped to extended

hierarchical automata, a code generator based on our

pattern could be used as a module that can be inserted into

any UML modeling tool equipped with model export

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-01, APR 2022

191 | IJREAMV08I0185056 DOI : 10.35291/2454-9150.2022.0141 © 2022, IJREAM All Rights Reserved.

capabilities. This approach enables the modeler to use the

usual design environment and hides the transformation

required for model checking and code generation steps.[2]

Ivo Damyanov, Nick Holmes, "Metadata Driven Code

Generation Using .NET Framework" In this paper

incorporating manual and automatic code generation is

discussed. A solution for automatic metadata-driven code

generation is presented illustrated with a multi-tier

Enterprise Resource Planning System. We intend to make

our solution available to the public to encourage

investigation of code generation and schema-driven tools

for .NET Framework. .NET Framework provides a rich set

of language extensions (like Custom Attributes) and

namespaces (like System.CodeDom) that make possible

automatic code generation. Our approach was proved by

developing a complete ERP system with: an entirely auto-

generated client facade – about 36,000+ lines of C# code,

partially generated (90%) Server and Ether tier code –

about 66,800+ lines of C# code, and about 11,800+ lines of

SQL code (stored procedures and triggers).[3]

Ingo Stürmer, Mirko Conrad, "Code Generator

Certification: A Test Suite-oriented Approach" Since this

code is often deployed in safety-related environments, the

quality of the code generators is of high importance. The

use of test suites is a promising approach for gaining

confidence in the code generators’ correct Functioning.

This paper gives an overview of such a practice-oriented

testing approach for code generation tools. The main

application area for the testing approach presented here is

the testing of optimizations performed by the code

generator. The test models and corresponding test vectors

generated represent an important component in a

comprehensive test suite for code generators. As regards

the actual certification situation for development tools, the

test suite proposed could be a substantial contribution to

current certification practices.[4]

Michael G. Hinchey, James Rash, and Christopher A.

Rouff, "Towards a Fully Formal Approach to Automatic

Code Generation". In this, a method to mechanically

transform system requirements into a provably equivalent

model has yet to appear. Such a method represents a

necessary step toward high-dependability system

engineering for numerous possible application domains,

including distributed software systems, sensor networks,

robot operation, complex scripts for spacecraft integration

and testing, and autonomous systems. Currently, available

tools and methods that start with a formal model of a

system and mechanically produce a provably equivalent

implementation are valuable but not sufficient. The “gap”

that current tools and methods leave unfilled is that their

formal models cannot be proven to be equivalent to the

system requirements as originated by the customer. For the

classes of systems whose behavior can be described as a

finite (but significant) set of scenarios, we offer a method

for mechanically transforming requirements (expressed in

restricted natural language, or other appropriate graphical

notations) into a provably equivalent formal model that can

be used as the basis for code generation and other

transformations.[5]

Naveen Alwandi, Manjunath BC, "Experiences with

AUTOSAR compliant Autocode generation using

TargetLink", Increased safety, comfort, and emission norms

are pushing the complexity of vehicle systems up

exponentially. Model-based development processes have

increasingly been adopted for the development of

automotive embedded control software to help implement

complex systems and reduce the development time. Model-

based and auto code technology has become mature and

brings many advantages to automotive software

development. In parallel, a consortium of major OEMs and

suppliers are driving toward the standard specification of

automotive software architecture, AUTOSAR

(AUTomotive Open System Architecture). AUTOSAR

would enable flexibility for product modification, upgrade

and update scalability of solutions within and across

product lines. To model algorithms and generate

AUTOSAR compatible Autocode has become the necessity

for projects using AUTOSAR architecture.[6]

Dominique Orban, "Templating and Automatic Code

Generation for Performance with Python", Parameterizing

source code for architecture-bound optimization is a

common approach to high-performance programming but

one that makes the programmer’s task arduous and the

resulting code difficult to maintain. Certain

parameterizations, such as changing loop order, may

require elaborate code instrumenting that distracts from the

main objective. In this paper, we propose a templating and

automatic code generation approach based on standard

Python modules and the Opal library for algorithm

optimization. Advantages of our approach include its

programmatic simplicity and the flexibility offered by the

templating engine. We provide a complete example for the

matrix multiply where the optimization concerning

blocking, loop unrolling, and compiler flags takes place [7]

Bran Selic, "Complete High-Performance Code Generation

from UML Models" Automation is the traditional industrial

means for improving productivity and product quality. We

explore both the theoretical and pragmatic issues involved

in automating the development of complex embedded

software. In particular, we focus on techniques for fully

automatic, complete, generation of high-performance code

directly from high-level design models. “Full” code

generation extends beyond mere code skeleton. In effect, it

means directly programming, testing, and debugging

complex applications using higher-level modeling

constructs, such as those provided in UML.[8]

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-01, APR 2022

192 | IJREAMV08I0185056 DOI : 10.35291/2454-9150.2022.0141 © 2022, IJREAM All Rights Reserved.

Van Cam Pham, Ansgar Radermacher, Sébastien Gérard

and Shuai Li, "Complete Code Generation from UML State

Machine", An event-driven architecture is a useful way to

design and implement complex systems. The UML State

Machine and its visualizations are a powerful means of

modeling the logical behavior of such an architecture. In

Model-Driven Engineering, executable code can be

automatically generated from state machines. However,

existing generation approaches and tools from UML State

Machines are still limited to simple cases, especially when

considering concurrency and pseudo-states such as history,

junction, and event types. This paper provides a pattern and

tool for a complete and efficient code generation approach

from UML State Machine. It extends IF-ELSE-SWITCH

constructions of programming languages with concurrency

support. The code generated with our approach has been

executed with a set of state-machine examples that are part

of a test- suite described in the recent OMG standard

Precise Semantics of State Machine. [9]

Neil Audsley, Iain Bate, Steven Crook-Dawkins,

"Dependable and ubiquitous Autocode Generation",

“Automatic Code Generation” is a process of deriving

programs directly from a design representation. Many

commercial tools provide this capability. Whilst these tools

provide greater flexibility and responsiveness in design, the

market is technology-focused and immature. No

infrastructure or established theory exists which could be

used to deploy the technology across large projects whilst

upholding coding standards and safety requirements. The

objective of this paper is to develop a model or architecture

for code generation that will be sufficiently well-defined

and unambiguous to support formal reasoning whilst also

retaining sufficient expressive power to be useful. These

models are based on statically defined mappings. [10]

III. PROPOSED SYSTEM

This chapter includes a brief description of the proposed

system and explores the different modules involved along

with the various models through which this system is

understood and represented. The Base Logic is that

AutoCodeApp works based on a custom-made key-value

Configuration based on REGEX. It possesses a declarator

Front End, which is WebApp made using Flutter

Framework that defines the user requirements inside

standardized API specifications for (example OpenAPI

3.0, SwaggerAPI, Custom, etc.). A well-defined Spec file is

generated using the inputs by the User and then Validated

before sending to the code generator. Then Code Generator

Engine curates a Specificized File which is parsed to

generate an API based on the Configuration Key-Value

pairs using Custom REGEX.

Our first module is the reactive frontend, here user interacts

with Webapp and enters credentials, and proceeds to select

their desired framework[3] other modules start working on

the requirements received, builthe der engine works on the

instructions generated based on the requirements and

automates the process of providing Code-based of pre-

made functions and templates according to user’s need.

Henceforth, the template gets downloaded in zip format.

The dashboard reflects all the ongoing activities performed

by the user. In figure 3.1, we show the detailed system

architecture.

Figure 3.1. System Architecture

Details of Modules

AutoCodeApp tends to integrate various modules to

facilitate the code generation process and increase

efficiency.

The modules are:

1. Reactive Frontend

2. Logic with models

3. Dashboard

4. Builder engine

A. Reactive Frontend

Built to take advantage of modern web features, reactive

web applications are a powerful way of developing web

apps. Unlike server-side rendered apps that need expensive

round-trips, the reactive web quickly reacts to any user

interaction. The pressure on the backend servers is also

decreased, making these apps scale much better under

heavy loads, all leading to a smoother user experience[8].

The reactive web model ensures you don’t need highly

skilled front-end developers and a multitude of code

frameworks to create complex, data-rich interfaces that

adapt to changes in real-time.

B. Logic with models[8]

There are three ways to add custom application logic to

models:

Remote methods - REST endpoints mapped to Node

functions.

Remote hooks - Logic that triggers when a remote method

is executed (before or after).

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-01, APR 2022

193 | IJREAMV08I0185056 DOI : 10.35291/2454-9150.2022.0141 © 2022, IJREAM All Rights Reserved.

Operation hooks - Logic triggered when a model performs

create, read, update, and delete operations against a data

source.

C. Dashboard

A dashboard is a type of graphical user interface[9] that

often provides at-a-glance views of key performance

indicators (KPIs) relevant to a particular objective or

business process.

In another usage, "dashboard" is another name for

"progress report" or "report" and is considered a form of

data visualization. The “dashboard” is often accessible by a

web browser and is usually linked to regularly updating

data sources[10]. Here, Dashboard reflects the overview

and API utilization, and configuration.

D. Builder engine

As the name suggests, the builder engine works with user-

required data and utilizes models, and helps in building

templates[7].

Configuration based template driven code generator using

blocky UI[9].

 Figure 3.2. Core logic

It becomes a lot easier to maintain and upgrade if we divide

entire code generator engine into 4 separate parts:

1.Requirement configuration

2.Target configuration

3.Target template

4.Main engine

In this architecture, we can reuse just one codegen engine

for any application without making any changes to core, i.e.

If we wish to generate code using any requirement

configurations and port it to any desired target framework,

we can do that by just adding new configs and templates

while not making any changes in the existing code

generation engine[4].

The main core will parse the requirements configurations

and Target configurations based on which it will use target

template to generate desired code[2].

For example, we generated API generator by providing

OpenAPI3.0 configurations and Flask Configurations and

template Flask app, Code generate API using Flask

framework[5]. Now if we wish to make Express API using

the same requirements configurations, then we won’t need

to make any changes to the code generator. By just making

congrats and template for Express we can generate code in

that framework too. Next if we wish to add SwaggerAPI

support then we can simply add it’s configurations and be

ready to accept inputs in that format.

IV. RESULT AND ANALYSIS

Easily scalable code generator developed without having to

modify and complicate code generator engine

Need to write configurations and templates separate for

each language and framework

 Figure 4.1. GUI

User after logging in using credentials sees the blocks. By

clicking and dragging each block user can design the

desired API. Words in the UI are generalized semi

technical words for easy understanding by nontechnical

background users. Where they can design features they

wish in their API while generating it’s logic and the

functions defining the logic.

Figure 4.2. OpenAPI 3.0 specification in form of JSON

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-01, APR 2022

194 | IJREAMV08I0185056 DOI : 10.35291/2454-9150.2022.0141 © 2022, IJREAM All Rights Reserved.

Figure 4.2. shows a sample Manufacturing firm API

specification written in OpenAPI 3.0 specification which

will be generated using blocky UI[9] for code generation

Figure 4.3. OpenAPI 3.0 Configuration keys

Figure 4.3. shows Similar configurations for OpenAPI

specifications are shown in figure 4.3 on basis of which the

code engine will able to parse the input Specification file

generated by blocky

Figure 4.4. Template for Flask-framework parsing

A template of a desired framework has to be generated for

generating code in the same. Figure 4.3. shows Template

for flask framework where pieces of code are written in the

form of key value pairs which will be read by the code

generation engine

Figure 4.5. Comparison between existing and proposed

system

V. CONCLUSION

In a world of diverse technologies and increased reliance

on software systems the role of automated code generating

tools is extremely important. We have introduced how it is

intended to provide complete, efficient, and automated

coding from pre-defined templates[7].

A common solution to this method may involve processing

using a single complex engine, which will be more complex

as we add a new framework and specific support to it. By

using AutoCodeApp we can make that easier by setting up

templates based on each support without adding complex

elements to the main engine.

An existing system like Swagger uses the old OpenAPI2.0.

Even if they add OpenAPI3.0 details they still need to

convert the new data to their old standard which keeps the

overlay engine in the middle class. This is no longer a

problem, as all configurations are accessed by a central

engine.

We argue that our tool produces functional code that runs

faster at event processing speeds and is smaller in usable

size[8]. It sets coding standards that can help analyze the

situation and ensures that the next generation of

AutoCode[5] tools are easy to think about and use as well

as a manageable process of translating from ideas to code

effectively. Often, the coding process seems long and

tedious as any coding writer has to write every single line

and memorize the rules of coding. However, with Block-

based coding, this process becomes simpler and faster as

the visual element also helps in making the process

smoother and more fun when it comes to planning long

projects. Since these coding languages were developed by

engineers for use by other engineers, many people who do

not have formal training can now have a way to learn to

write code in less time, so that they can work on smaller

programs. Blockchain-based coding is a solution, as it is

accurate and does not require formal training to master it.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-01, APR 2022

195 | IJREAMV08I0185056 DOI : 10.35291/2454-9150.2022.0141 © 2022, IJREAM All Rights Reserved.

It's easy and any beginner can take it after a few days.

Ultimately this approach will help us meet the minimum

requirements for default coding for high-level non-

programmers[1].

ACKNOWLEDGMENT

We take this opportunity to express our deep sense of

gratitude to our project guide and project coordinator, Mrs.

Poonam Thakre, for her continuous guidance and

encouragement throughout our Project work. It is because

of her experience and wonderful knowledge, we can fulfill

the requirement of completing the project within the

stipulated time. We would also like to thank Dr. Jitendra

Saturwar, Head of the computer engineering department for

his encouragement, whole-hearted cooperation, and

support.

We would also like to thank our Principal, Dr. J. B. Patil,

and the management of Universal College of Engineering,

Vasai, Mumbai for providing us with all the facilities and a

work-friendly environment. We acknowledge with thanks,

the assistance provided by departmental staff, library, and

lab attendants.

REFERENCES

[1] Jeffrey Smith, Mieczyslaw Kokar, Kenneth Baclawski,

"Formal Verification of UML Diagrams: A First Step

Towards Code Generation", ResearchGate, 2001.

[2] Gergely Pintér, István Majzik, "Automatic code

generation based on formally analyzed UML statechart

models", ResearchGate, 2003.

[3] Ivo Damyanov, Nick Holmes, "Metadata Driven

Code Generation Using .NET Framework",

International Conference on Computer Systems and

Technologies, 2004.

[4] Ingo Stürmer, Mirko Conrad, "Code Generator

Certification: A Test Suite-oriented Approach",

ResearchGate, 2004.

[5] Michael G. Hinchey, James Rash, and Christopher A.

Rouff, “Towards a Fully Formal Approach to

Automatic Code Generation”, NASA, 2005.

[6] Naveen Alwandi, Manjunath BC, "Experiences with

AUTOSAR compliant Autocode generation using

TargetLink", dSPACE User Conference, 2010.

[7] Dominique Orban, "Templating and Automatic Code

Generation for Performance with Python",

ResearchGate, 2013.

[8] Bran Selic, "Complete High-Performance Code

Generation from UML Models", ResearchGate, 2014.

[9] Van Cam Pham, Ansgar Radermacher, Sébastien

Gérard and Shuai Li, "Complete Code Generation from

UML State Machine", 5th International Conference on

Model- Driven Engineering and Software

Development, 2017.

[10] Neil Audsley, Iain Bate, Steven Crook-Dawkins,

"Dependable and ubiquitous Auto code Generation",

University of York, 2018.

