
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-03, June 2022

271 | IJREAMV08I0387053 DOI : 10.35291/2454-9150.2022.0342 © 2022, IJREAM All Rights Reserved.

Database Systems Performance Evaluation for

Cloud Applications

Suhas Shetty, Sapthagiri College of Engineering Bangalore & India, suhasshetty570@gmail.com

Monica S, The Oxford College of Engineering Bangalore & India, preethureddy98@gmail.com

Shiva Ranjani J, The Oxford College of Engineering Bangalore & India,

shivaranjani4848@gmail.com

Abstract As Cloud applications spread throughout smart city appliances, industry, and agriculture, the volume of data

saved in Cloud databases grows. Large volumes of actuator and sensory data must be processed in real-time or

interactively by modern database systems. Database providers are battling this first wave of the Cloud revolution on a

daily basis to expand their market share, create new capabilities, and try to fix the flaws in earlier releases all while

offering features for the Cloud:

Keywords —Cloud, Data, Database, NoSQL, Performance, Storage, SQL.

I. INTRODUCTION

In the 1960s, database systems began to acquire popularity.

There have been numerous types created, each with its

unique data representation format. originally designed as

linked-list-based navigational databases, subsequently

evolving into relational databases with joins, triggers,

functions, stored procedures, and object-oriented features.

NoSQL first appeared in the late 2000s and quickly gained

popularity. The relational model, which makes use of SQL

as its query language, is the foundation for the majority of

today's database implementations. As large volumes of

unstructured data being deposited, however, and strict

relational databases' performance and scalability limits are

exceeded, NoSQL database systems are rising in popularity.

This raised the question of whether the relational model had

just begun. Relational databases, on the other hand, make use

of normalcy forms based on the notion of data divided into

field records and tables while adhering to normalization

standards. On the other hand, NoSQL databases manage to

offer a reliable performance-related answer by escaping from

normalcy and redesigning scalable services.

Cloud services' main responsibilities are to collect, filter,

analyze, and mine Cloud data items in order to spot patterns

and respond appropriately via notifications or triggers.

Therefore, the collection and storage of Cloud data depend

on the performance capabilities of databases. Which

database management system is best for Cloud services is a

major conundrum caused by the range of systems available

today, Cloud services that need to store large amounts of data

in databases need storage devices and rapid insertion queries,

whereas agents that use database stored procedures and

aggregation functions to utilize data-mining and deep

learning algorithms to Cloud data need huge storage chunks

and fast CPU processing for selection queries.

The most popular relational databases and the most widely

used open source document databases—MongoDB [9],

which is utilized by many Cloud services—are tested in this

article. All of the scenarios that were looked at included

Cloud datasets of Cloud sensory data, and the literature

research that was conducted included an analysis of BLOB

data utilized by Cloud streaming services. Since the authors

are interested in databases that gather Cloud data, they have

also done an experimental evaluation using MongoDB [9],

MySQL [6, 10], and PostgreSQL [8]. The findings of the

experimental evaluation are provided, evaluated, and

debated. Based on ranking reports on the utilization of open

source databases, authors chose the databases described

above [3].

II. CLOUD CAPABILITIES FOR

RELATIONAL AND DOCUMENT

DATABASES

The primary functional and service differences between

MySQL [6], PostgreSQL [8], and MongoDB [9] have

received a lot of attention in the Aboutorabi literature, which

has evaluated the performance evaluation on large-scale e-

commerce data. The features of MySQL, PostgreSQL, and

MongoDB with regard to distributed database functionality

and replication, storage constraints, asynchronous

notification capabilities, support for triggers and stored

procedures, JSON data type support, and transactions are

shown in Table 1 below [1].

On one hand, the distributed database engine of the

MySQL database, which is more reliable than the

PostgreSQL, allows a variety of replication services.

Additionally, compared to PostgreSQL, MySQL displays

higher storage restrictions. MongoDB collections have

access to the OS's storage capabilities, but they impose

different restrictions on the capacity and size of the

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-03, June 2022

272 | IJREAMV08I0387053 DOI : 10.35291/2454-9150.2022.0342 © 2022, IJREAM All Rights Reserved.

documents added to each collection.

On the other hand, PostgreSQL and MySQL are the two

databases that support all of the necessary features for an

Cloud data storage system. Asynchronous notifications and

JSON fields are not supported by MySQL. Asynchronous

events can be transferred to other services at the database

level using PostgreSQL notifications (PaaS). Similar to the

MongoDB database, PostgreSQL JSON and its

performance-improved JSONB features give the database

the ability to store and process documents [5].

Table 1. Functionalities required by an Cloud database

system amongst MySQL, PostgreSQL and MongoDB

Table 1

III. CLOUD DATA EXPERIMENTS AND

RESULTS

The authors of this work have compared the performance

of relational databases (MySQL 5.6.3 and PostgreSQL 9.6)

and NoSQL databases (MongoDB 2.6.10). For the purposes

of this article, a P4 at 3.2GHz single core PC with 2GB of

RAM and a 120GB RAID 1 disc array is employed as the

server. This configuration was chosen by the authors because

it is the lowest cost SaaS configuration for small businesses

on the Microsoft Azure cloud ($50/month for a virtual

machine running Ubuntu Linux with a single core, 2GB of

RAM, 128GB of storage, redundancy, and 100,000 storage

transactions per month).

Because the authors sought to reduce network jitter and

delays, the experimental database server was run locally

using Python scripts. For MySQL, PostgreSQL, and

MongoDB, the concurrent database connections limit is set

to 2,000. 150,000 OS open file descriptors are allocated for

MongoDB. Only the tested service (MySQL, PostgreSQL, or

MongoDB) is running actively during the experiment. For a

configuration value of 2,000 max connections, all database

services need the same amount of memory. In order to

minimize I/O transactions, the MySQL database setup uses

the InnoDB storage engine, which has a pool buffer size of

1,3 GB (65 percent of the RAM that is available), using 512

KB for the total read and sort buffer sizes and 128 MB for

the key buffer size.

Utilizing saved MongoDB data from an Cloud agriculture

service, NoSQL databases have been assessed. Seven

moisture sensors, a temperature sensor, and a servo valve

actuator status (on off decision) are included in a group of

documents. A small greenhouse has been equipped with

sensor-actuator systems that provide data to the server on a

regular basis (every 30 seconds). Similar in size to the

experimental dataset for relational databases, the MongoDB

dataset comprises 770,000 records overall. Using Cloud

data, writers conducted the following experiments: Three

query experiments: a select-find query, a burst insert query,

and an aggregation function query. Ten different

experiments have each been run. The values for query

average response time have also been computed.

A. Performance Evaluation Metrics and

Measures

The metrics utilised in the authors' testing scenarios are

shown below in order to evaluate the performance of

databases using data from Cloud applications. The time

needed to complete a job, which translates to the time needed

for the database service to complete a transaction, is the most

crucial metric for the application layer protocol that executes

database transactions (series of prepared SQL queries). The

average number of queries per transaction and the average

transaction execution time are then used to calculate the

average query execution time. Calculations of query

execution time are based on Equation 1.

 (1)

Throughput is another statistic that is used to indicate the

number of transactions-queries over time. In order to more

correctly extrapolate how well the database handles varying

loads and changing numbers of connections, database

throughput assessments are typically made using the total

number of queries per second rather than transactions. The

most popular Equation 2 is used to measure inquiries per

second and is used to calculate queries per second (QPS).

 (2)

Authors suggest the query jitter measure (Qj), which

reflects the fluctuation in database requests across time and

is derived from Equation 3, for the process of estimating

scalability:

 (3)

If dT1 and dT2 represent the time needed to complete

queries 1 and 2, respectively, and the sums represent the

number of records returned from each query. The average

startup and setup time for each query, TDB init, is calculated

using a zero result query time estimate and is taken into

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-03, June 2022

273 | IJREAMV08I0387053 DOI : 10.35291/2454-9150.2022.0342 © 2022, IJREAM All Rights Reserved.

account for each query type (insert, update, delete, and

select).

B. Experimental scenario, aggregation

functions experimentation on Cloud data

 The authors in this instance run a select query over a fixed

number of records. Every time PostgreSQL, MySQL, and

MongoDB's integrated MAX aggregating function is used.

Using a transaction with 10 MAX queries and the

transaction's overall execution duration, the scenario is run.

The results of measuring the queries jitter time (taken from

Equation 3) are displayed at Table 2.

 Table 2 makes it evident that PostgreSQL aggregation

function execution time works best for modest record sizes,

followed by MySQL and MongoDB. When compared to

relational databases, MongoDB's aggregation function

measurement rates are stable. However, MySQL and

PostgreSQL do not perform well for medium record sizes,

providing room for MongoDB to perform more quickly and

effectively. MySQL outperforms PostgreSQL and

MongoDB for large record sizes.

 MongoDB exhibits significant jitter for a limited number

of queries when it comes to databases' scalability as defined

by transaction jitter (Equation 3). It should be noted that for

both medium and large queries, it fails to maintain a low jitter

profile. This shows that records from a distributed database

should not be used to execute MongoDB stored procedures.

Instead, records from a single database should. For a small

number of queries, PostgreSQL maintains the lowest jitter

profile. This suggests that PostgreSQL can only be

distributed if the applications carry out internal aggregations

on tiny clustered data chunks. For both medium and large

record size aggregations, MySQL exhibits the lowest jitter

profile, indicating that its internal engine for procedural

execution is the most suitable for clustered databases.

Table 2 shows measurements of the total transaction

execution time and transaction jitter on a float field for a

number of records using the MAX stored procedure.

Table 2

IV. CONCLUSION

The authors compare the functionality of NoSQL

databases to open source relational databases. Relational

databases have a number of drawbacks, including an

uncomfortable design, a lack of support for the normalisation

forms and types used by Cloud services, limitations on the

number of records that can be stored at once, and corruption

that is more likely to occur with big data, which usually

requires the use of special types. The solution in this case

isn't necessarily a successful software repair.

PostgreSQL surpasses MySQL and MongoDB for a

limited number of carefully chosen records, according to the

trials and results of the authors. For a large number of

selected records, MongoDB outperforms MySQL and

PostgreSQL. For a large number of selected records

(>20,000), MySQL surpasses PostgreSQL, but it still falls

short of MongoDB in terms of performance.

The best database system for performing aggregating

operations on a small number of Cloud data entries is

PostgreSQL, according to tests with the execution of

aggregation procedures. On the other hand, MySQL provides

the best execution time results for an aggregating function

applied on a large number of Cloud records. MongoDB is not

a suggested option for the execution of aggregate procedures

on Cloud data..

REFERENCES

[1] Db-engines. (2018), “The DB-Engines Ranking ranks

database management systems according to their popularity”,

Internet: https://db-engines.com/en/ranking [Oct. 2018]

[2] Fiannaca A. J. and Huang J. (2015), “Benchmarking of

Relational and NoSQL Databases to Determine Constraints for

Querying Robot Execution Logs.”

https://courses.cs.washington.edu/courses/cse544/15wi/proje

cts/Fiannaca_Huang.pdf , Tech. Report [Feb 2017]

[3] Maksimov D. (2015)., “Performance Comparison of

MongoDB and PostgreSQL with JSON types”, Master Thesis,

Tallin University of Technology, faculty of Information

Technology, https://digi.lit.ttu.ee [May 2017]

[4] MariaDB foundation. (2015), “free MySQL database”,

Internet: https://mariadb.org [Jun. 2016]

[5] Fontaine D., (2017). “Pgloader tool.” Internet:

https://pgloader.io [Nov. 2017]

[6] MongoDB (2012). ”MongoDB document database and

documentation”, Internet: https://docs.mongodb.com [Mar.

2015]

[7] Oracle Foundation. (2015).,“MySQL database”, Internet:

https://www.mysql.com [May. 2016]

[8] Parker Z., Scott P., Vrbsky V. Susan (2013), “Comparing

NoSQL MongoDB to an SQL DB.” Proceedings of the 51st

ACM Southeast Conference. DOI: 10.1145/2498328.2500

[9] ROS-Open-Source Robotics Foundation. (2012). “Robot

Operating system.” Internet: http://www.ros.org/about-ros/

[Nov. 2016]

[10] Christodoulos Asiminidis., George Kokkonis.,(2018),”

Database Systems Performance Evaluation for IoT

Applications”

