
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-11, Feb 2023

13 | IJREAMV08I1195008 DOI : 10.35291/2454-9150.2023.0023 © 2023, IJREAM All Rights Reserved.

Response Time Optimization in Cloud Using

Artificial Honey Bee Colony Inspired Load

Balancing Strategy
Brototi Mondal, Assistant Professor, Sammilani Mahavidyalaya, University of Calcutta, Kolkata,

India, brototi.snp@gmail.com

Abstract: Cloud computing deals with massive amount of data transfer to and from the server, because it involves real-

time resource provisioning. Most businesses are moving their operations to the cloud due to flexibility. Service

providers are building new data centers to accommodate the growing demand for their services from customers. The

majority of the resources are virtualized, and virtual machines (VMs) are one of the key components of virtualization.

However, owing to the task allocation system in the VM, user tasks sent to the cloud might result in the VM being

underloaded or overloaded, which would cause the system to fail or cause user actions to be delayed. A huge number of

services are offered, and choosing or combining those services is NP-hard optimization issue. Numerous metaheuristic

methods have been employed thus far due to the NP-hard complexity of service composition. This research proposes a

novel approach for efficient load balancing and foraging activity to regulate load through VMs, based on an artificial

honey bee colony. Response time, data center processing time, and other factors can be used to measure how successful

a load balancing algorithm is. A load balancing technique inspired by the artificial honey bee colony algorithm is

suggested and has demonstrated improved response time. On the standard data sets, experimental investigations using

CloudAnalyst simulator reveals that the proposed strategy outperforms the existing load balancing techniques in terms

of response time by a significant margin.

Keywords — Cloud Computing, Load Balancing, Artificial Honey Bee Colony, Virtual Machine, Response Time.

I. INTRODUCTION

Cloud computing is now a rapidly expanding technology

that has evolved into a powerful paradigm for handling

complicated issues. It is well-known as an Internet-based

computing architecture in which a large number of cloud

users share computer and virtual resources such services,

storage, applications, servers, and networks. Cloud service

providers (CSP) like Amazon, Google, Microsoft, and

others carry out this operation. Depending on the service's

level of abstraction, several levels of computing services

are supplied to customers [1]. Infrastructure as a Service

(IaaS), the most basic level of service, provides users with

hardware on which they can deploy virtual machines,

software platforms on which they can run their

applications, and the application itself. Amazon EC2

Cloud, Netmagic IaaS, Tata Communications

InstaCompute etc. are illustrations of IaaS service. Cloud

users do not need to manage virtual machines at the next

level. A software platform is already established in an

infrastructure and made available to customers for hosting

applications (usually, web apps). The platform is then

utilized by users to create customized applications. This

tactic is referred to as "Platform as a Service." Google App

Engine, Force.com, Joyent, Azure etc. are examples of this

situation. Programming languages, application

frameworks, databases, and other tools are provided by

PaaS providers. Next, Software as a Service (SaaS) model

offers users an application without requiring them to

manage the virtual machines and software platforms that

host the program.

In a cloud context, virtual machines are thought of as

mediators and processing units. Virtual machines (VMs)

meet user demands for data access, and effective load

balancing allows for effective usage of these VMs [2].

Load balancing has emerged as a crucial topic and a

cutting-edge method to provide maximum throughput

while reducing response time. In cloud computing, load

balancing is a strategy for managing resources based on a

maximum throughput with the shortest response time and

for evenly distributing traffic between the server's data and

various users without any lag. Load balancing evenly

shares the load among servers to maintain system stability

without too or inadequately loaded servers, enhancing

resource efficiency. The load may consist of CPU, memory,

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-11, Feb 2023

14 | IJREAMV08I1195008 DOI : 10.35291/2454-9150.2023.0023 © 2023, IJREAM All Rights Reserved.

or network demands. The load balancing approach got

several requests from users to distribute them around

virtual machines based on their accessibility [3]. If a node

is overloaded means its load exceeds the threshold value,

its burden is transferred to a node that is underloaded. A

significant difficulty for cloud computing is locating the

optimal solution for load balancing. Therefore, appropriate

load balancing strategies must be used to cut down on

response times overall without adding costs [4]. Therefore,

load balancing approaches aid in attaining the optimum

resource use, improving throughput, reducing response

time, and preventing resource overload.

The primary focus of the study is on creating a time-

efficient load balancing method that is inspired by an

artificial honey bee colony algorithm to improve task

scheduling with the aim of reducing makespan, concurrent

resource utilization and cost. The remaining sections of the

paper are arranged as follows. The related study of cloud

computing load balancing is introduced in Section 2. The

suggested load balancing algorithm for cloud computing is

shown in Section 3. Section 4 introduces the simulation

results and explains how the technique was implemented

using CloudAnalyst simulator. Finally, Section 5 presents

the conclusion.

II. RELATED WORK

This section summarizes numerous studies of load

balancing techniques in the cloud environment conducted

over recent years.

Min-Min and Min-Max are used to distribute each job in

any order to the nodes where it is predicted to be completed

the quickest by reducing the makespan and energy

consumption, regardless of the present load on the node.

Minimum Execution Time (MET), Minimum Completion

Time (MCT) are also used [5]. A round-robin algorithm

equitably allocates tasks among all data centers or

processing units.

In a cloud computing setting, load balancing using a

genetic algorithm was suggested [6]. The genetic algorithm

comprises three stages: crossover, mutation, and selection.

The algorithm's initial phase involves choosing a virtual

machine (VM) depending on the cost and turnaround time

of the scheduled jobs. In the second stage, the ideal costs

and timings are determined in order to accomplish the

crossover between the scheduled tasks and the virtual

machine. The algorithm then modifies the available VM

and the scheduled tasks before being approved for

execution.

The metaheuristic algorithm ant colony optimization,

which is a fundamental foraging habit of ants that pushed

them to locate the best, quickest path from their nest to

food, was proposed in [7] as a load balancing approach in

cloud computing. In this case, a new request is assigned to

virtual machines in accordance with the FCFS scheduling

rules, however if virtual machines are not available to

distribute the next work, a random number of ants with the

same pheromone value is created and placed randomly to

traverse. An ant selects a VM and then checks to see if it

has finished its tour. The pheromone value is updated if the

tour is finished. This keeps happening until the ideal VM

is discovered.

In [8], the Bacterial Swarm Optimization (BSO) Algorithm

was proposed for resource deployment and load

balancing in data centers. The proposed BSO algorithm

calculated a set of resources for each work using a separate

set of jobs. This study identified the capability of local and

global search and quick merging optimum points. This

algorithm lowers operating expenses, increases efficiency,

and better utilizes resources. However, the BSO method

used a lot of vulnerable live migration and cloud data.

In order to save energy [9], the multi-objective genetic

algorithm (MO-GA) was created, which placed an

emphasis on encoding rules, crossover operators, selection

operators, and the technique of sorting Pareto solutions. It

also boosts service profitability when there are deadline

constraints. It begins by suggesting a task scheduling

architecture for cloud computing that consists of a range of

components to assess the application and assign the

appropriate resources to the applications in order to

increase the effectiveness and efficiency of computing.

Based on examination of historical data from the resource

utilization by the VMs, an online deterministic method

and adaptive heuristic for dynamic consolidation of VMs

was suggested in [10]. In conclusion, they have taken into

account the prior level of resource use rather than using a

fixed threshold. They have asserted that this strategy can

lower data centers' energy usage. Additionally, for the

purpose of identifying hosts that are overloaded, writers

used methods like Median Absolute Deviation (MAD),

Inter Quartile Range (IQR), Local Regression (LR), and

Robust Local Regression (LRR). Once the overused host

has been identified, they choose one or more VMs to move

from it to the other hosts. It is notable that they suggested

three various VM selection policies, including the random

choice strategy, the maximum correlation policy, and the

minimal migration time policy, to choose VMs from over

or underutilized hosts. Finally, their approach looks into

underutilized hosts after all over utilized hosts have been

found and some of the VMs have been relocated. To do

this, it views all hosts other than the ones that are

overloaded as underutilized hosts. As a result, it tries to

move virtual machines from underutilized hosts to other

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-11, Feb 2023

15 | IJREAMV08I1195008 DOI : 10.35291/2454-9150.2023.0023 © 2023, IJREAM All Rights Reserved.

hosts while keeping in mind that the migration process

shouldn't put the other hosts under excessive strain. The

hosts are switched to sleep mode once all migrations of idle

hosts have been finished.

The cloud is a centralized virtual computer where data is

kept, and cloud service businesses are in charge of

distributing the offerings to end customers [11]. The end

customers get access to the offerings based on their

requirements and must pay for the services received. To

maximize the efficient use of resources and energy usage,

load balancing becomes increasingly necessary as the

amount of requests increases.

Cloud Light Weight (CLW), a balancing solution was

introduced in[12], balances the burden of virtual machines

while guaranteeing the users' quality of service. All nodes

in their method have almost the same weight after applying

CLW, and they balance workloads among all the hosts.

III. PROBLEM DEFINITION

Transferring workload from Virtual Machines (VMs) that

are overloaded relative to other VMs which have received a

less of work is the main goal of load balancing. Using load

balancing, the system's overall performance can be

attained. There are certain computer resources available at

each data center to carry out user tasks. Numerous tasks

are included in the various cloud users, and each task is

given to a distinct VM. It is possible to determine the load

on a VM based on how long each job takes to complete. If

the VM is overloaded, the load is distributed to the VM

that is underloaded in order to maximize resource use. The

Scheduler has the ability to select the most appropriate VM

and distribute the jobs among VMs in accordance with the

chosen methodology. To balance the load, based on the

least-used VM at the time the job is due, the scheduler

assigns the jobs in the most appropriate VMs. At runtime,

whenever the load balancer detects an idle or least loaded

VM by using the resources' current status information, it

selects how to migrate the workload from the heavily

loaded VM to the idle or least loaded VM.

IV. PROPOSED ALGORITHM

In this paper, a time efficient load balancing strategy is

used which is inspired by artificial honey bee colony

algorithm. It is an optimization method that mimics honey

bee foraging. The life style of honey bees can be

demonstrated with two phases. First phase is discovering

food source and second one is collecting food.

A. Discovering the food source:

Honey bees come in three different varieties like employed

bees, onlooker bees, and scout bees. The employed bees use

their memories to find food near the food source while also

informing the onlooker bees about these food sources.

From the food sources discovered by the employed bees,

the onlooker bees frequently choose the best ones.

B. Collecting food from the food source:

The likelihood that the onlooker bees will choose the food

source with greater quality (fitness) is much higher than

the chance that they would choose the one with lower

quality. The scout bees are derived from a small number of

employed bees that leave their food sources and look for

new ones.

 The number of solutions is equal to the number of

employed bees or onlooker bees. The algorithm creates an

initial population of N solutions (food sources) that are

spread at random. N stands for population size.

Let represent the solution

in the population, where is the dimension size.

Every employed bee generates a new candidate

solution in the neighborhood of its current position as

equation 1,

…………………….(1)

where is a candidate solution chosen at random and

 and is a random dimension index selected from

the set , and is a random number

within . A greedy selection is used after the

generation of the new candidate solution . If the fitness

value of new candidate solution is better than that of its

parent , then is updated with ; otherwise

keep unchanged.

After all employed bees have finished their search, they

waggle dance to tell any onlooker bees of their food

sources. An onlooker bee assesses the nectar data collected

from all employed bees and selects a food source with a

probability based on the amount of nectar it contains. The

probability is equation 2,

 ………………………(2)

where is the fitness value of the solution in

the population. The scout bee finds a new food source to

replace , which was the abandoned source with the

equation 3,

………………..(3)

Let's consider is the number of tasks provided by cloud

customers that need to be distributed and is the amount

of VMs that are available in the cloud at any one moment.

A Virtual Machine Vector () identifying the current

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-11, Feb 2023

16 | IJREAMV08I1195008 DOI : 10.35291/2454-9150.2023.0023 © 2023, IJREAM All Rights Reserved.

level of VM usage will be present on each VM. is a

measurement of a machine's ability to process one million

instructions in a second. stand for the relative execution

cost and delay cost of an instruction. The delay cost is

an estimated fine that the cloud service provider must give

to the client if the project takes longer to complete than the

service provider's announced deadline but is actually done

sooner.

 …………………(4)

A request unit vector (RUV) may similarly be used to

represent each request made by a cloud user. Here, t stands

for the kind of service that a request requires, which can be

Software as a Service (SAAS), Infrastructure as a Service

(IAAS), or Platform as a Service (PAAS). NIC is the

number of instructions in the request that have been

counted by the processor. The worst case completion time

tc is the shortest amount of time needed for a processing

unit to finish a request, and the request arrival time (RAT)

is the clock time at which the request enters the system.

 .…………………………(5)

The various properties of requests are therefore provided by

equation 4

The cloud service provider must divide these N tasks across

M processors in a way that minimizes the C fitness

function as shown in equation 5.

………(6)

Where and are weights with values 0.8 and 0.2

respectively.

Proposed Algorithm:

Step 1: Create the initial population of processing unit

.

Step 2: While the maximum number of iterations is

reached or the optimum solution is discovered, do the

following:

Step 3: Deploy Employed Bees and create a new food

source at location using equation 1 in the

neighborhood of .

Step 4: Apply greedy selection method between and

 for neighborhood search of VMi .

Step 5: Evaluate the fitness value using equation 5 and

probability value for the solution using equation 2.

Step 6: Generate the new solution (new position) based

on probability for the onlooker bees from .

Step 7: Apply greedy selection technique for onlooker bees

between and .

Step 8: Determine the exhausted sources using equation 3 ,

replace it with

new randomly produced solutions by sending scout

bees.

Step 9: Output the optimal food source solution. Assign

task to underloaded VMi.

Step 10: End of while loop.

V. SIMULATION AND RESULTS

Extensive experiments are conducted with CloudAnalyst

simulation toolkit which is modified with the proposed

algorithm. The CloudAnalyst also makes it quick and

simple to repeatedly run a series of simulation trials with

minor parameter modifications. Table 1 contains the

simulation setup. The six areas that make up the world's

six major continents are modeled after a group of users. It

is expected that 5% of all registered users are online at

once during peak hours, and that only 10% are online

during off-peak hours. VMs utilized in the experiment to

host apps are 100MB in size. VMs have 10MB of

accessible bandwidth and 1GB of RAM capacity. X86

architecture is used in simulated hosts. A certain number

of VMs specifically dedicated to the application are hosted

by each virtual data center. The machines contain 100GB

of storage and 4 GB of RAM. Each machine has four

CPUs, each with a 10000 MIPS capacity.

 Several simulation scenarios are considered for

experimentation. The experiment begins by using a single

data center (DC) with 25, 50, and 75 virtual machines

(VMs) to handle all requests from across the world. In

Table 2, three different Cloud Configurations (CC) were

taken into account to determine different response times.

Six potential Cloud Configurations (CC) were considered

in Table 3 to ascertain the various response times. Also, in

Table 4, Table 5, Table 6 and Table 7, four distinct Cloud

Configurations (CC) were considered in order to calculate

response times for various load balancing algorithms.

Table 1: Simulation setup

S.No User

Base

Region Online users

during peak

hrs.

Online users

During off-

peak

hrs.

1. UB1 N.America 4,70,000 80,000

2. UB2 S.America 6,00,000 1,10,000

3. UB3 Europe 3,50,000 65,000

4. UB4 Asia 8,00,000 1,25,000

5. UB5 Africa 1,25,000 12,000

6. UB6 Oceania 1,50,000 30,500

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-11, Feb 2023

17 | IJREAMV08I1195008 DOI : 10.35291/2454-9150.2023.0023 © 2023, IJREAM All Rights Reserved.

 The determined overall average Response Time (RT)

in ms for the Artificial Honey Bee Colony, Stochastic Hill

Climbing, Round Robin algorithms are provided in Table 2

with one data center containing 25, 50, 75 VMs

respectively. Figure 1 shows the performance analysis

graph for it, with cloud configuration along the x-axis and

response time in milliseconds along the y-axis. Then, as

shown in Tables 3, 4, 5, 6 and 7, two, three, four, five and

six DCs are taken into consideration with combinations of

25, 50, and 75 VMs for each Cloud Configuration. Figures

2, 3, 4, 5 and 6 show the related performance analysis

graphs next to them. Table 2 depicts the average response

time for single Data Center with 25, 50 and 75 VMs using

the proposed algorithm and existing algorithms.

The response time for two Data Centers with all possible

combination of 25, 50, and 75 VMs is shown in Table 3.

The average response time for three, four, five, and six

data centers with all possible combinations of 25, 50, and

75 VMs are shown in Tables 4, 5, 6, and 7.

Table.2.Simulation setup and computed overall average response time

(RT) in (ms) using One DC

Sl.

No

CC DC

specification

RT in

ms

For

AHBC

RT in ms

For SHC

RT in ms

for RR

1. CC1 One DC with

25 VMs

327.6 329.02 330.05

2. CC2 One DC with

50 VMs

327 329 329.55

3 CC3 One DC with

75 VMs

326.55 329.34 329.44

The graph in Figure 1 demonstrates that the suggested

Artificial Honey Bee Colony algorithm has faster response

time than the Round Robin and Stochastic Hill Climbing

algorithms that are already in use. Simulation results

illustrate that the proposed Artificial Honey Bee Colony

algorithm have a faster response time than the already

existing Round Robin and Stochastic Hill Climbing

algorithms, as shown in Figure 2, Figure 3, Figure 4,

Figure 5 and Figure 6.

324
325
326
327
328
329
330
331

CC1 CC2 CC3R
es

p
o

n
se

 T
im

e
in

 m
s

Cloud Configuration

Performance Analysis with one DC

AHBC

SHC

RR

Fig.1. Performance analysis of proposed AHBC with SHC and RR

Result using One DC

Table.3.Simulation scenario and calculated overall average response

time (RT) in (ms) using Two DCs

Sl.

No

CC DC

specification

RT in

msFor

AHBC

RT in

msFor

SHC

RT in ms

for RR

1. CC1 Two DC with

25 VMs each

360.30 365.44 376.34

2. CC2 Two DC with

50 VMs each

356.44 360.15 372.52

3 CC3 Two DC with 75

VMs each

355.10 359.73 370.56

4 CC4 Two DC with

25,50 VMs

350.05 356.72 368.87

5 CC5 Two DC with

25,75 VMs

353.04 357.23 367.23

6 CC6 Two DC with

50,75 VMs

354.06 357.04 361.01

330

340

350

360

370

380

CC1 CC2 CC3 CC4 CC5 CC6

R
e
sp

o
n

se
 T

im
e
 i

n
 m

s

Cloud Configuration

Performance Analysis with two DCs

AHBC

SHC

RR

Fig.2. Performance analysis of proposed AHBC with SHC and RR

Result using Two DCs

Table.4.Simulation scenario and calculated overall average response

time (RT) in (ms) using Three DCs

Sl.

No

CC DC

specification

RT in

ms

For

AHBC

RT in ms

For SHC

RT in ms

for RR

1. CC1 DC with

25 VMs each

350.10 356.82 363.34

2. CC2 DC with

50 VMs each

351.15 355.25 363.52

3 CC3 DC with 75 VMs

each

346.05 350.73 361.56

4 CC4 DC with

25,50,75 VMs

344.95 350.01 360.87

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-11, Feb 2023

18 | IJREAMV08I1195008 DOI : 10.35291/2454-9150.2023.0023 © 2023, IJREAM All Rights Reserved.

330

340

350

360

370

380

CC1 CC2 CC3 CC4

R
e
sp

o
n

se
 T

im
e
 i

n
 m

s

Cloud Configuration

Performance Analysis with three DCs

AHBC

SHC

RR

Fig.3. Performance analysis of proposed AHBC with SHC and RR

Result using Three DCs

Table.5.Simulation scenario and calculated overall average response

time (RT) in (ms) using Four DCs

Sl.

No

CC DC

specification

RT in

ms

For CS

RT in ms

For SHC

RT in ms

for RR

1. CC1 DC with

25 VMs each

348.23 354.35 360.95

2. CC2 DC with

50 VMs each

345.08 350.71 359.97

3 CC3 DC with 75 VMs

each

340.11 346.46 358.44

4 CC4 DC with

25,50,75VMs

336.76 344.31 355.94

330

340

350

360

370

380

CC1 CC2 CC3 CC4

R
e
sp

o
n

se
 T

im
e
 i

n
 m

s

Cloud Configuration

Performance Analysis with four DCs

AHBC

SHC

RR

Fig.4. Performance analysis of proposed AHBC with SHC and RR

Result using Four DCs

Table.6.Simulation scenario and calculated overall average response

time (RT) in (ms) using Five DCs

Sl.

No

CC DC

specification

RT in ms

For CS

RT in ms

For SHC

RT in ms

for RR

1. CC1 DC with

25 VMs each

336.45 342.86 352.05

2. CC2 DC with

50 VMs each

326.30 332.84 345.44

3 CC3 DC with 75 VMs

each

320.54 329.46 342.79

4 CC4 DC with

25,50,75VMs

318.35 326.64 338.01

330

340

350

360

370

380

CC1 CC2 CC3 CC4

R
e
sp

o
n

se
 T

im
e
 i

n
 m

s

Cloud Configuration

Performance Analysis with five DCs

AHBC

SHC

RR

Fig.5. Performance analysis of proposed AHBC with SHC and RR

Result using Five DCs

Table.7.Simulation scenario and calculated overall average response

time (RT) in (ms) using Six DCs

Sl.

No

CC DC

specification

RT in

ms For

AHBC

RT in ms

For SHC

RT in ms

for RR

1. CC1 DC with

25 VMs each

330.32 336.96 349.26

2. CC2 DC with

50 VMs each

324.24 331.56 344.04

3 CC3 DC with 75 VMs

each

319.09 327.78 339.87

4 CC4 DC with

25,50,75VMs

316.35 323.56 338.29

290

300

310

320

330

340

350

360

CC1 CC2 CC3 CC4

R
e
sp

o
n

se
 T

im
e
 i

n
 m

s

Cloud Configuration

Performance Analysis with Six DCs

AHBC

SHC

RR

Fig.6. Performance analysis of proposed AHBC with SHC and RR

Result using Six DCs

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-11, Feb 2023

19 | IJREAMV08I1195008 DOI : 10.35291/2454-9150.2023.0023 © 2023, IJREAM All Rights Reserved.

VI. CONCLUSION

An Artificial Honey Bee Colony optimization technique,

which addresses the load balancing issue in cloud

computing, is presented in this study. This strategy adheres

to the search process for locating the best VM for load

shifting. The iteration process is taken into account by the

suggested artificial honey bee colony technique for

effective work allocation to the VMs. During the iteration

process, it is determined whether or not the VM is

overloaded. When compared to the existing techniques, the

experimental assessment of the suggested model performs

better in terms of minimizing average response time. The

results of a detailed investigation show that the suggested

load balancing strategy not only performs better than a few

existing techniques, but also ensures that the QoS

requirements of the customer job are met. Although here

all jobs are anticipated to have the same priority but this

may not be the actual situation. Fault tolerance issues are

not taken into account here. Researchers can continue by

include fault tolerance and various function variations

while calculating the fitness function, which can then be

used for additional research projects.

REFERENCES

[1] Srinivasan, Rashmi KrishnaIyengar, V. Suma, and

Vaidehi Nedu. "An enhanced load balancing

technique for efficient load distribution in cloud-based

IT industries." In Intelligent Informatics: Proceedings

of the International Symposium on Intelligent

Informatics ISI’12 Held at August 4-5 2012, Chennai,

India, pp. 479-485. Springer Berlin Heidelberg, 2013.

[2] Buyya, Rajkumar, Rajiv Ranjan, and Rodrigo N.

Calheiros. "Intercloud: Utility-oriented federation of

cloud computing environments for scaling of

application services." In Algorithms and Architectures

for Parallel Processing: 10th International

Conference, ICA3PP 2010, Busan, Korea, May 21-23,

2010. Proceedings. Part I 10, pp. 13-31. Springer

Berlin Heidelberg, 2010.

[3] Mohammadian, Vahid, Nima Jafari Navimipour,

Mehdi Hosseinzadeh, and Aso Darwesh. "Fault-

tolerant load balancing in cloud computing: A

systematic literature review." IEEE Access 10: 12714-

12731, 2021.

[4] uz Zaman, Sardar Khaliq, Tahir Maqsood, Mazhar

Ali, Kashif Bilal, Sajjad Ahmad Madani, and A. U. R.

Khan. "A load balanced task scheduling heuristic for

large-scale computing systems." Comput. Syst. Sci.

Eng 34 : 4, 2019.

[5] Armstrong, Robert, Debra Hensgen, and Taylor Kidd.

"The relative performance of various mapping

algorithms is independent of sizable variances in run-

time predictions." In Proceedings Seventh

Heterogeneous Computing Workshop (HCW'98), pp.

79-87. IEEE, 1998.

[6] Dasgupta, Kousik, Brototi Mandal, Paramartha Dutta,

Jyotsna Kumar Mandal, and Santanu Dam. "A genetic

algorithm (ga) based load balancing strategy for cloud

computing." Procedia Technology 10 : 340-347, 2013.

[7] Dam, Santanu, Gopa Mandal, Kousik Dasgupta, and

Paramartha Dutta. "An ant colony based load

balancing strategy in cloud computing." In Advanced

Computing, Networking and Informatics-Volume 2:

Wireless Networks and Security Proceedings of the

Second International Conference on Advanced

Computing, Networking and Informatics (ICACNI-

2014), pp. 403-413. Springer International Publishing,

2014.

[8] Jeyakrishnan, V., and P. Sengottuvelan. "A hybrid

strategy for resource allocation and load balancing in

virtualized data centers using BSO

algorithms." Wireless Personal Communications, 94:

2363-2375, 2017.

[9] Sun, Hong, Shi-ping Chen, Chen Jin, and Kai Guo.

"Research and simulation of task scheduling algorithm

in cloud computing." TELKOMNIKA Indonesian

Journal of Electrical Engineering 11, no. 11: 6664-

6672, 2013.

[10] Beloglazov, Anton, and Rajkumar Buyya. "Optimal

online deterministic algorithms and adaptive heuristics

for energy and performance efficient dynamic

consolidation of virtual machines in cloud data

centers." Concurrency and Computation: Practice and

Experience 24, no. 13: 1397-1420, 2012.

[11] Karki, Sheetal, and Anshika Goyal. "Performance

evaluation of check pointing and threshold algorithm

for load balancing in cloud computing." Int J Comput

Sci Eng 6, no. 5 : 2347-2693, 2018.

[12] Mesbahi, Mohammadreza, Amir Masoud Rahmani,

and Anthony Theodore Chronopoulos. "Cloud light

weight: A new solution for load balancing in cloud

computing." International Conference on Data

Science & Engineering (ICDSE), pp. 44-50. IEEE,

2014.

