
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-02, MAY 2022

61 | IJREAMV08I0286029 DOI : 10.35291/2454-9150.2022.0174 © 2022, IJREAM All Rights Reserved.

A Qualitative Assessment of Traditional and Agile Software

Development Methodologies Together with DevOps Culture

Poonam Narang1* and Pooja Mittal2

1Research Scholar, 2Assistant Professor, Department of Computer Science and Applications, MDU,

Rohtak, Haryana, 1poonam.mehta20@gmail.com, 2mpoojamdu@gmail.com

Abstract - Aim of Software Engineering is to focus primarily on high Quality, well documented and within budget software,

that too in a small pace of time. To achieve this target, software engineering propounds several software development

frameworks that are broadly categorized into Traditional Methodologies, Agile Methods and DevOps, an emerging trend

in software engineering. These methodologies cover different models viz. Waterfall, Prototype, Spiral, Iterative,

Evolutionary, V Models, RAD, Scrum, Kanban, XP, Crystal, DSDM etc. But the existence of several different models or

methodologies raises the need for their accurate selection for the successful delivery of software. Also agile development

methodologies have emerged as a big alternative to traditional methods. As a whole, the target of every looming model is to

neutralize the disparities of earlier models. This paper considers Waterfall, Prototype, Spiral, Iterative methods as

representatives of Traditional methodologies along with Scrum, RAD, Kanban, and XP as representatives of agile. These

representatives are compared analytically with one another followed by in-depth comparison with DevOps culture. Latest

Google Trends and Stack Overflow Trends are also included to show interest over time for these models. Much empirical

research has been conducted giving precedence to agile methods over traditional methodologies. However, considering the

first waterfall methodology to recent agility in methods, still many impediments are found that make the task of

appropriate methodology selection for software development very challenging for the IT industry. The purpose of

underlying research is to provide a comparative study report of these representatives to target this particular challenge of

the IT industry. The analysis and review carried out under this work will be useful for a divergent group of

researchers/students to understand the course of action of different development methodologies including DevOps.

Keywords: Agile, DevOps, SDLC, Traditional Model.

I. INTRODUCTION

Different Methodologies and models exist that follow the

step by step guide for software development in terms of life

cycle (SDLC). Software or the System Development Life

Cycle (SDLC) refers to the conceptual framework that

clearly describes the schema for the software development. It

defines all phases from feasibility study to the deployment,

Operations, Maintenance and even obscurity of the software.

These include many of the traditional models to agile

development and presently trend moving towards continuity

of development and operations through DevOps. Existing

literature agrees on difficulties encountered in traditional

models and accepts the requirement of more agility and

continuity in software development. Thus DevOps, a fine

blend of Development and Operations teams, shoots up as

the vividly applied formula in software engineering. DevOps

permits developers and operations to collaborate and work

together more effectively and efficiently.

Study performed here covers three frameworks for

methodologies and also discusses different models under

these methodologies. Although SDLC models exists in great

quantity, this research work analyses most widely followed

models categorized and shown below -

Table1. SDLC Models Categorization under different

Methodologies as under

Methodology Development Model

Traditional Waterfall, Prototype, Iterative, Spiral

Agile

RAD, Scrum, Kanban, XP

DevOps

DevOps

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-02, MAY 2022

62 | IJREAMV08I0286029 DOI : 10.35291/2454-9150.2022.0174 © 2022, IJREAM All Rights Reserved.

As categorized in table (1), this research has been conducted

to exhibit and reveal the challenges that occur in traditional

models including agile methods. We also provide a tabular

comparison with DevOps - an emerging phenomenon in

software engineering that becomes the main contribution of

this study. Also this review will be advantageous for

students/researchers to understand the modus operandi of all

development methodologies along with DevOps. As a part of

this research, many existing papers have been studied that

we have referred to in this paper also but none of those

authors covered all these development models and that was

my personal thought that at least our young buddy

researchers could get all the data at one place. This work

will also be useful for both academics and industries to

understand the work on different dimensions of DevOps. As

a part of future research, this extensive study can further be

extended to work on DevOps applications from the

development industry to software academics.

The remainder of this paper is structured as follows-

Figure1. Schematic Diagram for the complete

comparison of different software development

methodologies viz. traditional, agile and DevOps culture

Above figure (1), clearly depicts the flow of this study as

after tabular comparison of traditional and agile

methodologies individually based on performance evaluator

parameters, generic comparison of Traditional vs agile and

agile vs DevOps was made. Finally, all three methodologies

were also compared graphically.

II. RELATED WORK

Application and utilization of Traditional and Agile Models

including DevOps are reviewed from different existing

recent research papers.

Nayan B. Ruparelia [1] accepts that the development models of

software can be categorized as three broad groups viz. linear,

iterative and a combination of linear and iterative models.

This research paper confirms that SDLC Models exist in the

big list but only the important or popular models viz.

Waterfall, Spiral, Unified, Incrementing, Rapid Application

Development, V and W were considered. The research gap

of this paper lies in terms of inclusion of continuity in agile

models. Marian STOICA et al [2] in their paper on Comparative

analysis of traditional and Agile models abbreviated results

as no impact of development model chosen, agreed on

predisposal of errors in testing and validation processes.

Thus the research put greater emphasis on testing and

validation before entering into production. This research also

confirms the inclusion of the client side for development and

implementation of the project as per their specifications.

Ernest Mnkandla and Barry Dwolatzky [3] in their paper on Agile

Methodologies confirm that agile methods provide a

significant improvement on the control and management of

the software development process. Their research paper also

devised a mechanism that can be used by practitioners to

select the most suitable agile methodology for a given

software development project. The work also confirms that

Literature gives evidence of improvement in areas like

development of software that meets the user requirements,

delivery of the product on time and within budget. Pulasthi

Perera et. al. [4] and F. M. A. Rich et al [5] contributed a paper

on Improving Quality through practicing DevOps conducts a

study on how DevOps practice has impacted software

quality. The secondary objective of this study was to find

how to improve quality efficiently. In [5], authors also

specified the way organizations are adopting DevOps for

software development and improving software quality.

Authors of [5] also contributed a paper on mapping Study on

Cooperation between Information System Development and

Operations [6] covering detailed study for exploring DevOps.

Authors also agreed upon no existence of adequate study of

DevOps in scientific literature. This paper supports DevOps

as a benefit for IS development and Operations performance.

Lucy Ellen Lwakatare, Pasi Kuvaja and Markku Oivo [7],

identified DevOps as an important aspect in academics and

practitioner communities. Their study also investigates

elements that characterize DevOps through literature survey

and interviewing practitioners who are actively involved in

the DevOps movement. Leah Riungu, Kalliosaari, Simp

Makinen, Lucy ellenLwakatare, Juha Tihonen, Tomil

Mannisto [8] conducted a qualitative multiple-case study and

interviewed the representatives of three software

development organizations in Finland. Authors observed the

DevOps encouragement of collaboration between

departments which boosts communications and employee

welfare.

Mishra and Otaiwi in their work on mapping DevOps and

Quality [9], mainly focuses their research in automation,

culture, continuous delivery and fast feedback of DevOps.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-02, MAY 2022

63 | IJREAMV08I0286029 DOI : 10.35291/2454-9150.2022.0174 © 2022, IJREAM All Rights Reserved.

Their resulting study provides a better understanding of

DevOps on software quality for both professionals and other

researchers. Another work on DevOps published in [10]

reveals different challenges experienced by software firms in

DevOps adoption.

Above discussed and other existing survey or research work

speaks individually about Traditional, Agile and DevOps

methods. Also studies were there discussing comparisons of

these models but the work in this paper performs a

systematic study and moves gradually towards DevOps from

Traditional through Agile. Parametric comparison tables are

also given as theoretical evidence of practicing DevOps to

encourage quality and speedy delivery of software.

Traditional Methodologies available for Software

Development

The existing or most popularly followed traditional

methodologies for the development of software inculcates

many models like Waterfall, Prototype, Incremental,

Iterative, and the V-Model etc. These methodologies proffer

different phases of development to undergo during the

Software Development Cycle. All of these models bestow

many advantages during the development viz. easy system

building process, reduction in failures and touching the

customer's needs in actual.

Figure2. Different Software Development Life Cycle Stages in

Traditional Methodologies

Above figure (2), includes different phases of traditional

software development methodologies. Maximum

development models follow earlier defined phases/stages.

All of the stages are explained beneath -

Requirement Excerption and Selection - This phase

identifies customer requirements and accords their

documentation on a very high level of abstraction. These

gathered and refined requirements are fed as input to the

next phase of design and implementation. After analysis of

requirements, this phase ends up with the surety of meeting

all system requirements.

Design - The design phase of the system works on

specifying the features and operations to meet the

expectations of the final product. The specifications

document along with design outcomes are maintained

collectively. All constraints of time, budget, technology,

risks etc. are all considered and also discussed with

associated teams and the customer to affirm the best design

approach for the product.

Coding - Design phase completion calls upon the next goal

of translating the system design into well structured, clear,

understandable and simple language code that too in the best

possible manner. After writing the complete code, many of

the methods like code review and inspection, data flow

analysis etc. are also followed for the purpose of verification

and validation.

Testing - Scrupulous testing techniques are employed to

check whether the designed and coded system meets the

expected customer and system requirements. This phase

includes many different types of testing including integration

and system testing. Some definitions of testing from the

literature consider testing as the process of executing a

program with the intent of finding errors [11]. Whereas

Hetzel, W in his complete guide to software testing [12] defines

testing as the process of exercising or evaluating a system or

system component by manual or automated means to verify

that it satisfies specified requirements or to identify

differences between expected and actual results. Royce, W.

[13], on the similar platform states that testing can be any activity

aimed at evaluating an attribute or capability of a program or

system and determining that it meets its required results.

Testing is the measurement of software quality.

But none of the above definitions authenticates error free

software even after rigorous testing.

Implementation - This phase occurs when the majority of

the program code is written and the project is ready to put

into production. This is the actual doing phase and it is very

important to maintain its impulse. At the end of this phase,

the outcome is evaluated with the earlier created

requirements and designs, whether the outcome is as per the

specifications of the definition phases. Only after meeting

full consistency, this phase is considered complete.

But meeting all the requirements specified in the defining

phase is hardly ever possible as unexpected events or in-

depth insight into a project raises the need of deviation from

the original list of requirements. Now this could be the

source of conflict but customers can appeal to agreements

made during the definition phase.

Installation/Deployment - This phase, in the life cycle of

software development, comes when the final software is

released on the approval of development, testing and

implementation teams. This phase finally handed over the

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-02, MAY 2022

64 | IJREAMV08I0286029 DOI : 10.35291/2454-9150.2022.0174 © 2022, IJREAM All Rights Reserved.

software to the customer/client to get installed on their

specific devices.

Operations and Maintenance - After the installation phase,

the operations phase begins followed by the maintenance

phase that starts when the customer/client needs any kind of

update or modification in the installed product. At this time,

users fine-tune the system as per their expectations or

additional requirements. In short, maintenance phases can

make changes to either hardware, software or the

documentation part of the product with the specific intention

of improving the product's final operational effectiveness.

Traditional Models for Software Development

Traditional methodologies are followed by many software

development models. In this paper, Waterfall, Iterative,

Prototype and Spiral Software Development Models are

taken into consideration. These models are briefly discussed

beneath.

 Waterfall (also known as Traditional Model)

Waterfall or traditional model of software development is

still used widely and will be around for a much longer period

of time only because of the model's simplicity and

convenience of usage. Different issues that come with this

model are its less acceptance of change as to avoid the

rework and software quality degradation.

Waterfall model for software Development follows steps

similar to all mentioned under traditional methodologies as

displayed in diagram 2 above.

This model takes the advantage of amputating the complete

development life cycle into distinguished stages/phases that

too are very easy to understand and to follow by the

management team. These stages include engineering of

requirements, choosing best design for software, design

implementation in terms of programming code, testing of

complete software, release and operations followed by the

maintenance phase. Documentation and quality check

processes are also run-through these phases.

Evolutionary Prototype Model for Software Development

Earlier software development life cycle models assume that

customer requirements can be frozen in the beginning as

they are consistent and unambiguous. But this assumption

seems to be extremely rigid as requirements tend to change

very frequently. In the Evolutionary prototyping

development method, a prototype is first constructed by the

development team and many different prototypes are built to

be concise with customer feedback. This cycle moves on

until the emergence of the final product.

This prototyping scheme differs from the rapid or

throwaway prototyping in the way of requirement

understanding and initial outcome of prototypes.

Iterative Model of Software Development

The iterative software development life cycle model initially

focuses particularly on simplified implementation but

followed progressively by a much broader and complex set

of features for the inclusion in the final system.

The iterative model is better clarified with the following

figure taken from professionalqa.com page for iterative

model.

Figure3. Iterative Model for Software Development under

traditional methodology

Software Development with the iterative model, shown in

above figure (3), well suits the large size projects with their

incomplete and unclear requirement specification. This

approach permits the development of products based on their

high priority requirements first and thereby also reduces

development time up to greater extent. Besides these,

iterative models are comparatively simple to use and

understand that makes it a widely used development model.

Spiral

The spiral life cycle model came into existence to address

challenges that occur in earlier development models such as

coping with rapid change while assuring high quality and

reliability at the same time. This model also addresses the

need for rapid updating of incremental features or

requirements with a minimum of rework.

A sketch of the spiral model is outlined in the figure below.

Figure4. Spiral Model for Software Development falls under

traditional methodology

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-02, MAY 2022

65 | IJREAMV08I0286029 DOI : 10.35291/2454-9150.2022.0174 © 2022, IJREAM All Rights Reserved.

Different loops of the spiral model, shown above in figure

(4), are called a phase of the development process. Each

phase of the Spiral Model is divided into four quadrants as

shown in the above figure. The functions of these four

quadrants can be classified as Determination of objectives

and identifying alternative solutions, Identifying and

resolving risks, developing the next version of the product,

and in the last reviewing and planning for the next phase.

The number of phases that are required to develop a software

product depends upon the number of risks identified and can

be varied with the project.

III. AGILE METHODOLOGIES

Agile development methodologies break the traditional

software development process into much smaller size blocks

that could easily be managed. Agile approach focuses on

people, results and rapid delivery of the product. It rotates

around well defined and well organized tasks, short delivery

times and at the same time adaptive planning to accept the

changes at any point during the development process.

Agile relinquishes the risk of spending months or years on a

process that ultimately fails just because of some small

mistake in early phases. Instead, it relies on its team of

employees and developers to communicate directly with

their clients to get a clear understanding of goals and thus

provide alternative solutions in a fast and incremental way.

Agile can be better understood by the diagram below drawn

with the help of reqtest.com page about agile methodologies.

Figure5. Agile Methodology for Software Development

Agile methodology displayed in above figure (5), clearly

indicates different phases of development. These are – Plan/

Discussion, Detailed analysis followed by making strategy/

design for solution, execution and Testing with proper

quality assurance. Some most commonly used and popular

examples of agile methodologies are- Rapid Application

Development (RAD), Scrum , Feature Driven Development

(FDD), Crystal and Lean Software Development (LSD),

Kanban, eXtreme Programming (XP) etc. This research

work discusses RAD, Scrum, Kanban and XP development

models.

RAD (Rapid Application Development)

Rapid Application Development is the development model

that is designed specifically to deliver quality results at a

rapid pace of time as compared to traditional methods. Its

main emphasis is on development rather than planning. RAD

models follow the approach of time boxing that permits

multiple cycles development at the same time.

Figure6. RAD Model for Software Development under Agile

methodology

Above figure (6), also shows that after the completion of

each module, feedback is also acquired from the clients and

the management team. The RAD model suits for each size of

project be it small, medium or large scale. The only

requirement of the RAD model is to divide the project into

smaller manageable chunks.

Scrum

Agile’s other way or approach to manage complex projects

is by scrum software development that follows an

incremental approach. In the Scrum model, the project

progresses through a series of sprints where sprint is a

planned amount of work that the team is to complete within

the specified time box of generally 2-4 weeks iteration of a

continuous development cycle. For this purpose, a sprint

backlog is also maintained that contains all the tasks to be

performed during the sprint cycle. During the sprint cycle,

daily scrum meetings are also conducted for the team

members including Scrum Master and the client. This daily

meeting is time boxed to 10-15 minutes in which sprint

progress along with the next plan is discussed by all

members.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-02, MAY 2022

66 | IJREAMV08I0286029 DOI : 10.35291/2454-9150.2022.0174 © 2022, IJREAM All Rights Reserved.

Figure7. Screenshot of Scrum Model for Software Development

under Agile Methods [14]

Thus we can see the Scrum model, in above figure (7), as a

methodology to synchronize the team members work while

discussing sprint work. The Scrum is also suited for all sizes

of projects small, medium or large scale.

Kanban

Kanban, a popular agile model, requires real-time

communication of work progress along with its full work

transparency on a Kanban board. Work items represented

visually on the board allows team members to see each and

every progress of work. The major benefits of using Kanban

are its better understanding of the development process and

good effort to cover all customers’ requirements.

Figure8. Kanban Model screenshot for writing notes during

Software Development [15]

Kanban is a Delivery model with no fixed scope or deadline

as depicted in above figure (8). Work is getting prioritized

continuously and work items get delivered as soon as they

are ready for production, hence no fixed date of delivery.

Key ingredients in the success of such a model are close and

continuous collaboration within the team: Production Owner,

BA, Developer and Tester. New requirements are captured

in a state called Backlog/Icebox and the Team along with the

Product Owner discusses the priority of those work items

daily, and as soon as work on one requirement is completed,

the team picks the next items from the priority list to deliver.

eXtreme Programming (XP)

eXtreme Programming (XP) is one of the most important

software development models that come under agile

methodologies. It improves software quality and response

time to client’s requirements. The term extreme comes from

the fact that the underlying model takes the best practices

that have worked very well in the past during the software

development to extreme levels.

Figure9. Different iterations for XP Model of Software

Development under Agile Methodology

eXtreme Programming model, shown in above figure (9), is

based primarily on frequent iterations for implementing user

stories where user stories are very simple and informal

statements from the customers about the needed

functionalities in the product. On the basis of these stories,

the project team proposes their common vision called

metaphors about the working of the system. In view of the

metaphors, the development team may construct spikes that

refer to simple programs or also called solutions in terms of

prototype.

DevOps or Development + Operations: An

Introduction

DevOps approach is the most recent addition to the software

development research area. A strong practitioner-driven

movement supporting the idea of using DevOps in software

engineering has emerged. It is a set of practices that work

together to automate and integrate the processes between

development and Operations teams, so that they can build,

test, and release software much faster and with better

reliability. The term DevOps was formed by combining the

words “development” and “operations” that bridges the gap

between the development and operation teams, which in

history functioned in siloes.

Figure10. DevOps = Development + Operations (A fine blend of

different teams)

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-02, MAY 2022

67 | IJREAMV08I0286029 DOI : 10.35291/2454-9150.2022.0174 © 2022, IJREAM All Rights Reserved.

DevOps, as shown in above figure (10), is a fine blend of

development and operations teams in terms of better

communication, continuous testing, integration and

deployment with the use of different automation tools at

each and every stage of software development. DevOps

combines agile, git, automation and much more efficiency to

get faster and quality delivery.

DevOps becomes very easy to implement when we have the

surety of adoption of changes during the development cycle.

DevOps methodology thrusts for the speedy delivery of the

product for which it adopts many automation tools viz. Jira,

Git, BitBucket, Selenium, Docker etc. DevOps is based on

the principle of 5 C’s. These are

- Continuous Integration

- Continuous Testing

- Continuous Deployment

- Continuous Delivery

- Continuous Monitoring

DevOps develops Integrates, Test, and Deploy, Deliver and

even monitor the software product continuously means

everything goes parallel that makes the development and

operation teams work in collaboration to deliver a successful

product that too in a very short span of time. DevOps is easy

when you know your organization can adopt changes easily

and when you have the right attitude to make DevOps come

true in your organization.

Comparative Analysis of different Traditional

and Agile Methodologies

Traditional methodologies to software development strictly

require well defined and well planned tasks that too to be

completed in a stipulated time period to deliver the within

budget and successful projects. These methods completely

depend upon the detailed perusal of the requirements along

with a careful planning from the early cycles of the

development. As any change afterwards or during the

development requires a rigorous amount of rework and

change control management checks are also needed at the

same moment. Traditional methods, on the other hand,

emphasize heavy documentation, so are best suited for quite

large sized projects.

Agile methodologies are based on workable methods that

accept the beginning of development much before any

project planning. These methods work with the only

requirement of clear and crisp understanding of all tasks or

actions that are to be performed during the development.

These models follow the adaptability of any new change in

the requirements later in the project. The product is tested,

therefore, much frequently only for the sake of nullifying the

risk factor effect associated with the occurrence of faults.

The approving points of Agile methodologies lie in their

very less documentation work, a continuous interaction with

their clients and also good team alliance. This can also be

concluded that these methods are best suited for the longer

projects that are easy to be modularized.

A phase and parameter-based comparison of these traditional

models viz. Waterfall, Prototype, Iterative and Spiral along

with different agile models viz. Rapid Application

Development, Scrum, Kanban, eXtreme Programming are

detailed in the following table.

Table2. Traditional Models Comparison with respect to

parametric evaluative features of different phases/stages based

on existing literature, research or survey of many renowned

researchers [16] – [23]

(* table shown on the last page 13-14 of this manuscript)

A detailed study of different development models under

traditional and agile methodologies for their respective

advantages , differences, and drawbacks permits us to make

a generalized comparison between the two based on different

parameters. This generic comparative study not only helps

for the selection of appropriate development models for the

underlying problems but also ensures the successful

implementation.

Traditional Methodologies and Agile Methods

compared with DevOps

Followed by detailed analytical comparison of traditional

and agile methods, these are again compared with DevOps.

Traditional methods suitable for large and freeze

requirements differ from DevOps with respect to industry

latest trends and interest over time. On the other hand,

DevOps and agile methodologies, contrasts from one another

in terms of their basic footing principle. Agile methods are

based on the principle of agility in development whereas

DevOps bring agility in development including operations as

depicted in the following diagram –

Figure11. Agile methods and DevOps consideration of different

approach

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-02, MAY 2022

68 | IJREAMV08I0286029 DOI : 10.35291/2454-9150.2022.0174 © 2022, IJREAM All Rights Reserved.

Differences among these development methodologies other

than the shown above in figure (11), are summarized in the

following table.

Table3. Traditional and Agile Methods comparison with

DevOps based on different evaluative parameters [24] – [27]

(* table shown on the last page no 15 of this manuscript)

Other differences can also be viewed in Agile and DevOps in terms

of continuity in the application of agility in development. Agile

models overweigh the development of testing, release and

operations. DevOps, on the other hand, considers testing and

operations of a product equally to the development as we observe in

the figure below.

Further comparison of traditional and agile methods including

DevOps is shown in the following figure.

Figure12. Traditional, Agile and DevOps Comparison with

respect to continuous approach

Above comparison, taken from many renowned researchers' work

available on the internet, confirms that all these are not seen to be

incompatible, leading to the existence of all three, but still the

continuity approach of DevOps leads to future possibility of

DevOps based Software Engineering (DOSE). DOSE includes

automation at each and every phase of software development to

make it more reliable, faster and quality.

Interest over Time of different Traditional,

Agile methods and DevOps based on Latest

trends in graphical form

Over the decade or two, the mindshare of the developer has

transitioned from traditional development methodologies to

agile methods as of their usage of variety models with well

defined purposes and distinguished approach to

development. Other than these, agile methods exhibit very

slight cost of rework as compared to traditional

methodologies. Despite these differences, we can observe in

the following graph about interest in Waterfall, Iterative,

Spiral and Prototype methods according to the latest trends.

Figure.13. Traditional methodologies interest over time of past

12 months as per Google trends and over period of 7-8 years

according to Stack Overflow Trends as on 18 Jan 2022 [28] [29]

As clearly depicted in the above figure (13), traditional

methods are still in demand because of their simplicity, ease

of understanding and easy applicability at the same time.

Agile methods are also in trend according to Google and

Stack Overflow trends as described beneath –

Figure14. RAD, eXtreme Programming, Scrum and Kanban

Agile methods interest over time according to Google Trends

over the past 12 months [30] [31] [32]

All models that fall under agile methods are in usage with

almost equal interest by IT industrialists as depicted in the

above figure (14) by Google Trends report. These trends

accept that Traditional and Agile methods are followed as

per the underlying project requirements. In a similar way, we

can also confirm the popularity of DevOps according to both

trends as shown below –

Figure15. DevOps interest over time of past 12 months as per

Google trends and over period of 7-8 years according to Stack

Overflow [33] [34]

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-02, MAY 2022

69 | IJREAMV08I0286029 DOI : 10.35291/2454-9150.2022.0174 © 2022, IJREAM All Rights Reserved.

DevOps also gains popularity according to the above trends

shown in figure (15). During Covid-19 Pandemic, DevOps

became the latest buzzword in the IT industry because of its

on time, within budget and quality software delivery.

IV. CONCLUSION AND DISCUSSION

The ample increase in the number of software development

methodologies or models makes the selection of a suitable

approach for a particular project all-important. This

extensive research of different methodologies - Traditional,

Agile along with DevOps will be a great help to the

developers as the motive behind such a paper is the

availability of several software development methodologies

for which effective selection becomes a very difficult and

time consuming task.

The underlying study makes a comparative analysis between

different Traditional and Agile Methods followed by a

tabular comparison between Traditional vs Agile vs DevOps

based on different evaluative parameters. Though traditional

software development methodologies are quite older but still

possess such qualities that even depending upon the

requirements, they are very much used in the development

zone. Thus, waterfall is simple to implement, Agile with

little documentation, and DevOps for the latest approach

features makes them all equally important even till date.

It can be concluded that any model can be opted as per the

requirement by the developer. Every model has its own

strength. This research concludes that traditional methods

are very easy and simple to follow with the restriction of not

frequently changing requirements. Agile methods take

advantages over traditional methods like very little

documentation, fast release, and small cycles. Conclusion of

this comparative study considers DevOps to be the latest

approach for development of software to cover the speed and

quality oriented concerns of organizations.

V. FUTURE WORK

The work put here can be used by a divergent group of

researchers or students to get an in -depth understanding of

different development models either traditional, agile or

DevOps. This research work can be further extended to

consider remaining models of Traditional or Agile

methodologies as a part of future research. Further research

work can also be done on working principles of DevOps

along with its automation tools.

 "Compliance with Ethical Standards"

“Funding - This study was not funded by any

authority.”

“Conflict of Interest: The authors declare that

they have no conflict of interest.”

REFERENCES

[1] Nayan B. Ruparelia., “Software Development Lifecycle

Models. ACM SIGSOFT Software Engineering Notes”, May,

Volume 35, Number 3, pg 8 (2010).

[2] Marian STOICA, Marinela MIRCEA, Bogdan GHILIC-

MICU., “Software Development: Agile vs. Traditional.

Informatica Economică”, vol. 17, no. 4/2013.

[3] Ernest Mnkandla, Barry Dwolatzky, “A Selection Framework

for Agile Methodologies”, International Conference On

Extreme Programming And Agile Processes In Software

Engineering, Xp 2004, Lncs, Vol. 3092, Pp. 319-320. IEEE

(2018).

[4] Pulasthi Perera, Roshali Silva, Indika Perera.,“Improve

Software Quality Through Practicing DevOps” ,2017

Seventeenth International Conference On Advances In Ict For

Emerging Regions (Icter), Eissn: 2472-7598. IEEE (2018).

[5] F.M.A. Rich, C.Amrit,M. Daneva, “A Qualitative study of

DevOps usage in Practice”, Journal of Software: Evolution

and Process, Wiley Online Library, June 2017

[6] Floris Erich, Chintan Amrit, and Maya Daneva: A Mapping

Study on Cooperation between Information System

Development and Operations. Conference Paper, Part of the

Lecture notes in Computer Science book series(LNCS, volume

8892), PROFES 2014, pp 277-280

[7] Lucy Ellen Lwakatare, Pasi Kuvaja and Markku Oivo:

Dimensions of DevOps. Conference Paper, Part of the Lecture

notes in Business Information Processing book series (LNBIP,

volume 212), XP 2015, pp 212-217.

[8] Leah Riungu, Kalliosaari, Simp Makinen, Lucy

ellenLwakatare, Juha Tihonen, Tomil Mannisto, “DevOps

Adoption Benefits and Challenges in Practice: A Case study”,

PROFES 2016, pp 590-597, Springer International Conference

on Product-focused Software Process Improvement.

[9] Alok Mishra, Ziadoon Otiawi, “DevOps and software quality:

A Systematic Mapping”, Elsevier Publications, Computer

Science Review, vol 38, Nov 2020,100308

[10] JAVMK Jayakody, WMJI Wijayanayake, “Challenges for

adopting DevOps in information technology projects”,

published in proc. 2021 International Research Conference on

Smart Computing and Systems Engineering (SCSE), 16 Sep

2021, IEEE Xplore.

[11] http://barbie.uta.edu/~mehra/Book1_The%20Art%20of%20So

ftware%20Testing.pdf, last accessed 19/05/2022

[12] https://condor.depaul.edu/sjost/hci430/documents/testing/soft

ware-testing.htm,,last accesses 30/04/2021 ANSI/IEEE

Standard 729, 1983

[13] https://condor.depaul.edu/sjost/hci430/documents/testing/soft

ware-testing.htm, last accessed 30/04/2021, Hetzel, W., The

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-02, MAY 2022

70 | IJREAMV08I0286029 DOI : 10.35291/2454-9150.2022.0174 © 2022, IJREAM All Rights Reserved.

Complete Guide to Software Testing, QED Information

Sciences Inc., 1984

[14] https://laptrinhx.com/introduction-to-agile-project-

management-with-scrum-2904466361, last accessed

19/05/2022/

[15] https://www.istockphoto.com/photos/daily-scrum, last

accessed 19/05/2022

[16] Dima, A. M., & Maassen, M. A. “From Waterfall to Agile

software: Development models in the IT sector, 2006 to 2018.

Impacts on company management”, Journal of International

Studies, 11(2), 315-326. doi:10.14254/2071- 8330.2018/11-

2/21 (2018)

[17] Krishna, S.T, Sreekanth, S., Perumal, K., & Reddy, K.R.K.,

“Explore 10 different types of software development process

model”, International Journal of Computer Science and

Information Technologies, 3(4), 4580-4584 (2012).

[18] Chandra, V., “ Comparison between Various Software

Development Methodologies”, International Journal of

Computer Applications, 131(9), 7-10, Retrieved 18 Jan 2022,

from:

https://www.ijcaonline.org/research/volume131/number9/chan

dra-2015-ijca-907294.pdf (2015)

[19] B.W. Boehm, “A Spiral Model for Software Development and

Enhancement”, IEEE, IEEE Computer Society, vol. 21, issue

5, May 1988, pp. 61 – 72.

[20] David J. Anderson,Giulio Concas,Maria Ilaria Lunesu,

Michele Marchesi, Hongyu Zhang,“A Comparative Study of

Scrum and Kanban approaches on a Real Case Study Using

simulation”, International Conference on Agile software

Development,(LNBIP, Vol 111), Springer Link (XP 2012)

[21] Stober, T., & Hansmann, U., “Agile Software Development:

Best Practices for Large Software Development Projects”,

Berlin, Springer Verlag (2010)

[22] McHugh, M., Cawley, O., McCaffery, F., Richardson, I., &

Wang, X., “An Agile V-Model for Medical Device Software

Development to Overcome the Challenges with Plan-Driven

Software Development Lifecycles”, IEEE 5th International

Workshop on SEHC, (2013)

[23] Schaefer, A., Reichenbach, M., and Fey, D., "Continuous

Integration and Automation for DevOps", Lecture Notes in

Electrical Engineering, pp. 345-358, 2012.

[24] Prashant Agrawal, Neelam Rawat, “DevOps, A New

Approach to Cloud Development and Testing”, International

Conference on Issues and Challenges in Intelligent Computing

Techniques (ICICT), IEEE, 2019

[25] Boyuan Chen, “Improving the software logging Practices in

DevOps”, IEEE/ACM 41st International Conference on

Software Engineering: Companion Proceedings (ICSE-

Companion) (2019)

[26] J. Humble and J. Molesky, "Why enterprises must adopt

devops to enable continuous delivery", Cutter IT Journal, vol.

24, no. 8, pp. 6, 2011

[27] M. Virmani, “Understanding devops bridging the gap from

continuous integration to continuous delivery”, in 5th

International Conference on Innovative Computing

Technology (INTECH), 2015

[28] https://trends.google.com/trends/explore?geo=IN&q=%2Fm%

2F0136fk,%2Fm%2F0867l, last accessed 19/05/2022

[29] https://insights.stackoverflow.com/trends?tags=prototype%2Ci

ncrement, last accessed 19/05/2022

[30] https://trends.google.com/trends/explore?geo=IN&q=%2Fm%

2F01jtfr,%2Fm%2F02t2n, last accessed 19/05/2022

[31] https://trends.google.com/trends/explore?geo=IN&q=%2Fm%

2F0ck_p8, last accessed 19/01/2022

[32] https://trends.google.com/trends/explore?geo=IN&q=%2Fm%

2F0dgq419, last accessed 19/01/2022

[33] https://trends.google.com/trends/explore?geo=IN&q=%2Fm%

2F0c3tq11, last accessed 19/05/2022

[34] https://insights.stackoverflow.com/trends?tags=devops, last

accessed 19/05/2022

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-02, MAY 2022

71 | IJREAMV08I0286029 DOI : 10.35291/2454-9150.2022.0174 © 2022, IJREAM All Rights Reserved.

Table2. Traditional Models Comparison with respect to parametric evaluative features of different phases/stages based on existing

literature, research or survey of many renowned researchers [16] – [23]

Methodology Traditional Models Agile Methods

Phases Features Waterfall Prototype Iterative Spiral RAD Scrum Kanban XP

Requirement

Elicitation and

Analysis

Requirement

gathering

Requirement

Analysis

Requirement Change

Stakeholder Involved

Freeze in

Beginning

Clear and Crisp

Not feasible

Beginning [16]

Throughout the phases

Not very clear

Yes

High involvement of

user

Throughout the

phases

Well Understood

Yes

Involvement in

beginning only

Throughout the

phases

Well Understood

Not Feasible

Only in initial

phases

Time Frame

released

Easy to understand

Can be done

In beginning

phases only

Requirements

change v

frequently [16]

Easy

Understanding

Very easy

High involvement

[20]

Requirements

change v

frequently

Clear and Crisp

Understanding

Very easily

High Level of

Involvement

Change v

frequently

Difficult to

understand

Not Easy

Only in

beginning

Software

Planning Primary Concern

Project Cost

Resources & Cost

Control

Requirement of

Expertise

Product

Assurance

Very Low

Yes

Highly Required

Speedy Delivery

High

No

Not rigid requirement

Speedy Delivery

High

Yes

Yes

Product

Assurance

Very Expensive

Yes

Highly Required

Fast Delivery of

Product

Very Low

Yes

Not as much

Progress and

Budget

As Estimated

Sometimes over

budget

High Requirement

Customer

Satisfaction

Very High

Yes up to some

extent

Very High

Requirement

Product

Assurance

Very High

Not at all

Very high

requirement

Product Design Simplicity

Overlapping Phases

Flexible

Documentation

Expertise Required

Very Simple

No

Very Rigid [17]

Must Required

Yes

Simple

Yes

Highly [18]

Not necessary

Not as much

Intermediary

Yes

Very Flexible[18]

Necessary

Yes

Demanding

Yes

Highly

Required

Must Required

Much simpler

Not at all

Very much [17]

Very less

Less expertise

required

Very Simple

Yes

Yes

Less

Yes

Very Complex

Model

Very Much

Highly flexible

Required

Yes

Bit Complex

Not at all

Yes

Required

Up to some

level

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-02, MAY 2022

72 | IJREAMV08I0286029 DOI : 10.35291/2454-9150.2022.0174 © 2022, IJREAM All Rights Reserved.

Implementation Time entailed

Risk Anatomy

Risk involvement

Prominence on

Success assurance

Very Long

Yes

High

Requirements &

Heavy

Documentation

Very less

Short

No

Low

Design

Good

Varies with

requirements

Yes

Low

Documentation

Low

Long

Yes [19]

Very Low

Documentation

High

Much lesser [17]

Very less

Least feasibility

Technical Strength

of Product

Very High

Much less

Only at implicit

level

Not high

Speedy Delivery

High

Very Less

Done rigorously

Less prospects

Requirement based

Design

Much higher

Very Short

Not

Considered

Feasibility of

Risks

Fast

Development

Not much

high

Integration and

Testing

Testing Occurs

Cost of Rework

After end of

Coding

Very High

After end of each iterative

prototype model

Not much High

After end of each

iteration

High

After end of

Design phase

Very High

After each phase

Very less

After Coding phase

Very High

Continuous Testing

Approach

Varies with project

Continuous

testing with

coding phase

High

Deployment

Build Release

Working Model

Availability

Product

Customization

User Control over

Product

Not Possible

End of Life Cycle

Not Realizable

Very Less [16]

After every Phase

End of each Iteration

Realizable

High Control

After every

Iteration

End of each

Iteration

Very Much

Realizable

Much Control

Not Possible

End of each

Iteration

Realizable

Yes

In phases

After each iteration

Possible

Yes

In Phases

After each iteration

Possible

Very Much

As and when

required

Relies on JIT

approach

Possible

Very Much [20]

In Phases

After each

iteration

Possible

Yes [16]

Maintenance Emphasis on User

Interface

Maintainability

Reusable

Very little

Not Required

Very Less

Very Critical

Easy to maintain

Can't reuse

As per User

requirements

Maintainable

Component reused

Very Crucial

Needs high

maintenance

Yes

Minimal

Maintainable

Yes

Very less

Easy to maintain

Can be reused

Less

Easily

maintainable

Yes

Minimal

Easy

maintenance

Yes

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-02, MAY 2022

73 | IJREAMV08I0286029 DOI : 10.35291/2454-9150.2022.0174 © 2022, IJREAM All Rights Reserved.

Table3. Parametric evaluation based comparison of Traditional Methodologies and Agile Models with DevOps

 in support of existing literature review or survey [24]-[27]

Parameter Traditional Methods Agile Methods DevOps

Basic Development Approach Design begins after requirement Freeze Heavily relies on speedy delivery of product Speedy and quality delivery of product [26]

Feasibility of Change Not possible [16] Possible at any stage Possible at any stage [25]

Development Oriented around Process People and Product People and Product

Documentation Required Heavy documentation Very Less Documentation Very light documentation required

Project Size Big Size Medium Size Medium to small size

Collaboration among teams Not at all At development Level High level of collaboration

Quality Very Low Improved Quality [18] High level of Quality [27]

Risk Involvement Increase with project progress Decreases with progress Decreases with progress of project

Customer Involvement Only till requirement freeze Very Frequent- after every sprint Continuous involvement throughout the

project

Automation At very Low level At varied level High level of automation

