
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-09, Dec 2022

96 | IJREAMV08I0993024 DOI : 10.35291/2454-9150.2022.0498 © 2022, IJREAM All Rights Reserved.

An Automated Timetable Generator for College
1K Hari Priya, 2G Laxmi Deepthi, 3K Bhagya Rekha, 4N Sai Srithaja, 5MD Abdul Rab, 6N Venkata Bharadwaja

1,2,3,4Assistant Professor, 5,6B. Tech Graduate Dept of CSE VNR VJIET, Hyderabad, India.

1haripriya_k@vnrvjiet.in, 2laxmideepthi_g@vnrvjiet.in, 3bhagyarekha_k@vnrvjiet.in, 4saisrithaja_n@vnrvjiet.in,

5mohdrab01@gmail.com, 6mohdrab01@gmail.com

Abstract Our aim is to come up with a feasible solution for creating a schedule in a university department. We have

taken up this problem since we are aware that it is a persistent problem in educational institutions. We'll use genetic

algorithms to tackle a complex timetabling problem for a university or college. In order to get workable timelines in a

fair amount of time, heuristics and context-based reasoning were applied. Apart from providing a feasible solution, we

will also be developing a UI that will be helpful for the college administrators to set up constraints in real-time. They can

add the available subjects, faculty, no. of hours, and all the required data using the UI. Then the algorithm would be

run at the backend and generate the time tables which also would then be rendered in the UI.

Keywords — Timetable, Hybrid, Genetic, Heuristic, Constraints, User Interface(UI).

I. INTRODUCTION

Colleges have different courses, faculty are dealing with

different courses in different semesters and will handle

multiple subjects which takes much time and have to be

done without overlapping. Automatic Timetable

Scheduling is our requirement since managing time

effectively is important. Manually scheduling is

challenging, especially when the quantity of data and

resources to deal with grows, and there is a chance of

collisions.

It's a complex combinatorial problem with both soft and

hard constraints. University course scheduling problem is

an NP hard problem, which means it cannot be solved in

polynomial time as the size and complexity of the problem

grows exponentially.

To provide a roadmap for this paper, the first section

contains an introduction to the paper, followed by related

work in section 2, proposed system in section 4,

implementation in section 4, results and discussions in

section 5 and in section 6 there is conclusion.

II. RELATED WORK

According to Abeer Bashab Et. Al, [5] the metaheuristic

Algorithmic works better because it leverages current

information gathered by algorithm to better determine

which alternative solution should be evaluated next, or how

the next candidate should be produced..

According to Swapnil Markal Et. Al, [4] they applied

the Genetic Algorithm, which is a subset of Evolutionary

Computation, a broader subject of computation. In

comparison to other approaches, the clashes between the

subjects are properly handled.

According to V. Abhinaya Et. Al, [7] they used a

standard backtracking method, which is a brute force

strategy. It takes a long time to compute and is only

appropriate for one class.

According to Mei Ching Chen Et. Al, [2] meta heuristic

based approaches are quite prevalent in solving the

university scheduling problem, and they are closely

followed by hybrid methods. Hyper-heuristic techniques,

on the other hand, are also effective.

Shraddha Thakare Et. Al, [3] they proposed a genetic

algorithm that was acceptable in speed and converged

faster than previous basic algorithms. It should also be

noted that this model can be improved by incorporating

other modifications.

Mr. Mallikarjuna Nandi Et. Al, [8] proposed an

optimization algorithm that incorporates several

techniques to improve search efficiency. It also addresses a

few crucial hard constraints, such as clashes between

faculty availability, as well as non rigid soft constraints,

such as search procedure optimizing objectives.

Amin Rezaeipanah Et. Al, [6] To overcome the

timetabling problem, suggested a technique combining

Improved PGA Algorithm and Local Search. This

technique has been evaluated on numerous benchmarks,

and the results suggest that it is more efficient and effective

than other traditional approaches for solving UCTP.

Cheng Weng Et. Al, [12] developed a version of the

method that improves global exploration by combining a

global best model motivated by particle swarm

optimization with the great deluge strategy to promote

local exploitation. This approach strikes a good balance

between exploration and exploitation.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-09, Dec 2022

97 | IJREAMV08I0993024 DOI : 10.35291/2454-9150.2022.0498 © 2022, IJREAM All Rights Reserved.

Shraddha Shinde Et. Al, [17] showed that using a

genetic algorithm to schedule lectures is efficient and

helpful. Using the technique they have described, they have

shown a strong potential for a future leading timetable is

more fairer to students. The framework is simple to use

and looks to be directly applicable to a variety of other

scheduling challenges.

According to H. Algethami Et. Al, [1] To solve the

university scheduling challenge, they adopted a mixed

integer programming technique. Faculty requirements,

preferences, and availability, as well as timeslot and room

assignment constraints, were all taken into account. They

wanted to make the most of faculty assignments and events

by customizing them to their preferences and requirements.

The focus of their future study will be on heuristic solution

approaches for larger TU instances.

As per David Schneider Et. Al, [9] They have tried to

detect whether a given timetable is feasible or not based on

the presence of binary session conflicts. Secondly, they

wanted to see if the existing ProB tools could be used to

run models in a production system as part of a larger

project.

As per Tanzila Islam Et. Al, [11] have applied the

scoring idea, in which they attempt to create the best

routine based on the score. They applied the Tabu Search

concept, which is an optimization problem-solving meta-

heuristic. The Tabu Search method yields a sub optimal

first result. Tabu Search offers a realistic answer that is

completed in a reasonable amount of time.

As per Mayuri Bagul Et. Al, [14] evolutionary strategies

were applied to solve the university timetabling problem.

Methodologies such as evolutionary algorithms, genetic

algorithms, and others have been applied, with variable

results. They used a genetic algorithm to tackle it in their

research. They also employed a mimetic hybrid , genetic

artificial immune network algorithm to solve the problem,

which they compared to the findings of the Genetic

Algorithm. The genetic artificial immunity network beats

the Genetic Algorithm to the best possible option.

 As per Parkavi A Et. Al [10], The system will take a

variety of inputs, including the quantity of subjects,

teachers, their workloads, the semester, and the priority of

the subject. It will produce potential time schedules for the

working weeks for teaching faculty based on these inputs.

This will integrate by using all resources as efficiently as

possible while taking into account the limits.

 As per Dipesh Mittal Et. Al [13], We are able to

produce a timetable that is more exact, precise, and error-

free by employing genetic algorithms, which also helps us

build timetables in less time. The institute's shared

mandatory classes are all included in the first phase and

are organised by a central team. The distinct departmental

classes are included in the second phase. Currently, this

schedule is created manually by modifying those from

previous years with the sole purpose of creating a schedule

that is workable.

 As per Mohammed Azmi Al-Betar, Et. Al [15], The

combination of a population-based global search and local

improvement is a core component of memetic computing.

This hybridization should achieve a balance between

searching and using the search space. The hybrid harmony

search algorithm (HHSA), a memetic computing technique

created for UCTP, is suggested in this study. The harmony

search algorithm (HSA), a metaheuristic population-based

technique, has been hybridised in HHSA by 1) hill

climbing to enhance local exploitation, and 2) a global-best

particle swarm optimization idea to enhance convergence.

 As per Shengxiang Yang, Et. Al [16], in this study,

local search (LS) approaches and guided search algorithms

(GAs) for the UCTP are examined. On the basis of a data

structure that contains information extrapolated from

successful individuals of earlier generations, the guided

search technique is utilised to produce children into the

population. The proposed GAs' search efficiency and

individual quality are enhanced by the LS methods' usage

of exploitative search. On two sets of benchmark problems,

the suggested GAs are put to the test in comparison to a

group of cutting-edge techniques from the literature.

III. PROPOSED SYSTEM

A. Front-end – add directory-file structure
B. Backend-end
C. workflow
D. Integration-front-back - architecture

A. Building Front End

ReactJs was used to build the frontend of our project. The

hierarchy of the components used to develop user

interfaces is depicted in the diagram

Fig. 1. Component Hierarchy

As shown in the fig. 1, there are two main components for

the React App:

 Header - which displays the title name and sidenav

logo

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-09, Dec 2022

98 | IJREAMV08I0993024 DOI : 10.35291/2454-9150.2022.0498 © 2022, IJREAM All Rights Reserved.

 SideNav -It is further subdivided into 6 other

components as mentioned below. Its sub-

components are:

o Generating Timetable - The component contains

a button which on click generates a new time

table

o Courses - This Component is responsible for

adding the courses in the database

o Batches - This component is responsible for

adding the batches in the database

o Lectures - This Component is responsible for

adding the professors data in the database

o View Timetable - This Component is responsible

for rendering the Time table.

o Mapping - It is further subdivided into 3 other

components as mentioned below. Its sub-

components are:

■ Lab Mapping - This component is

responsible for mapping the Labs with

courses and batches in database

■ Electives Mapping - This component is

responsible for mapping the Electives

with courses and batches in database

■ Lectures Mapping - This component is

responsible for a mapping the Lectures with

courses and batches in database

B. Building Back -end

We developed a Back-end using python which includes

several methods, and models for several specific

functionalities. Below are a few modules and their

descriptions we used in our backend.

 Router Module – which contains all the routes for

getting data from the front end and also for sending

back data to the front end from the database.

 Time Table Module – which consists of the methods to

create gene, genome and perform operations like

crossover, detecting collisions in time table.

 Scheduling Module – which is responsible for using

time table module methods.It is also involved in

scheduling and rescheduling the time table.

 Model Related Module –Which consists of all the

schemas of different types of data that is utilized by

the scheduler module to generate a time table.

 Data Module – This modules consists of methods to to

access the database to provide the data to scheduler

module

C. Workflow to Generate a Time Table

The workflow is depicted in fig 2 and the process begins

with gathering input from components such as batches,

professors, and courses.Each user input is stored in the

database using API calls.The next step in this process is to

map the input, which involves assigning professors to

courses in each batch.Once the mapping is complete, we

send the mapping data to the backend via API.

The backend router module listens for and responds to

front end requests.The scheduler module in the backend

creates genomes or individual time tables using the

mapped data.The number of genomes produced is

proportional to the population size.The next step in this

procedure is to examine the number of collisions in the

generated genomes.

If there are time table collisions, we promote 10% of

time tables, crossover and mutate the remaining 90% of

time tables to create new genomes or new generations of

time tables, and if we don't get a time table without

collisions within a limited number of new generations, we

re-schedule so that scheduler module re- initialize the

mapped data to repeat previous step.

This step is repeated until we have a time table with no

collisions.

Fig. 2. Workflow

The steps shown in above figure 2. gives a brief idea of the

methodology being followed in the existing system for

timetable generation. Let us understand it some more

elaboratively.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-09, Dec 2022

99 | IJREAMV08I0993024 DOI : 10.35291/2454-9150.2022.0498 © 2022, IJREAM All Rights Reserved.

a. Enter all details from UI – This step involves

entering of the batch, course and faculty details

from UI. We can also delete any entry at any point

of time if we have entered wrong details.

b. Mapping in UI – After entering all the details in

the previous step, now we must create mappings

for lectures, labs and elective courses with specific

batch and faculty. We have seperate mappings

screen for that, wherein user can easily create

these mappings.

c. Create Gnome – These mappings data would be

stored in DB. At backend, we make use of these

mappings to generate a master data, that would be

responsible to create the timetable. As part of it,

the first step would be to create gnome. Gnome

here is nothing but generation of the required time

slots and allot the mapped data accordingly into

those slots randomly.

d. Add it to the population – A certain number of

gnomes (timetables) would be created and added

to population list.

e. Check for collisions – Now, all the timetables in the

population list would be checked for the

collisions. We here check for 3 types of collisions

specific to the type of mapping. They are – Batch

collision, Faculty Collision and Room Collisions.

f. Promote 10% timetables – Out of the population of

timetables, based on collisions, we promote 10%

of timetables for the next step.

g. Crossover and Mutate 90% of the timetables – The

rest of 90% timetables in population list, are then

added to balance filler and we apply genetic

operations on them like crossover and mutation so

that we hope to remove the collisions from these

timetables and generate new population.

h. Repeat until no collisions – If we get a timetable

with zero collisions, then we send it to the UI. But

if we do not get any timetable with zero collisions

even after certain amount of waiting time (say

10000 iterations), then we re-schedule the

algorithm from start.

i. Timetable – When we get a timetable with zero

collisions at backend, we send it as an object to

the UI. And the timetables for all batches are

displayed at user screen

D. Connecting front-end to the back-end

This is another critical component of the application.

We send a GET call to a backend API whenever a user

clicks the Timetable Generate button in the UI. The

backend retrieves the necessary data from the database that

we previously saved, the scheduler method creates the

genomes with necessary information, these genomes

undergo repeated crossover and mutation to generates the

timetable with no collisions, and generated time table is

sent as the response to the frontend

At last, Frontend process the response received from the

backend and displays it to the users in an understandable

way.

IV. IMPLEMENTATION

The front-end module screens where users enter input for

Batches, Courses, and Professors, as well as mapping

screens for lectures, labs, and electives that use the user

input provided in previous screens, are shown below.

Fig. 3. Creating New Account

Fig. 4. Login Page

Fig. 5. Home Page

Fig. 6. Batches Screen

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-09, Dec 2022

100 | IJREAMV08I0993024 DOI : 10.35291/2454-9150.2022.0498 © 2022, IJREAM All Rights Reserved.

Fig. 7. Courses Screen

Fig. 8. Professors Screen

Fig. 9. Lectures Mapping Screen

Fig. 10. Labs Mapping Screen

Fig. 11. Electives Mapping Screen

V. RESULTS AND DISCUSSION

A. Output Screens

We have included a generate button in the Generate Time

Table Component to generate time tables. When we click

the generate button request is sent from the front-end to

the backend router module to start generating timetables.

After successful timetable generation, the router module

sends this output as the response to the front end, which

displays the generated timetables as shown below.

We can view different timetables generated for

different batches by selecting the batches from the

dropdown menu as shown in fig. 11

Fig. 11. Generating Time Table Screen

B. React App Testing

Fig. 12. React app unit test report

The above fig. 12 is the unit test report of the React

App (Frontend).

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-09, Dec 2022

101 | IJREAMV08I0993024 DOI : 10.35291/2454-9150.2022.0498 © 2022, IJREAM All Rights Reserved.

C. Flask App Testing

Fig. 13. Flask app unit test report

The above fig. 13 is the unit test report of the Flask

App (Backend).

VI. CONCLUSION

According to a large number of papers in the scientific

literature, the university course scheduling problem is an

active and essential research topic. The initial appearance

of international competitions in timetabling continues to

inspire. This research looks at the different strategies

presented in the last 10 years to handle the challenge of

university course scheduling (both real world and

benchmark). The approaches are divided into various

groups. They are also organized chronologically by year of

publication. In addition, the limitations of each

methodological group are discussed in this study. We have

used the genetic algorithm approach for timetable

generation as part of this project. As a result, we could

generate timetables very efficiently using this approach.

We were able to handle the collisions like batch collisions,

room collisions and faculty collisions for the courses to be

scheduled. The algorithm gave very promising results.

We can include below mentioned features as a future-

scope of the project -

■ It can be extended to different departments in the

college.

■ We should be able to handle elective courses in a

college-specific way i.e, the elective course

mappings.

■ We can add the additional feature to edit the details in

the UI.

■ We can include the warnings to be displayed to the

user for such mappings data for which timetable

cannot be generated with specific reason for the

better user experience.

■ It can also contain the scope to swap the allotted time

slots after generating the timetable.

■ We can also have the faculty timetable generated

accordingly.

REFERENCES

[1] H. Algethami, W. Laesanklang A Mathematical

Model for Course Timetabling Problem With Faculty-

Course Assignment Constraints August 2021

DOI:10.1109/ACCESS.2021.3103495

[2] MEI CHING CHEN, SAN NAH SZE, SAY LENG

GOH, NASSER R. SABAR, GRAHAM KENDALL.

A Survey of University Course Timetabling Problem:

Perspectives, Trends and Opportunities July 2021

DOI: 10.1109/ACCESS.2021.3100613

[3] Shraddha Thakare, Tejal Nikam, Prof. Mamta Patil.

Automated Timetable Generation using Genetic

Algorithm IJERTV9IS07056 Volume 09, Issue 07

(July 2020) IJERT

[4] Swapnil Markal, Surekha Ghorpade, Diksha Chalke.

Timetable Generator e-ISSN: 2278-0661,p-ISSN:

2278- 8727, Volume 22, Issue 2, Ser. II (Mar - Apr

2020), PP 29-

[5] Abeer Bashab, Ashraf Osman Ibrahim, Eltayeb E.

Abed Elgabar, Mohd Arfian Ismail, Abubakar Elsafi,

Ali Ahmed, Ajith Abraham. A systematic mapping

study on solving university timetabling problems using

meta- heuristic algorithms. Neural Computing and

Applications (2020) 32:17397–17432

[6] Amin Rezaeipanah, Samaneh Sechin Matoori,

Gholamreza Ahmadi. A hybrid algorithm for the

university course timetabling problem using the

improved parallel genetic algorithm and local search.

Applied Intelligence volume 51, pages467–492

(2021).

[7] V. Abhinaya, K. Sahithi, K.Akaanksha. Online

Application of Automatic Time-Table Generator.

Volume: 06 Issue: 02 | Feb 2019

[8] Mr.Mallikarjuna Nandi, Ms.R.Priyadharshini,

Ms.R.Aishwarya and Ms.M.Nandhini. AUTOMATIC

TIME TABLE GENERATION. Vol 12 Issue 1 2019

[9] David Schneider, Michael Leuschel , Tobias Witt.

Model-based problem solving for university timetable

validation and improvement. Formal Aspects of

Computing volume 30, pages545–569 (2018)

[10] Parkavi A. A STUDY ON AUTOMATIC

TIMETABLE GENERATOR MAY 2018 ISSUE

VOLUME 5 ISBN No. 978-81-923607-3-7

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-09, Dec 2022

102 | IJREAMV08I0993024 DOI : 10.35291/2454-9150.2022.0498 © 2022, IJREAM All Rights Reserved.

[11] Tanzila Islam, Zunayed Shahriar, Mohammad

Anower Perves, Monirul Hasan. University Timetable

Generator Using Tabu Search DOI:

10.4236/jcc.2016.416003

[12] Cheng Weng Fong, Hishammuddin Asmuni, and

Barry McCollum. A Hybrid Swarm-Based Approach

to University Timetabling. IEEE Transactions on

Evolutionary Computation (Volume: 19, Issue: 6,

Dec. 2015) DOI: 10.1109/TEVC.2015.2411741

[13] Dipesh Mittal, Hiral Doshi, Mohammed Sunasra ,

Renuka Nagpure. Automatic Timetable Generation

using Genetic Algorithm Vol. 4, Issue 2, February

2015. DOI 10.17148/IJARCCE.2015.4254

[14] Mayuri Bagul, Sunil Chaudhari, Sunita Nagare,

Pushkar Patil. A Novel Approach for Automatic

Timetable Generation. Volume 127 – No.10, October

2015

[15] Mohammed Azmi Al-Betar, Ahamad Tajudin Khader,

and Munir Zaman. University Course Timetabling

Using a Hybrid Harmony Search Metaheuristic

Algorithm. IEEE Transactions on Systems Man and

Cybernetics Part C (Applications and Reviews)

42(5):664-681 DOI:10.1109/TSMCC.2011.2174356

[16] Shengxiang Yang, and Sadaf Naseem Jat. Genetic

Algorithms With Guided and Local Search Strategies

for University Course Timetabling. IEEE Transactions

on Systems Man and Cybernetics Part C (Applications

and Reviews) 41(1):93 - 106

[17] Mittal, Dipesh, et al. "Automatic timetable generation

using genetic algorithm." International Journal of

Advanced Research in Computer and Communication

Engineering 4.2 (2015): 245-248.

