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Abstract: Over the past several decades, fuzzing has significantly enhanced software development and testing. 

Applications of fuzzing have been the subject of recent research. ML provides practical techniques to solve difficulties 

in the fuzzing process. This review examines the most recent work on fuzzing and ML. This review addresses effective 

ML fuzzing applications, briefly examines difficulties encountered, and encourages more study to address fuzzing 

bottlenecks.  
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I. INTRODUCTION 

Fuzzing is a technique used to test a programme for errors 

and vulnerabilities by feeding it a large number of 

generated inputs, both valid and invalid. Fuzzing is 

technique used inorder to find bugs and vulnerabilities. 

Fuzzing is a technique in which a large number of 

generated inputs both valid and invalid are fed into a 

programme. A large portion of this process is automated by 

fuzzers, which collect initial programme knowledge and 

report on any intriguing programme states found.  

Frequently, a human user analyses these output programme 

states in addition to providing initial programme 

knowledge. Historically, "interesting programme states" 

were software crashes that exposed vulnerabilities and 

flaws in the programme, but more sophisticated 

programme monitoring techniques now enable the 

detection of additional interesting states. A fuzzer's 

objective is to produce inputs that make the programme 

execute programme paths in order to find those that result 

in intriguing programme states. As a result, coverage the 

variety of programme paths explored is frequently used to 

evaluate fuzzers. A Naive fuzzer is one that creates input 

that is entirely random and feeds it to a software. Although 

naive fuzzers are relatively simple to create, they are not 

likely to quickly achieve interesting programme states. 

Modern fuzzers can be divided into three main categories: 

mutation-based, generation-based, and evolutionary. 

Blindly altering or changing the input given to the 

programme is what mutation-based fuzzers do. The 

majority of the time, mutation-based fuzzers are unable to 

make intelligent mutation selections because they are 

unaware of the expected input format or specifications. 

Peach is a fuzzer that has the ability to perform both 

generation-based and mutation-based fuzzing. The 

expected input format or protocol is obtained by 

generation-based fuzzers through specifications. On the 

basis of these requirements, generation-based fuzzers 

produce inputs. Peach and Sulley, a Python fuzzing 

framework, are examples of generation-based fuzzers that 

can produce inputs for file transfer protocols, network 

protocols, and file formats. The most recent kind of 

fuzzers, evolutionary fuzzers, improve on mutation-based 

fuzzers by favouring some inputs over others for mutation. 

In particular, evolutionary fuzzers try to assess what each 

input makes the programme do and modify their behaviour 

in response to that assessment. Modern evolutionary 

fuzzers actually rank inputs using a fitness function (often 

coverage) and pick the top-ranked inputs to mutate. 

Honggfuzz, AFL, and libFuzzer are a few examples of 

evolutionary fuzzers. 

II. LITERATURE SURVEY 

Please Over the past three decades, fuzzers, or automated 

tools to perform fuzzing, have been crucial in quality 

assurance, system administration, and vulnerability 

assessment [19, 20, 41, 23]. In this survey, this examine 

how some contemporary fuzzers incorporate various forms 

of machine learning. Modern fuzzers now incorporate 

techniques from other disciplines (ML). Due to their 

widespread use, this concentrates specifically on fuzzers 

used for vulnerability assessment. Computer models can be 

trained using machine learning to carry out specific tasks 

without having to be explicitly programmed. From image 

processing to sequence modelling, ML techniques are used 

to solve a variety of issues [25, 32, 22]. This study is 

concentrated on three main ML subtypes, each of which is 

best suited for a particular task.  
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When training a model to determine the class label of a 

given data point, such as whether an image contains a 

particular object, supervised learning is used. Data sets 

with explicit labels for each data point are necessary for 

this kind of machine learning. Instead of labelling classes, 

unsupervised learning is used to train a model to look for 

patterns or similarities between data points. This type of 

ML is used when the data does not have explicit labels. 

Reinforcement learning is used to train a model, often 

referred to as an agent, to take an optimal set of actions in 

an environment. This type of ML rewards the agent for 

each action it takes in the environment. Similar to 

supervised learning, the rewards act as a label for the agent 

and provide an indication of the optimal actions to take. 

Thus, the agent can be trained to take a set of actions 

which lead to the highest reward. Each of these three types 

can also take on a particular form of ML called deep 

learning. Deep learning refers to a type of hierarchical 

learning that can be used to learn the underlying features 

and structure of a set of data points [25]. 

This survey looks at how machine learning (ML) has 

been used to answer key research questions in fuzzers used 

for programme vulnerability assessment. This study is 

representative rather than exhaustive; no attempt is made 

to cover all ML in fuzzer applications. This provides a 

brief summary of the fuzzing process in Section 3. This 

examines past and present ML-fuzzing research in Section 

3 of this paper. This also talks about the challenges of 

using ML for fuzzing. This sums up how ML has been 

used to tackle fuzzing and how it might be used to tackle 

fuzzing in the future. 

III. WORKING OF FUZZING 

 

Phase 1: Program Knowledge 

Typically, program knowledge is developed manually 

and provided by the human user. The following three 

stages of the fuzzing process, however, are automatically 

iterated over by fuzzers. A fuzzer will typically continue 

running until the user ends it. It will generate new inputs, 

down-select and order inputs to send to the programme, 

watch the programme for interesting programme states, 

and repeat. Next, examining of these phases. 

Phase 2: Testcase Generation 

The fuzzer creates inputs to feed to the programme 

through the identified interfaces in the first stage of the 

fuzzing process using programme knowledge. This phase's 

objective is to produce inputs that will investigate novel 

and intriguing programme states. Only the most pertinent 

of the new inputs generated here will be sent on to the 

programme in the following stage of the fuzzing process. 

The fuzzer here, however, aims to produce the most 

pertinent inputs. 

Phase 3: Choose Inputs 

The fuzzer chooses and arranges the inputs to be sent to 

the programme in the second stage of the fuzzing process. 

Remember that a fuzzer's objective is to rapidly test new 

programme paths. However, as stated by Böhme et al., the 

majority of inputs exercise the same few programme paths 

[7, 8]. A fuzzer must effectively utilise its input corpus and 

reduce the amount of computation required to find new 

programme paths in order to counter this. This propensity 

of inputs to explore specific programme paths can be 

thwarted by input test scheduling, also known as seed 

selection. 

To determine which new inputs are most likely to result 

in novel and disparately interesting programme states, 

input test scheduling ranks and selects inputs and input 

order. Test scheduling for vulnerability assessment 

typically selects inputs to maximise the number of bugs 

found [11]. Finding the ideal scheduling approach for a 

specific programme and fuzzer remains a research 

challenge. Input test scheduling is essential to efficiently 

exploring large or infinite input search spaces. Fortunately, 

tools like FuzzSim enable quick comparison of input 

selection methods using data on input performance 

gathered over numerous process iterations [11]. 

Phase 4: Runtime Monitoring 

The third stage of fuzzing involves feeding the 

programme with selected inputs and monitoring the output 

to find interesting programme states. A particular 

programme behaviour is present in "interesting programme 

states" when they are present. A crash typically depicts the 

behaviour of interest (i.e., the programme fails 

unexpectedly). 

However, it is possible to use any behaviour that can be 

observed through programme instrumentation to pinpoint 

intriguing programme states. For instance, Valgrind can 

spot memory corruption even if it doesn't result in a crash 

[16]. Heelan also employs fuzzing to find potential 

programme memory allocators [28]. Interesting behaviours 

are observable behaviours that are associated with potential 

flaws or vulnerabilities for vulnerability assessment. A 

fuzzer needs programme knowledge about how to 

instrument the programme and what makes for an 

interesting programme state, as was previously mentioned. 

This data is frequently provided by a human user, but it is 

still difficult to define what constitutes an interesting 
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programme state. What observable behaviours, in the 

context of vulnerability assessment, are most important for 

locating flaws or vulnerabilities? 

Phase 5: Input Evaluation 

The fuzzer assesses the performance of inputs in the 

fourth stage of the fuzzing process. Code coverage is a 

common fuzzing technique that is used to assess an input's 

usefulness. If an input prompts the execution of a new 

section of code, usually a new basic block, it has increased 

coverage and is rated highly. An input receives a high 

rating from the libFuzzer tool's data coverage metric if new 

data values appear at a previously examined comparison in 

the code. Some fuzzers rate inputs that result in a crash 

highly in order to find bugs. 

Phase 6: Program states 

The user examines intriguing programme states that the 

fuzzer outputs after the fuzzing process. This process 

frequently involves a lot of manual labour and gains from 

research being done in software engineering-related fields. 

The user examines each output state to identify the 

underlying cause of any intriguing behaviour present in 

that state. Frequently, the user will manually watch as the 

programme processes the associated input in an effort to 

isolate the problem. After that, the user decides if the root 

cause indicates a fresh flaw or vulnerability. Fuzzers 

frequently produce an excessive amount of intriguing 

programme states. To determine which intriguing 

programme states warrant further investigation, the user 

must perform triage. Output programme states, 

unfortunately, frequently have the same underlying cause. 

Even worse, states with the same underlying cause may 

manifest very differently. For instance, because the effect 

of the vulnerability is not immediately noticed, a memory 

corruption vulnerability can cause crashes in numerous 

different parts of the programme, with wildly different 

memory images. Triage and root cause analysis continue to 

be difficult problems for research. Some automated tools 

try to deduplicate fuzzer outputs [28] or root causes, but 

these are frequently flawed. 

IV. METHODOLOGY 

Machine learning gains new knowledge or abilities by 

learning from available sample data or experience and 

automatically optimizing the performance of computer 

systems themselves. Tasks of machine learning can be 

categorised into Traditional Machine Learning, Deep 

Learning and Reinforcement Learning. Traditional 

Machine Learning is divided into Monitored Learning, 

Unsupervised Learning, and Semi-Monitored Learning, 

depending on whether or not input data are labelled and 

how many data are labelled. Deep Learning is a multi-non-

linear artificial neural data display learning network that 

represents a deeper expansion of the machine-learning 

algorithms. The original "Feature Engineering" will be 

replaced on the basis of the method of representative 

learning and the machine will be able to automatically 

extract beneficial features from input data. Learning to 

reinforce is a machine learning branch that describes the 

problem that agents can maximize feedback or achieve 

specific goals by learning strategies in interacting with the 

environment. Contrary to learning from a wide range of 

input examples, reinforcement training is essentially an 

automated decision making process.  Current techniques of 

machine learning have been used in the fields of statistical 

education, Data Mining, Computer Vision and the 

processing of natural language. 

This section, looks at research that fuzzes data using 

machine learning (ML). ML has been used to create new 

inputs for the fuzzing process. With fuzzing tools like AFL 

[34] integrating genetic algorithms (GAs) into the input 

generation process, unsupervised learning has seen the 

most successful applications to input generation. 

Additionally, reinforcement learning (RL) and supervised 

learning (SL) have both recently been applied to input 

generation [4, 5, 9, 38]. Additionally, symbolic execution 

has been used with all three types of ML [10, 40, 42, 6], 

primarily to speed up constraint equation solve times. For 

crash triage and root cause categorization, both supervised 

and unsupervised learning have been used in post-fuzzing 

processes [15, 33, 39].  

A test case can be created by mutating the seed file that is 

constructed on the basis of known input formats. As a last 

input the contents of a test case will directly influence 

whether an error is triggered or not. Therefore, creating a 

test case with a high level of code coverage or 

susceptibility-oriented testing can effectively increase the 

efficiency of detecting vulnerabilities in Fuzzer. The 

generate inputs stage is where machine learning is most 

effectively applied to fuzzing. This study goes over the 

different ways that ML has been used for input generation 

in this section. This demonstrates how deep learning (DL) 

and generalised algorithms (GAs) for unsupervised 

learning have successfully been applied to the generation 

of input. Although this research tends to be more 

exploratory, this also covers how RL and supervised 

learning are applied to various forms of input generation. 

Genetic Algorithms, GAs is the most frequently used ML 

input generation technique [17, 18, 21, 34, 37]. The 

fundamental input generation algorithms in evolutionary 

fuzzers are frequently provided by GAs, a class of 

unsupervised ML inspired by biological evolution. 

Utilizing a GA involves these 3 main steps: First, create a 

small base population of inputs, then transform those 

inputs, and finally, assess how well the transformed inputs 
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performed. On the inputs that perform the best based on a 

selected metric, this process is repeated. A set of seed 

programme inputs make up the base population of inputs 

for fuzzers. In order to explore the code space and find new 

paths in the code, the GA will modify these seed inputs. 

Due to their capacity to expand upon previously successful 

inputs, GAs have proven effective for input generation. As 

mentioned in Section 2 and further explained in Section 2, 

evolutionary fuzzers rank inputs for selection and mutation 

using a fitness function. The performance of the fuzzer, its 

capacity to spot specific kinds of bugs, and its propensity to 

get stuck in local minima can all be significantly impacted 

by the fitness function that is selected. As a result, 

selecting a fitness function requires special consideration. 

While traditional code coverage is frequently used as a 

fitness function metric, more sophisticated heuristics, like 

the Dynamic Markov Model (DMM) heuristic, have also 

been employed [26]. This work uses a Markov process to 

represent the programme control graph, which is a 

stochastic process with transition probabilities for each 

control graph edge. This Markov model and the transition 

probabilities are used by the DMM heuristic to produce a 

fitness function. This setup, as opposed to code coverage, 

enables more precise control of the fuzzer, directing it 

towards particular sections of the code that might have a 

bug or flaw. A promising area of research may be the 

creation of new fitness functions that induce desired fuzzer 

behaviours because the fitness function that is selected is a 

significant determinant of fuzzer behaviour. For particular 

fuzzing objectives, fitness functions that enable finer-

grained control of the fuzzer might be more advantageous. 

Neural networks and deep learning. In order to enhance 

generation-based and mutation-based fuzzers, deep 

learning (DL) and neural networks (NNs) have been 

applied to input generation. The most popular DL 

technique used for fuzzing is recurrent neural networks 

(RNN) [36]. For use in input generation, researchers have 

focused on Long-Short Term Memory (LSTM) [36] 

networks, a variation of the RNN. 

To create input grammar for PDF files in generation-

based fuzzers, Godefroid et al. used LSTMs in one study 

[24]. LSTMs have demonstrated promise in a variety of 

tasks involving sequence generation [27]. Godefroid et al. 

discovered, however, that the objectives of fuzzing and 

LSTM input grammar learning frequently clash: LSTMs 

are biassed towards producing well-formed inputs, whereas 

fuzzers aim to produce model inputs that investigate novel 

programme states. A sampling strategy was used to select 

inputs produced by the LSTM in order to get around this 

paradox, resulting in an input grammar with a healthy mix 

of well-formed and improperly-formed inputs. The use of 

ML for input grammar generation is a promising method 

for boosting code coverage, according to experimental 

results. 

Rajpal et al. integrated DL into AFL in a different study 

to broaden the coverage of the fuzzer by picking which 

input bytes to mutate [5]. A heat map indicating the 

predicted likelihood of increasing code coverage when any 

specific byte is mutated was created using a NN. The 

following four sequence learning architectures were 

compared to produce the heatmap. The four most common 

LSTMs are the standard LSTM, a bidirectional LSTM 

[36], Seq2Seq [14], which transforms a sequence into 

another sequence, and a variant of Seq2Seq [3] that uses an 

attention mechanism to concentrate on the most crucial 

portions of an input. Each model improved code coverage 

in some circumstances, but the standard LSTM model 

performed slightly better than the others overall. 

According to experimental results, standard AFL 

performed better on the PNG format than DL-augmented 

AFL did on the ELF, XML, and PDF formats. Modelling 

programme behaviour is an alternative method of 

generating inputs, and the most promising inputs are then 

chosen using the model. The behaviour of a programme 

was modelled using the NEUZZ method as a smooth 

continuous function using a shallow NN [38]. Based on a 

seed input, the NN was trained to predict the program's 

branching behaviour. It was discovered experimentally that 

the gradients generated during training, particularly the 

larger gradients, were helpful in pinpointing which input 

bytes control branching behaviour. This knowledge 

allowed NEUZZ to experimentally outperform common 

fuzzers like AFL and Angora on some programmes by 

directing fuzzer mutations. The Angora fuzzing tool was 

used by Chen et al. to model programme behaviour as well 

[12]. To depict the route from a program's starting point to 

a given branch constraint, Angora used a discrete function. 

The function representation was then used to implement 

gradient descent over brief discrete intervals in order to 

identify a set of inputs that satisfy the constraint and 

advance the programme to that particular branch. The 

ability to efficiently resolve branch constraints and 

experimentally outperform AFL and symbolic execution on 

some programmes was demonstrated by this method. 

Cheng et al. [13] implemented another alternative 

strategy for input generation using DL. In this method, 

new programme paths were predicted using RNNs. 

Following that, these paths were fed into a Seq2Seq model, 

which created fresh seed inputs for the fuzzer that was 

intended to follow the predicted paths. The generated 

corpus increased fuzzer code coverage for the PDF, PNG, 

and TFF formats, according to this preliminary study's 

experimental results. 

Although DL and NN applications for input generation 
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show promise, there are still obstacles in the way of more 

widespread use. First off, since DL models need a lot of 

computation time to train, it is unlikely that training can be 

practically incorporated into the fuzzing process. Training 

individual models for individual programmes could be an 

alternative, but this is also probably not practical. Many of 

these studies made an effort to address these problems. For 

instance, Rajpal et al. reduce training costs by training the 

NN on a limited set of inputs prior to the start of fuzzing 

[5]. She et al., on the other hand, only used retraining with 

the most beneficial data points, which resulted in a more 

limited form of model re-training throughout the fuzzing 

process [38]. Both of these techniques shorten training 

times, but it is unclear how they will ultimately affect 

fuzzing performance. The development of techniques to 

transfer previously trained models between programmes 

could be an alternative to reducing the size of the data. . 

Although it is unclear how these methods may affect 

performance, they may eliminate or drastically reduce the 

amount of model training necessary for fuzzing previously 

unexplored programmes. Performance consistency across 

file formats is a second hindrance for DL applications to 

fuzzing. Numerous of these studies showed that while 

other file formats could not compete with state-of-the-art 

methods, DL consistently improved fuzzing performance 

for some file formats, such as PDF. Future studies may be 

helpful to comprehend the suitability of DL and NNs for 

particular file formats. 

Reinforcement learning (RL) has been used by two 

groups for input generation [29], [2]. By altering network 

packets sent to a host, Becker et al. used the SARSA 

algorithm [29] to fuzz the IPv6 protocol [4]. The SARSA 

algorithm determines the agent's optimal behaviour by 

taking into account both its current state and its actions. In 

order to learn a grammar describing inputs for generation-

based fuzzers on the PDF format [9], Bottinger et al. used a 

deep Q-learning network [42]. To translate states into 

actions, the deep Q-learning network used a deep neural 

network. These studies provide crucial information for RL 

input generation applications. They first demonstrate the 

importance of programme representation in the training of 

successful RL agents. The IPv6 protocol was represented 

by Becker et al. using a finite state machine, where each 

state represented the host's current response to a specific 

packet and transitions between states represented potential 

packet mutations. The Markov decision process was 

another type of finite state machine that Bottinger et al. 

used to represent problems. Stochastic transitions between 

states are a characteristic of Markov Decision Processes. In 

this study, the transitions represented probabilistic rewrite 

rules for the seed input at each state, while the states 

represented a specific seed input for the fuzzer. Becker and 

Bottinger, therefore, Second, they shed light on how to 

define an agent's reward function, which is frequently the 

most difficult part of RL. Becker and colleagues developed 

a multi-part reward function using the following standards: 

amount of programme functions that are called from a 

single input, the existence of an error, and the potential for 

message corruption or delay in the program's response [4]. 

The agent received the clearest indication that it had 

entered an intriguing region of the code space when the 

error appeared. Even in the absence of the error signal, the 

programme response was used to direct the agent. As a 

result, each component of the reward function had a 

specific function in directing the agent, and omitting any 

one of these criteria might have led to a less efficient agent. 

Bottinger et al. experimented with three different reward 

functions: one that used execution time, another that used 

code coverage, and a third that combined the two. The 

reward function affected the fuzzer's investigation of the 

input space in both studies. For instance, the agent learned 

inputs that made the programme terminate quickly when 

Bottinger used execution time as a reward. The research by 

Becker and Bottinger suggests that reward functions 

should be carefully defined, taking into account the type of 

software programme, the kinds of bugs that need to be 

found, the fuzzing metrics at hand, and the ultimate 

fuzzing goals. Traditional fuzzers don't yet support RL, 

and applications are still hypothetical. A deeper 

comprehension of reward functions is an important first 

step in this direction. More specifically, it is not yet clear 

whether there are reward functions that are consistently 

effective or how programme dependent a reward function 

should be. 

Machine learning used for symbolic execution can aid in 

producing useful new inputs for fuzzers, but computational 

cost and path explosion continue to be major obstacles. The 

viability of enhancing constraint solving, which could 

support symbolic execution for fuzzer input generation, is 

the subject of numerous ML research projects. 

Unfortunately, current attempts to use ML are merely 

feasibility studies and do not match state-of-the-art 

methods using graph algorithms [31]. 

Supervised Learning is used to resolve equations 

involving constraints. To determine whether constraint 

equations had valid solutions or not, graph neural networks 

were employed in one study [10]. In a different study, Wu 

combined Monte Carlo techniques with logistic regression 

to find the initial values that increased the likelihood of 

discovering a workable solution to a constraint equation. 

Using these initial, promising values, the constraint 

equation was solved using the Monte Carlo methods, and 

the validity of the solution was shown by logistic 

regression. The Minisat solver ran faster after 

incorporating these new initial values [6]. Another study 
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[42] trained LSTMs (i.e., DL) to resolve constraint 

equations. The LSTMs were able to solve constraint 

equations from domains they had not been trained on, 

showing that the DL models can generalise even though 

they could not outperform cutting-edge constraint solvers. 

Another technique created by Shiqi et al. represented 

constraint equations using NNs [30]. Gradient descent was 

then used to find the answers to these constraint equations. 

In general, these studies each present distinct approaches 

to solving constraint equations. Despite not being state-of-

the-art, they still provide a solid foundation for using 

supervised learning to reduce the amount of time needed to 

solve constraint equations. 

RL was used by Mairy et al. to enhance neighbourhood-

specific search techniques [40]. Local neighbourhood 

search techniques find answers to constraint equations 

iteratively by determining answers to different subsets of 

the constraint equation and combining the subsets to create 

the final solution. These local neighbourhood search 

methods need to carefully consider the space of potential 

subsets in order to find useful subsets. In an effort to speed 

up the process of finding a valid solution, the RL agent was 

directed to select subsets that were more likely to do so. 

Instead of directly solving constraint equations, one 

research project used machine learning to condense the 

size of the solution search space. Li et al. attempted to 

decrease the number of infeasible paths, i.e., paths that can 

never be reached because of conflicting constraints, by 

redefining the typical collection of path constraints as an 

optimization problem [35]. They solve the optimization 

problems using the ML technique RACOS [1], an 

optimization technique that scales well to high 

dimensional problems; however, only very small 

programmes up to 335 lines were analysed. Initial 

experiments with ML to enhance symbolic execution 

appear promising, but it is still unclear how useful ML will 

actually be in this situation. Modern research is typically 

limited to minor issues that don't challenge cutting-edge 

methods. Additionally, the combined fuzzer and symbolic 

execution techniques described in Section 2 have not yet 

had this research put to use. If ML can help improve these 

combined techniques is an open question. 

V. CONCLUSION 

This study talks about fuzzing applications of machine 

learning (ML) in this survey. Supervised learning is rarely 

used to support the fuzzing process because unsupervised 

and reinforcement learning techniques are more naturally 

suited to fuzzing problems. The Generate Inputs phase of 

the fuzzing process is where ML is most frequently used to 

support it. As a result of tools like AFL incorporating 

unsupervised algorithms into their workflow, unsupervised 

methods currently offer the greatest advantages. Deep 

learning and reinforcement learning, on the other hand, 

are not yet widely used but are being researched for 

potential advancements. Additionally, ML has been used to 

post-fuzz Interesting Program States, which aids in 

triaging crashes and supports root cause analysis. The 

Select Inputs stage of the fuzzing process has not, however, 

been subject to the application of ML, perhaps because it is 

not a significant bottleneck. Additionally, post-fuzzing 

reproducibility of crashes has not been evaluated using 

ML. Lack of training data, difficulty transferring models 

between programmes, and computationally intractable 

training times are just a few of the reasons why ML is 

likely absent from some parts of the fuzzing process. 

Although ML has been crucial to the operation of 

fuzzing systems, there are still many unresolved research 

issues. Recently, a large number of researchers have started 

allocating funds to tackle some of these problems. Future 

vulnerability assessments of programmes will still place a 

high priority on fuzzing. This research anticipate that ML 

will continue to be used to address bottlenecks in the 

fuzzing process as this field of study develops. 
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