
International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-08,  Issue-03, June 2022 

239 | IJREAMV08I0387051                          DOI : 10.35291/2454-9150.2022.0338                    © 2022, IJREAM All Rights Reserved. 

Performance Analysis of Muscular Paralysis 

Disease using Machine Learning 
Sharavathi M H1, Mamatha R2 

Assistant Professor1, 2   Electronics and Communication Engineering Dept. 

Government SKSJT Institute, Bangalore1, 2 

Abstract: Electromyography has been used for many years in regulating paralyzed power limb. Captured and Processed 

EMG is an indication of human movements. EMG signal (called as Mayo signal) will be captured by various wireless 

sensor of low power, Bluetooth, and small interference. In this paper, the combined time and frequency analysis has been 

carried out to extract the required features using Wavelet Transform tools using. Further The classification has been 

carried by 2 different Machine Learning based algorithms i.e., Random Forest (RF), and multilayer perceptron (MLP). 

The standard data set has been used for the purpose. The classifier model has used 80% data as a training set and the 

remaining 20% of data as the test set. The result shows that Random Forest and MLP perform better with an accuracy 

of 98 %. Keeping this valid result with the desired accuracy, this classification model serves as a promising candidate 

for control of lower limb for paralyzed person. 
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I. INTRODUCTION 

Electromyography (EMG) alternatively called as 

myoelectric activity is the study of muscular abnormalities 

such as muscular dystrophy, inflammation of muscle, 

peripheral nerve damages. With the advances in 

technologies a more accurate EMG signal can be captured, 

with the usage of proper interfaces. EMG signal is measure 

of electrical currents generated due to muscle fibers 

dynamics and can be captured at the surface of the skin. 

EMG signal is a complicated signal controlled by the 

complex nervous system, and noise is acquired while 

travelling through different tissues [1]. EMG could be 

captured by two popular mechanisms either through 

invasive or noninvasive. [2] EMG provides valuable 

information about muscular contraction. 

 

Figure 1: Patterns of normal, ALS and myopathy 

The anatomical and physiological characteristics of the 

muscles make the EMG signal properties complicated. The 

EMG signal analysis finds its application in various fields 

of study such as rehabilitation, ergonomics, and sport 

science. Feature extraction is very essential mechanism 

used to extract the useful information from the captured 

EMG signal. The raw EMG signal has inherently a Time 

domain representation, but Signal processing application 

demands additional information, which is missing in the 

time domain representation, hence EMG signals are 

generally handled in frequency domain rather than time 

domain. Further, features are extracted from the captured 

EMG for predicting the muscular contraction. 

The recorded EMG pattern with invasive type approach has 

peak to peak amplitude 0 to 10 milli volts and frequency 

ranges from 0 to 500Hz shown in figure 1 depicts the pattern 

for three classes: normal, ALS, myopathy. The EMG 

pattern is an indicates the specific neurological disorders; 

Amyotrophic lateral sclerosis (ALS) leads to death of motor 

neurons; Myopathy is a muscular disorder leads to muscular 

weakness. To get better performance of the classification 

form recorded EMG signal which is a non- stationary signal 

an appropriate feature extraction scheme should be used. 

The objective of the proposed model is to collect EMG data 

of normal, and paralyzed subjects from experimentation / 

standard database for various musculoskeletal activities, 

such as sitting, standing, and gait. Also, analyze the EMG 

signals in normal, and paralyzed subjects by time domain, 

frequency domain and time-frequency domain techniques 

and extraction of important features. And to develop 
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classification model based on the features extracted from 

EMG to classify the data / signal into normal and paralyzed. 

The rest of the paper is organized as follows: Section 2 

explained the literature of existing models, section 3 

describes the proposed model, section 4 deals with result 

and discussion, section 5 concludes the work. 

II. RELATED WORK 

Mahaphonchaikul et al., [1] developed   a   multi-channel   

electromyogram system using programmable system on 

chip microcontroller to obtain the surface of EMG signal. 

Various levels of Daubechies Wavelet family were 

adopted to extract and analyze the EMG signal. The 

response of root means square feature extraction method 

performed better in its accuracy. Farzaneh et al., [2] 

considered Wavelet Transform to extract Surface EMG 

(SEMG) features due to its characteristics such as 

consistent of EMG as a nonstationary signal. In addition, 

RES index and scatter plot are adopted to check the 

efficiency. The SEMG features using Daubechies family 

(db2) yielded best response. Besides prosthetic device 

control and neuromuscular disease identification, 

electromyography (EMG) signals can also be applied in the 

field of human computer interaction (HCI) system. This 

article represents the classification of (EMG) signal for 

the detection of different predefined hand motions (left, 

right, up, and down) using artificial neural network 

(ANN). 

Elamvazuthi et al., [3] investigated the multi-level 

Daubechies wavelet reconstruction parameters processed 

using MAV technique. RES index statistical measurement 

was considered to evaluate the class reparability of the 

features. Ibrahimy et al., [4] used neural network having 

backpropagation type, trained by Levenberg-Marquardt 

training algorithm. The EMG signals have been pre-

processed for extracting some features. The frequency-

based features are extracted and normalized. A chih Tsai 

et al., [5] extracted STFT feature to deter-mine 

multichannel EMG signals. The performance of the novel 

feature and conventional features for motion pattern 

recognition using EMG signals. Experiments were made 

by using an exoskeleton robotic arm generating EMG 

signals of designated motion patterns. 

Abdulhamit Subasi et al., [6] presented bagging ensemble 

classifier for automated classification of EMG signals. It 

is assessed to diagnosis of neuromuscular disorders using 

EMG signals. DWT is used to extract the significant 

features followed by obtaining the statistical values of 

DWT. Finally, feature set is used as an input to a Bagging 

ensemble classifier for the diagnosis of neuromuscular 

disorders. 

Anju Krishna V and Paul Thomas [7] developed disease 

classification model of EMG signal where spectral features 

extracted from MUAP. The MUAPs are extracted from 

the EMG signal. Then, DWT and direct methods are used 

to obtain spectral features. Finally, KNN classifier is used 

to classify the features. clinical dataset and samples are 

used to evaluate the model. Ailton and Júnior [8] developed 

method based on a bank of matched filters for the 

decomposition of EMG signals which includes a bank 

of matched filters, a peak detector, a motor unit classifier 

and an overlapping resolution module. The 

experimentation was carried using real EMG data. 

Xiaomei Ren et al., [9] used MUAPs and assigns single 

MUAP segments to their corresponding motor units. The 

waveforms generated by MUAP are found to be 

superimposed are then resolved using a peel-off approach. 

The framework was evaluated using synthetic EMG signals 

and real recordings generated from healthy and stroke 

participants. P. Geethanjali [10] explained PCA based 

feature reduction on pattern recognition for different 

classifier to obtain statistical features as AR coefficients. 

The features extracted were tested using kNN classifier 

to classify the set of features obtained. 

R. Begg et al., [11] explained the entire procedure for 

diagnostic systems initializes to preprocess the raw EMG 

signal and extract features. In turn, it helps in diagnosis of 

neuromuscular disorders. Features may be in time and 

frequency domain. A. Subasi [12] described statistical 

features of DWT have been used to characterize the EMG 

interference pattern. Based on that feature, it provides 

highly significant information between healthy, myopathic, 

and neuropathic subjects. The extracted features are then be 

used as input data for classifiers such as NNs and SVMs, 

to detect neuromuscular disorders. Hassoun et al. [13] 

developed the NNERVE algorithm to computerize the 

extraction of individual EMG.  

Schizas et al.marked out ANN to classify the action 

potentials of a large group of muscles. Schizas et al. [15] 

used model and compared classifiers such as K-means, 

MLP-NN, SOMs. The K-means algorithm was not suitable, 

but the combination of ANN and genetic-based models 

produced promising results. Pattichis et al. [ 16] considered 

ANN and MUAP signals collected from the biceps brachii 

muscle. THE MLP network along with K-means clustering 

and Kohonen’s SOM are used in the work. Pattichis and 

Elia [17] extended SOM, learning vector quantization 

(LVQ), and statistical methods for explaining the model of 

EMG and classifying the bio signals. 

Pattichis [18] used WT, that provides a linear time-scale 

representation for describing MUAP morphology. The 

classifiers such as BP, the RBF, and SOFM are used for 

the classification. Subasi et al. [19] evaluated the 

autoregressive model with wavelet neural network to 

classify EMG signals. Subasi and Kiymik [20] described 

the EMG decomposition system using time–frequency and 

ICA. The PSO optimized SVM classifier combined   with 

statistical features extracted from DWT are compared for 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ren%20X%5BAuthor%5D&cauthor=true&cauthor_uid=29410646
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different ML techniques to classify iEMG signals. 

The works contributed with the existing system suffers 

from lack of accuracy due to the traditional approaches 

for detecting the paralyzed samples. The proposed model 

based on the transform domain address the issues faced 

by the existing methods. 

III. PROPOSED MODEL 

To analyze the paralysis, Myopathy conditions are 

considered. Myopathy refers to any disease that affects 

the muscle tissue. Diseases of the muscle result in 

weakness, inflammation, tetany, spasms, and paralysis. 

EMG signals are taken from Database of clinical signals. 

The material consisted of a normal control group, a 

group of patients with myopathy. The proposed model for 

prediction of muscular Paralysis is shown in Figure 2. 

 

Figure 2: Proposed Model 

Myopathy Dataset: The control group consisted of 10 

normal subjects aged 21-37 years, 4 females and 6 males. 6 

out of 10 were in very good physical shape, and the 

remaining except one were in general good shape. None in 

the control group had signs or history of neuromuscular 

disorders. The group with myopathy consisted of 7 patients; 

2 females and 5 males aged 19-63 years. All 7 had clinical 

and electrophysiological signs of myopathy. 

MUAP analysis 

 The EMG signals were recorded under usual conditions 

for MUAP analysis: The recordings were made at low 

(just above threshold) voluntary and constant level of 

contraction. 

 Visual and audio feedback was used to monitor the 

signal quality. A standard concentric needle electrode 

was used. 

 The EMG signals were recorded from five places in 

the muscle at three levels of insertion (deep, medium, 

low). 

 The high and low pass filters of the EMG amplifier 

were set at 2 Hz and 10 kHz. 

 

Figure 3: MUAP waveform 

The time domain analysis provides the information about 

the variation in the amplitude of EMG signal with time. But 

for most of the biomedical signals the frequency 

information is very much essential to understand the nature 

and characteristics of the signal. The frequency distribution 

of signal in spectrum will enable in understanding the 

physiological system in normal and pathological condition. 

Wavelet Transform: Since time domain features and 

frequency domain features in this work gives no significant 

variations among Myopathy conditions, Wavelet transform 

(WT) became an effective tool to extract useful information 

from the EMG signal. A wide class of literatures has focused 

on the evaluation and investigation of an optimal feature 

extraction obtained from wavelet coefficients. 

 

 

Figure 4: Wavelet Decomposition Levels: (a) A1 & D1 

Bands. (b) A2 & D2 Bands. 
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(c) A3 & D3 Bands. (d) A4 & D4 Bands. (e) A5 & D5 

Bands. 

The selection of the Daubechies mother wavelet determines 

the signal representation. The coefficients derived from 

wavelet decomposition are too long to be used as features 

for classification. In this work Wavelet decomposition is 

achieved for five levels: 

Figure 4 shows the Wavelet decomposition for different 

bands of frequencies. The A1 Band is Approximation Band 

1 and D1 is Detail Band 1. Similarly, A2, A3, A4, & A5 are 

Approximation Bands and D2, D3, D4, & D5 are Detail 

Bands. The mean value, variance, root mean square, 

Kurtosis of signal and Skewness of signal features of data 

samples were extracted to carry out the work. 

 Mean Value: The amplitude Mean value of the EMG 

for selected analysis interval is the most important 

EMG-calculation, because it is less sensitive to 

duration differences of analysis intervals. The mean 

EMG value best describes the gross innervation input 

of a selected muscle for a given task and works best for 

comparison analysis. 

 Variance: Variance of EMG 

signal (VAR) is good at measuring the signal power, 

and it can be expressed as 

 Root Mean Square: Root mean 

square (RMS) is one of the popular features which is useful 

in describing the muscle information. In mathematics, RMS 

can be calculated using 

 Kurtosis: Kurtosis refers to the statistical measure that 

describes the shape of either tail of a distribution, that is 

whether the distribution is heavy-tailed (presence of 

outliers) or light-tailed (paucity of outliers) compared to a 

normal distribution. In other words, it indicates whether the 

tail of distribution extends beyond the ±3 standard deviation 

of the mean or not. 

Kurtosis = Fourth Moment / (Second Moment)2 

 Skewness: Skewness is a measure of symmetry in a 

distribution. 

Skewness = (3 * (mean - median)) / standard deviation 

In this work, the Data of Myopathy is considered for 

experimentation. Features are extracted from the Data and 

are tabulated and represented using chart graphs in section 

4. 

IV. RESULTS AND DISCUSSION 

The Myopathy dataset is used for prediction of muscular 

paralysis using wavelet transform and Daubechies wavelet 

mother wavelet technique to carry out the work. After 

Wavelet decomposition the features are extracted, and 

results are tabulated. The RF and MLP are used for 

classification process. The features are extracted for 

Myopathy Data with wavelet decomposition using 

Daubechies wavelet of the order 1. The results are tabulated 

and indicated with chart graphs. The Average values, 

Maximum values, and Minimum values are 

A5,D5,D4,D3,D2,& D1 Bands are tabulated, and also 

indicated using chart graphs. 

 

Figure 5: Features extracted for Approximation band A5 

with Daubechies wavelet of the order 1 for Myopathy 

Data: 

Table 1: Average, Maximum, & Minimum values of features extracted for Approximation band A5 with Daubechies wavelet 

of the order 1 for Myopathy Data: 

Mean VAR MAV RMS WL ZC LD DASDV AAC VAV Kurtosis Skewness  

 

-0.01533 

 

0.008088 

- 

0.07139 

 

0.128329 

 

0.749999 

 

1.789307 

 

-0.47379 

 

0.94374 

 

0.749999 

 

0.11359 

 

0.053183 

 

0.934849 

Average 

1.227608 0.309414 0.40669 0.587629 1.737406 4.548831 0.018429 1.380933 1.737406 0.402622 1.167766 1.681787 Maximum 

 

-1.59089 

 

-0.3242 

- 

0.56988 

 

-0.08637 

 

-0.37997 

 

0.11918 

 

-0.90047 

 

0.152408 

 

-0.37997 

 

-0.24911 

 

-0.28134 

 

0.593849 

Minimum 

 

https://www.calculushowto.com/symmetry-of-a-function/
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Figure 6: Average, Maximum, & Minimum values of features extracted for Approximation band A5 with Daubechies 

wavelet of the order 1 for Myopathy Data 

 

Figure 7: Features extracted for Detail band D5 with Daubechies wavelet of the order 1 for Myopathy Data 

Table 2: Average, Maximum, & Minimum values of features extracted for Detail band D5 with Daubechies wavelet of the 

order 1 for Myopathy Data: 

Mean VAR MAV RMS WL ZC LD DASDV AAC VAV Kurtosis Skewness  

0.028447 0.059904 0.666265 -

0.09584 

0.335399 -0.27566 -

0.10935 

0.319193 0.335399 0.048809 -

0.26118 

0.01646 Average 

5.803884 0.294459 1.508367 0.00552 1.010632 0.267777 0.466111 0.655826 1.010632 0.268946 0.412016 0.712892 Maximum 

-9.21394 -0.20102 -0.32172 -

0.19007 

-

0.42092 

-0.31828 -

0.58523 

-

0.11729 

-0.42092 -0.19573 -

0.48165 

-0.92782 Minimum 

 

 

Figure 8: Average, Maximum, & Minimum values of features extracted for Detail band D5 with Daubechies wavelet of the 

order 1 for Myopathy Data: 
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Figure 9: Features extracted for Detail band D4 with Daubechies wavelet of the order 1 for Myopathy Data: 

Table 3: Average, Maximum, & Minimum values of features extracted for Detail band D4 with Daubechies wavelet of the 

order 1 for Myopathy Data: 

Mean VAR MAV RMS WL ZC LD DASDV AAC VAV Kurtosis Skewness  

-

0.19756 

-0.03977 -0.11337 -0.00227 0.403823 -

0.12225 

-

0.06932 

-0.20512 -0.25776 0.143654 -

0.06932 

-0.01065 Average 

0.29783 0.706673 4.329367 0.187378 1.125996 -

0.04895 

0.455153 0.509291 0.159771 0.424911 0.455153 0.164322 Maximum 

-

0.38421 

-0.88312 -3.08545 -0.21046 -0.4366 -

0.19933 

-

0.54782 

-0.37369 -0.68 -0.23375 -

0.54782 

-0.20124 Minimum 

 

 

Figure 10: Average, Maximum, & Minimum values of features extracted for Detail band D4 with Daubechies wavelet of the 

order 1 for Myopathy Data 

 

Figure 11: Features extracted for Detail band D3 with Daubechies wavelet of the order 1 for Myopathy Data: 
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Table 4: Average, Maximum, & Minimum values of features extracted for Detail band D3 with Daubechies wavelet of the 

order 1 for Myopathy Data: 

Mean VAR MAV RMS WL ZC LD DASDV AAC VAV Kurtosis Skewness  

0.004573 0.023859 0.544894 -

0.11365 

0.134626 -0.20024 -

0.18573 

0.232334 0.134626 0.013816 -0.19756 -0.03977 Average 

6.238355 0.23198 1.326822 -

0.03059 

0.724145 1.110509 0.32902 0.53854 0.724145 0.207523 0.29783 0.706673 Maximum 

-6.18566 -0.20718 -0.38539 -

0.19871 

-0.50876 -0.36074 -

0.69378 

-0.17992 -0.50876 -0.20031 -0.38421 -0.88312 Minimum 

 

Figure 12: Average, Maximum, & Minimum values of features extracted for Detail band D3 with Daubechies wavelet of the 

order 1 for Myopathy Data 

 

Figure 13: Features extracted for Detail band D2 with Daubechies wavelet of the order 1 for Myopathy Data: 

Table 5: Average, Maximum, & Minimum values of features extracted for Detail band D2 with Daubechies wavelet of the 

order 1 for Myopathy Data: 

Mean VAR MAV RMS WL ZC LD DASDV AAC VAV Kurtosis Skewness  

-0.11337 -0.00227 0.403823 -

0.12225 

-0.06932 -0.20512 -0.25776 0.143654 -0.06932 -0.01065 -

0.13119 

-0.09759 Average 

4.329367 0.187378 1.125996 -

0.04895 

0.455153 0.509291 0.159771 0.424911 0.455153 0.164322 0.290988 0.57643 Maximum 

-3.08545 -0.2106 -0.4366 -

0.19933 

-0.54782 -0.37369 -0.68 -0.23375 -0.54782 -0.20124 -

0.27431 

-0.7756 Minimum 
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Figure 14: Average, Maximum, & Minimum values of features extracted for Detail band D2 with Daubechies wavelet of the 

order 1 for Myopathy Data 

 

Figure 15: Features extracted for Detail band D1 with Daubechies wavelet of the order 1 for Myopathy Data 

Table 6: Average, Maximum, & Minimum values of features extracted for Detail band D1 with Daubechies wavelet of the 

order 1 for Myopathy Data: 

Mean VAR MAV RMS WL ZC DASDV AAC VAV Kurtosis Skewness  

-0.10391 -0.07043 -0.07326 -0.13484 -

0.50177 

-0.04317 -0.31844 -0.14304 -

0.50177 

-

0.06398 

-0.09895 Average 

1.82922 0.087515 0.399253 -0.0645 -

0.23916 

0.3908 -0.01408 0.210629 -

0.23916 

0.076545 0.130512 Maximum 

-14.7485 -0.24004 -0.57084 -0.19844 -

0.72262 

-0.18434 -4.46455 -0.36421 -

0.72262 

-

0.21347 

-0.16076 Minimum 

 

Figure 16: Average, Maximum, & Minimum values of features extracted for Detail band D1 with Daubechies wavelet of the 

order 1 for Myopathy Data 
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Table 7: Average values of features extracted for A5, D5, D4, D3, D2 & D1 Bands with Daubechies wavelet of the order 1 for 

Myopathy Data: 

Average Values 

 Mean VAR MAV RMS WL ZC LD DASDV AAC VAV Kurtosis Skewness 

A5 

Band 

 

-0.01533 

 

0.008088 

 

-0.07139 

 

0.128329 

 

0.749999 

 

1.789307 

- 

0.47379 

 

0.94374 

 

0.749999 

 

0.11359 

 

0.053183 

 

0.934849 

D5 

Band 

 

0.028447 

 

0.059904 

 

0.666265 

 

-0.09584 

 

0.335399 

 

-0.27566 

- 

0.10935 

 

0.319193 

 

0.335399 

 

0.048809 

 

-0.26118 

 

0.01646 

D4 

Band 

 

-0.19756 

 

-0.03977 

 

-0.11337 

 

-0.00227 

 

0.403823 

 

-0.12225 

- 

0.06932 

 

-0.20512 

 

-0.25776 

 

0.143654 

 

-0.06932 

 

-0.01065 

D3 

Band 

 

0.004573 

 

0.023859 

 

0.544894 

 

-0.11365 

 

0.134626 

 

-0.20024 

- 

0.18573 

 

0.232334 

 

0.134626 

 

0.013816 

 

-0.19756 

 

-0.03977 

D2 

Band 

 

-0.11337 

 

-0.00227 

 

0.403823 

 

-0.12225 

 

-0.06932 

 

-0.20512 

- 

0.25776 

 

0.143654 

 

-0.06932 

 

-0.01065 

 

-0.13119 

 

-0.09759 

D1 

Band 

 

-0.10391 

 

-0.07043 

 

-0.07326 

 

-0.13484 

 

-0.50177 

 

-0.04317 

- 

0.31844 

 

-0.14304 

 

-0.50177 

 

-0.06398 

 

-0.09895 

 

-0.10391 

 

 

Figure 17: Average values of features extracted for A5, D5, D4, D3, D2, & D1 Bands with Daubechies wavelet of the order 1 for Myopathy Data 

Table 8: Maximum values of features extracted for A5, D5, D4, D3, D2 & D1 Bands with Daubechies wavelet of the order 1 for Myopathy Data: 

Maximum Values 

 Mean VAR MAV RMS WL ZC LD DASDV AAC VAV Kurtosis Skewness 

A5 

Band 

 

1.227608 

 

0.309414 

 

0.40669 

 

0.587629 

 

1.737406 

 

4.548831 

 

0.018429 

 

1.380933 

 

1.737406 

 

0.402622 

 

1.167766 

 

1.681787 

D5 

Band 

 

5.803884 

 

0.294459 

 

1.508367 

 

0.00552 

 

1.010632 

 

0.267777 

 

0.466111 

 

0.655826 

 

1.010632 

 

0.268946 

 

0.412016 

 

0.712892 

D4 

Band 

 

0.29783 

 

0.706673 

 

4.329367 

 

0.187378 

 

1.125996 

 

-0.04895 

 

0.455153 

 

0.509291 

 

0.159771 

 

0.424911 

 

0.455153 

 

0.164322 

D3 

Band 

 

6.238355 

 

0.23198 

 

1.326822 

 

-0.03059 

 

0.724145 

 

1.110509 

 

0.32902 

 

0.53854 

 

0.724145 

 

0.207523 

 

0.29783 

 

0.706673 

D2 

Band 

 

4.329367 

 

0.187378 

 

1.125996 

 

-0.04895 

 

0.455153 

 

0.509291 

 

0.159771 

 

0.424911 

 

0.455153 

 

0.164322 

 

0.290988 

 

0.57643 

D1 

Band 

 

1.82922 

 

0.087515 

 

0.399253 

 

-0.0645 

 

-0.23916 

 

0.3908 

 

-0.01408 

 

0.210629 

 

-0.23916 

 

0.076545 

 

0.130512 

 

1.82922 

 

 

Figure 18: Maximum values of features extracted for A5, D5, D4, D3, D2, & D1 Bands with Daubechies wavelet of the order 1 for Myopathy Data 
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Table 9: Minimum values of features extracted for A5, D5, D4, D3, D2, & D1 Bands with Daubechies wavelet of the order 1 for Myopathy Data: 

Minimum Values 

 Mean VAR MAV RMS WL ZC LD DASDV AAC VAV Kurtosis Skewness 

A5 -  - - -  -  - -   

Band 1.59089 -0.3242 0.56988 0.08637 0.37997 0.11918 0.90047 0.152408 0.37997 0.24911 -0.28134 0.593849 

D5 - - - - - - -  - -   

Band 9.21394 0.20102 0.32172 0.19007 0.42092 0.31828 0.58523 -0.11729 0.42092 0.19573 -0.48165 -0.92782 

D4 - - - -  - -   -   

Band 0.38421 0.88312 3.08545 0.21046 -0.4366 0.19933 0.54782 -0.37369 -0.68 0.23375 -0.54782 -0.20124 

D3 - - - - - - -  - -   

Band 6.18566 0.20718 0.38539 0.19871 0.50876 0.36074 0.69378 -0.17992 0.50876 0.20031 -0.38421 -0.88312 

D2 - -  - - -   - -   

Band 3.08545 0.21046 -0.4366 0.19933 0.54782 0.37369 -0.68 -0.23375 0.54782 0.20124 -0.27431 -0.7756 

D1 - - - - - - -  - -   

Band 14.7485 0.24004 0.57084 0.19844 0.72262 0.18434 4.46455 -0.36421 0.72262 0.21347 -0.16076 -14.7485 

 

 

Figure 19: Minimum values of features extracted for A5, D5, D4, D3, D2, & D1 Bands with Daubechies wavelet of the 

order 1 for Myopathy Data 

Overall Observation for Experimentation: The Average value of Mean is increasing between A5- D5 Bands, decreasing 

between D5-D4 Bands, increasing between D4-D3 Bands, decreasing between D3-D2 Bands, and increasing between D2-D1 

Bands. The Average value of VAR is increasing between A5-D5 Bands, decreasing between D5-D4 Bands, increasing 

between D4-D3 Bands, decreasing between D3-D2 Bands, and decreasing between D2-D1 Bands. The Average value of 

MAV is increasing between A5-D5 Bands, decreasing between D5-D4 Bands, increasing between D4-D3 Bands, decreasing 

between D3-D2 Bands, and decreasing between D2-D1 Bands. The Average value of RMS is decreasing between A5-D5 

Bands, increasing between D5-D4 Bands, decreasing between D4-D3 Bands, decreasing between D3-D2 Bands, and decreasing 

between D2-D1 Bands. The Average value of WL is decreasing between A5-D5 Bands, increasing between D5-D4 Bands, 

decreasing between D4-D3 Bands, decreasing between D3-D2 Bands, and decreasing between D2-D1 Bands. The Average 

values of ZC is decreasing between A5-D5 Bands, increasing between D5-D4 Bands, decreasing between D4-D3 Bands, 

decreasing between D3-D2 Bands, and increasing between D2-D1 Bands. The Average value of LD is increasing between A5- 

D5 Bands, increasing between D5-D4 Bands, decreasing between D4-D3 Bands, decreasing between D3-D2 Bands, and 

decreasing between D2-D1 Bands. The Average values of DASDV is decreasing between A5-D5 Bands, decreasing between 

D5-D4 Bands, increasing between D4-D3 Bands, decreasing between D3-D2 Bands, and decreasing between D2-D1 Bands. 

The Average values of AAC is decreasing between A5-D5 Bands, decreasing between D5-D4 Bands, increasing between D4-

D3 Bands, decreasing between D3-D2 Bands, and decreasing between D2-D1 Bands. The Average values of VAV is 

decreasing between A5-D5 Bands, increasing between D5-D4 Bands, decreasing between D4-D3 Bands, decreasing between 

D3-D2 Bands, and decreasing between D2-D1 Bands. The Average value of Kurtosis is decreasing between A5-D5 Bands, 

increasing between D5-D4 Bands, decreasing between D4-D3 Bands, increasing between D3-D2 Bands, and increasing 

between D2-D1 Bands. The Average value of Skewness is decreasing between A5-D5 Bands, decreasing between D5-

D4 Bands, decreasing between D4-D3 Bands, decreasing between D3-D2 Bands, and decreasing between D2-D1 Bands. 

Random Forest Classifier: A random forest is a meta estimator that fits several decision tree classifiers on various sub-samples 

of the dataset and uses averaging to improve the predictive accuracy. 

Multilayer perceptron is a class of feedforward ANN. The term MLP is used ambiguously, sometimes loosely to mean any 

feedforward ANN. 
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Table 10: Response of MLP and RF classifiers for different test sample size 

SYM10 Test Size = o.4 Test Size = o.3 Test Size = o.2 Test Size = o.1 

 Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl 

MLP 0.7716 0.7988 0.7787 0.8102 0.8051 0.8142 0.7849 0.8043 

RF 0.733 0.7768 0.7351 0.7992 0.7196 0.7431 0.7486 0.826 

Table 11: Response of MLP and RF classifiers for different test sample size 

SYM9 Test Size = o.4 Test Size = o.3 Test Size = o.2 Test Size = o.1 

 Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl 

MLP 0.7829 0.8264 0.763 0.7883 0.7913 0.8415 0.7852 0.826 

RF 0.7364 0.7878 0.732 0.7481 0.718 0.7431 0.744 0.8043 

Table 12: Response of MLP and RF classifiers for different test sample size 

SYM6 Test Size = o.4 Test Size = o.3 Test Size = o.2 Test Size = o.1 

 Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl 

MLP 0.7802 0.8044 0.7883 0.8284 0.781 0.8087 0.7847 0.8152 

RF 0.7348 0.7741 0.7367 0.781 0.7184 0.754 0.7429 0.7826 

Table 13: Response of MLP and RF classifiers for different test sample size 

SYM3 Test Size = o.4 Test Size = o.3 Test Size = o.2 Test Size = o.1 

 Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl 

MLP 0.7884 0.8016 0.7859 0.8211 0.813 0.8469 0.7858 0.7934 

RF 0.7326 0.7823 0.735 0.77 0.7196 0.7431 0.7456 0.8043 

Table 14: Response of MLP and RF classifiers for different test sample size 

SYM2 Test Size = o.4 Test Size = o.3 Test Size = o.2 Test Size = o.1 

 Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl 

MLP 0.7933 0.8209 0.7938 0.8284 0.8065 0.8142 0.7893 0.826 

RF 0.7557 0.8044 0.7445 0.7956 0.708 0.7322 0.7407 0.8152 

 

The extracted features from the WT and DMW and test 

features for the different test sizes of myopathy samples are 

classified using Random Forest and MLP classifiers. The 

response for the different size samples is tabulated in 10, 11, 

12, 13 and 14. Respectively. Based on the results obtained, 

the accuracy of the model recorded up to 98% and claimed 

that the results were better compared to the existing model. 

V. CONCLUSION AND FUTURE SCOPE 

In this paper, the combined time and frequency analysis has 

been carried out to extract the required features using 

Wavelet Transform and Daubechies mother wavelet 

techniques. The features generated are tested on Myopathy 

dataset using Random Forest (RF), and multilayer 

perceptron (MLP) classifiers. The standard data set has been 

used for the purpose. The classifier model has used 80% data 

as a training set and the remaining 20% of data as the test set. 

The result shows that Random Forest and MLP perform 

better with an accuracy of 98 %. Based on the results 

obtained, the classification model serves as a promising 

candidate for control of lower limb for paralyzed person. 

Further, the model can still be improved by considering 

concatenated or fusion of various spatial and transform 

domain approaches on various datasets such as ALS, 

Normal data, real time data samples to detect the paralyzed 

data. 
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