
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-12, Mar 2023

74 | IJREAMV08I1296105 DOI : 10.35291/2454-9150.2023.0052 © 2023, IJREAM All Rights Reserved.

A Study On Fuzzing Techniques and The

Adaptability of Machine Learning Approach
Dr. Deepa A, Associate professor, Department of MCA, Nehru college of Engineering and Research

Centre, Thrissur, India, achatdeepajayan@gmail.com

Basil Jiji, Student Scholar MCA, Nehru College of Engineering and Research Centre, Thrissur,

India, basilgg24@gmail.com

Abstract: Over the past several decades, fuzzing has significantly enhanced software development and testing.

Applications of fuzzing have been the subject of recent research. ML provides practical techniques to solve difficulties

in the fuzzing process. This review examines the most recent work on fuzzing and ML. This review addresses effective

ML fuzzing applications, briefly examines difficulties encountered, and encourages more study to address fuzzing

bottlenecks.

Keywords —Deep Neural Network, Fuzzing, Mutation Operator, Machine Learning, Testcase, Vulnerability

I. INTRODUCTION

Fuzzing is a technique used to test a programme for errors

and vulnerabilities by feeding it a large number of

generated inputs, both valid and invalid. Fuzzing is

technique used inorder to find bugs and vulnerabilities.

Fuzzing is a technique in which a large number of

generated inputs both valid and invalid are fed into a

programme. A large portion of this process is automated by

fuzzers, which collect initial programme knowledge and

report on any intriguing programme states found.

Frequently, a human user analyses these output programme

states in addition to providing initial programme

knowledge. Historically, "interesting programme states"

were software crashes that exposed vulnerabilities and

flaws in the programme, but more sophisticated

programme monitoring techniques now enable the

detection of additional interesting states. A fuzzer's

objective is to produce inputs that make the programme

execute programme paths in order to find those that result

in intriguing programme states. As a result, coverage the

variety of programme paths explored is frequently used to

evaluate fuzzers. A Naive fuzzer is one that creates input

that is entirely random and feeds it to a software. Although

naive fuzzers are relatively simple to create, they are not

likely to quickly achieve interesting programme states.

Modern fuzzers can be divided into three main categories:

mutation-based, generation-based, and evolutionary.

Blindly altering or changing the input given to the

programme is what mutation-based fuzzers do. The

majority of the time, mutation-based fuzzers are unable to

make intelligent mutation selections because they are

unaware of the expected input format or specifications.

Peach is a fuzzer that has the ability to perform both

generation-based and mutation-based fuzzing. The

expected input format or protocol is obtained by

generation-based fuzzers through specifications. On the

basis of these requirements, generation-based fuzzers

produce inputs. Peach and Sulley, a Python fuzzing

framework, are examples of generation-based fuzzers that

can produce inputs for file transfer protocols, network

protocols, and file formats. The most recent kind of

fuzzers, evolutionary fuzzers, improve on mutation-based

fuzzers by favouring some inputs over others for mutation.

In particular, evolutionary fuzzers try to assess what each

input makes the programme do and modify their behaviour

in response to that assessment. Modern evolutionary

fuzzers actually rank inputs using a fitness function (often

coverage) and pick the top-ranked inputs to mutate.

Honggfuzz, AFL, and libFuzzer are a few examples of

evolutionary fuzzers.

II. LITERATURE SURVEY

Please Over the past three decades, fuzzers, or automated

tools to perform fuzzing, have been crucial in quality

assurance, system administration, and vulnerability

assessment [19, 20, 41, 23]. In this survey, this examine

how some contemporary fuzzers incorporate various forms

of machine learning. Modern fuzzers now incorporate

techniques from other disciplines (ML). Due to their

widespread use, this concentrates specifically on fuzzers

used for vulnerability assessment. Computer models can be

trained using machine learning to carry out specific tasks

without having to be explicitly programmed. From image

processing to sequence modelling, ML techniques are used

to solve a variety of issues [25, 32, 22]. This study is

concentrated on three main ML subtypes, each of which is

best suited for a particular task.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-12, Mar 2023

75 | IJREAMV08I1296105 DOI : 10.35291/2454-9150.2023.0052 © 2023, IJREAM All Rights Reserved.

When training a model to determine the class label of a

given data point, such as whether an image contains a

particular object, supervised learning is used. Data sets

with explicit labels for each data point are necessary for

this kind of machine learning. Instead of labelling classes,

unsupervised learning is used to train a model to look for

patterns or similarities between data points. This type of

ML is used when the data does not have explicit labels.

Reinforcement learning is used to train a model, often

referred to as an agent, to take an optimal set of actions in

an environment. This type of ML rewards the agent for

each action it takes in the environment. Similar to

supervised learning, the rewards act as a label for the agent

and provide an indication of the optimal actions to take.

Thus, the agent can be trained to take a set of actions

which lead to the highest reward. Each of these three types

can also take on a particular form of ML called deep

learning. Deep learning refers to a type of hierarchical

learning that can be used to learn the underlying features

and structure of a set of data points [25].

This survey looks at how machine learning (ML) has

been used to answer key research questions in fuzzers used

for programme vulnerability assessment. This study is

representative rather than exhaustive; no attempt is made

to cover all ML in fuzzer applications. This provides a

brief summary of the fuzzing process in Section 3. This

examines past and present ML-fuzzing research in Section

3 of this paper. This also talks about the challenges of

using ML for fuzzing. This sums up how ML has been

used to tackle fuzzing and how it might be used to tackle

fuzzing in the future.

III. WORKING OF FUZZING

Phase 1: Program Knowledge

Typically, program knowledge is developed manually

and provided by the human user. The following three

stages of the fuzzing process, however, are automatically

iterated over by fuzzers. A fuzzer will typically continue

running until the user ends it. It will generate new inputs,

down-select and order inputs to send to the programme,

watch the programme for interesting programme states,

and repeat. Next, examining of these phases.

Phase 2: Testcase Generation

The fuzzer creates inputs to feed to the programme

through the identified interfaces in the first stage of the

fuzzing process using programme knowledge. This phase's

objective is to produce inputs that will investigate novel

and intriguing programme states. Only the most pertinent

of the new inputs generated here will be sent on to the

programme in the following stage of the fuzzing process.

The fuzzer here, however, aims to produce the most

pertinent inputs.

Phase 3: Choose Inputs

The fuzzer chooses and arranges the inputs to be sent to

the programme in the second stage of the fuzzing process.

Remember that a fuzzer's objective is to rapidly test new

programme paths. However, as stated by Böhme et al., the

majority of inputs exercise the same few programme paths

[7, 8]. A fuzzer must effectively utilise its input corpus and

reduce the amount of computation required to find new

programme paths in order to counter this. This propensity

of inputs to explore specific programme paths can be

thwarted by input test scheduling, also known as seed

selection.

To determine which new inputs are most likely to result

in novel and disparately interesting programme states,

input test scheduling ranks and selects inputs and input

order. Test scheduling for vulnerability assessment

typically selects inputs to maximise the number of bugs

found [11]. Finding the ideal scheduling approach for a

specific programme and fuzzer remains a research

challenge. Input test scheduling is essential to efficiently

exploring large or infinite input search spaces. Fortunately,

tools like FuzzSim enable quick comparison of input

selection methods using data on input performance

gathered over numerous process iterations [11].

Phase 4: Runtime Monitoring

The third stage of fuzzing involves feeding the

programme with selected inputs and monitoring the output

to find interesting programme states. A particular

programme behaviour is present in "interesting programme

states" when they are present. A crash typically depicts the

behaviour of interest (i.e., the programme fails

unexpectedly).

However, it is possible to use any behaviour that can be

observed through programme instrumentation to pinpoint

intriguing programme states. For instance, Valgrind can

spot memory corruption even if it doesn't result in a crash

[16]. Heelan also employs fuzzing to find potential

programme memory allocators [28]. Interesting behaviours

are observable behaviours that are associated with potential

flaws or vulnerabilities for vulnerability assessment. A

fuzzer needs programme knowledge about how to

instrument the programme and what makes for an

interesting programme state, as was previously mentioned.

This data is frequently provided by a human user, but it is

still difficult to define what constitutes an interesting

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-12, Mar 2023

76 | IJREAMV08I1296105 DOI : 10.35291/2454-9150.2023.0052 © 2023, IJREAM All Rights Reserved.

programme state. What observable behaviours, in the

context of vulnerability assessment, are most important for

locating flaws or vulnerabilities?

Phase 5: Input Evaluation

The fuzzer assesses the performance of inputs in the

fourth stage of the fuzzing process. Code coverage is a

common fuzzing technique that is used to assess an input's

usefulness. If an input prompts the execution of a new

section of code, usually a new basic block, it has increased

coverage and is rated highly. An input receives a high

rating from the libFuzzer tool's data coverage metric if new

data values appear at a previously examined comparison in

the code. Some fuzzers rate inputs that result in a crash

highly in order to find bugs.

Phase 6: Program states

The user examines intriguing programme states that the

fuzzer outputs after the fuzzing process. This process

frequently involves a lot of manual labour and gains from

research being done in software engineering-related fields.

The user examines each output state to identify the

underlying cause of any intriguing behaviour present in

that state. Frequently, the user will manually watch as the

programme processes the associated input in an effort to

isolate the problem. After that, the user decides if the root

cause indicates a fresh flaw or vulnerability. Fuzzers

frequently produce an excessive amount of intriguing

programme states. To determine which intriguing

programme states warrant further investigation, the user

must perform triage. Output programme states,

unfortunately, frequently have the same underlying cause.

Even worse, states with the same underlying cause may

manifest very differently. For instance, because the effect

of the vulnerability is not immediately noticed, a memory

corruption vulnerability can cause crashes in numerous

different parts of the programme, with wildly different

memory images. Triage and root cause analysis continue to

be difficult problems for research. Some automated tools

try to deduplicate fuzzer outputs [28] or root causes, but

these are frequently flawed.

IV. METHODOLOGY

Machine learning gains new knowledge or abilities by

learning from available sample data or experience and

automatically optimizing the performance of computer

systems themselves. Tasks of machine learning can be

categorised into Traditional Machine Learning, Deep

Learning and Reinforcement Learning. Traditional

Machine Learning is divided into Monitored Learning,

Unsupervised Learning, and Semi-Monitored Learning,

depending on whether or not input data are labelled and

how many data are labelled. Deep Learning is a multi-non-

linear artificial neural data display learning network that

represents a deeper expansion of the machine-learning

algorithms. The original "Feature Engineering" will be

replaced on the basis of the method of representative

learning and the machine will be able to automatically

extract beneficial features from input data. Learning to

reinforce is a machine learning branch that describes the

problem that agents can maximize feedback or achieve

specific goals by learning strategies in interacting with the

environment. Contrary to learning from a wide range of

input examples, reinforcement training is essentially an

automated decision making process. Current techniques of

machine learning have been used in the fields of statistical

education, Data Mining, Computer Vision and the

processing of natural language.

This section, looks at research that fuzzes data using

machine learning (ML). ML has been used to create new

inputs for the fuzzing process. With fuzzing tools like AFL

[34] integrating genetic algorithms (GAs) into the input

generation process, unsupervised learning has seen the

most successful applications to input generation.

Additionally, reinforcement learning (RL) and supervised

learning (SL) have both recently been applied to input

generation [4, 5, 9, 38]. Additionally, symbolic execution

has been used with all three types of ML [10, 40, 42, 6],

primarily to speed up constraint equation solve times. For

crash triage and root cause categorization, both supervised

and unsupervised learning have been used in post-fuzzing

processes [15, 33, 39].

A test case can be created by mutating the seed file that is

constructed on the basis of known input formats. As a last

input the contents of a test case will directly influence

whether an error is triggered or not. Therefore, creating a

test case with a high level of code coverage or

susceptibility-oriented testing can effectively increase the

efficiency of detecting vulnerabilities in Fuzzer. The

generate inputs stage is where machine learning is most

effectively applied to fuzzing. This study goes over the

different ways that ML has been used for input generation

in this section. This demonstrates how deep learning (DL)

and generalised algorithms (GAs) for unsupervised

learning have successfully been applied to the generation

of input. Although this research tends to be more

exploratory, this also covers how RL and supervised

learning are applied to various forms of input generation.

Genetic Algorithms, GAs is the most frequently used ML

input generation technique [17, 18, 21, 34, 37]. The

fundamental input generation algorithms in evolutionary

fuzzers are frequently provided by GAs, a class of

unsupervised ML inspired by biological evolution.

Utilizing a GA involves these 3 main steps: First, create a

small base population of inputs, then transform those

inputs, and finally, assess how well the transformed inputs

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-12, Mar 2023

77 | IJREAMV08I1296105 DOI : 10.35291/2454-9150.2023.0052 © 2023, IJREAM All Rights Reserved.

performed. On the inputs that perform the best based on a

selected metric, this process is repeated. A set of seed

programme inputs make up the base population of inputs

for fuzzers. In order to explore the code space and find new

paths in the code, the GA will modify these seed inputs.

Due to their capacity to expand upon previously successful

inputs, GAs have proven effective for input generation. As

mentioned in Section 2 and further explained in Section 2,

evolutionary fuzzers rank inputs for selection and mutation

using a fitness function. The performance of the fuzzer, its

capacity to spot specific kinds of bugs, and its propensity to

get stuck in local minima can all be significantly impacted

by the fitness function that is selected. As a result,

selecting a fitness function requires special consideration.

While traditional code coverage is frequently used as a

fitness function metric, more sophisticated heuristics, like

the Dynamic Markov Model (DMM) heuristic, have also

been employed [26]. This work uses a Markov process to

represent the programme control graph, which is a

stochastic process with transition probabilities for each

control graph edge. This Markov model and the transition

probabilities are used by the DMM heuristic to produce a

fitness function. This setup, as opposed to code coverage,

enables more precise control of the fuzzer, directing it

towards particular sections of the code that might have a

bug or flaw. A promising area of research may be the

creation of new fitness functions that induce desired fuzzer

behaviours because the fitness function that is selected is a

significant determinant of fuzzer behaviour. For particular

fuzzing objectives, fitness functions that enable finer-

grained control of the fuzzer might be more advantageous.

Neural networks and deep learning. In order to enhance

generation-based and mutation-based fuzzers, deep

learning (DL) and neural networks (NNs) have been

applied to input generation. The most popular DL

technique used for fuzzing is recurrent neural networks

(RNN) [36]. For use in input generation, researchers have

focused on Long-Short Term Memory (LSTM) [36]

networks, a variation of the RNN.

To create input grammar for PDF files in generation-

based fuzzers, Godefroid et al. used LSTMs in one study

[24]. LSTMs have demonstrated promise in a variety of

tasks involving sequence generation [27]. Godefroid et al.

discovered, however, that the objectives of fuzzing and

LSTM input grammar learning frequently clash: LSTMs

are biassed towards producing well-formed inputs, whereas

fuzzers aim to produce model inputs that investigate novel

programme states. A sampling strategy was used to select

inputs produced by the LSTM in order to get around this

paradox, resulting in an input grammar with a healthy mix

of well-formed and improperly-formed inputs. The use of

ML for input grammar generation is a promising method

for boosting code coverage, according to experimental

results.

Rajpal et al. integrated DL into AFL in a different study

to broaden the coverage of the fuzzer by picking which

input bytes to mutate [5]. A heat map indicating the

predicted likelihood of increasing code coverage when any

specific byte is mutated was created using a NN. The

following four sequence learning architectures were

compared to produce the heatmap. The four most common

LSTMs are the standard LSTM, a bidirectional LSTM

[36], Seq2Seq [14], which transforms a sequence into

another sequence, and a variant of Seq2Seq [3] that uses an

attention mechanism to concentrate on the most crucial

portions of an input. Each model improved code coverage

in some circumstances, but the standard LSTM model

performed slightly better than the others overall.

According to experimental results, standard AFL

performed better on the PNG format than DL-augmented

AFL did on the ELF, XML, and PDF formats. Modelling

programme behaviour is an alternative method of

generating inputs, and the most promising inputs are then

chosen using the model. The behaviour of a programme

was modelled using the NEUZZ method as a smooth

continuous function using a shallow NN [38]. Based on a

seed input, the NN was trained to predict the program's

branching behaviour. It was discovered experimentally that

the gradients generated during training, particularly the

larger gradients, were helpful in pinpointing which input

bytes control branching behaviour. This knowledge

allowed NEUZZ to experimentally outperform common

fuzzers like AFL and Angora on some programmes by

directing fuzzer mutations. The Angora fuzzing tool was

used by Chen et al. to model programme behaviour as well

[12]. To depict the route from a program's starting point to

a given branch constraint, Angora used a discrete function.

The function representation was then used to implement

gradient descent over brief discrete intervals in order to

identify a set of inputs that satisfy the constraint and

advance the programme to that particular branch. The

ability to efficiently resolve branch constraints and

experimentally outperform AFL and symbolic execution on

some programmes was demonstrated by this method.

Cheng et al. [13] implemented another alternative

strategy for input generation using DL. In this method,

new programme paths were predicted using RNNs.

Following that, these paths were fed into a Seq2Seq model,

which created fresh seed inputs for the fuzzer that was

intended to follow the predicted paths. The generated

corpus increased fuzzer code coverage for the PDF, PNG,

and TFF formats, according to this preliminary study's

experimental results.

Although DL and NN applications for input generation

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-12, Mar 2023

78 | IJREAMV08I1296105 DOI : 10.35291/2454-9150.2023.0052 © 2023, IJREAM All Rights Reserved.

show promise, there are still obstacles in the way of more

widespread use. First off, since DL models need a lot of

computation time to train, it is unlikely that training can be

practically incorporated into the fuzzing process. Training

individual models for individual programmes could be an

alternative, but this is also probably not practical. Many of

these studies made an effort to address these problems. For

instance, Rajpal et al. reduce training costs by training the

NN on a limited set of inputs prior to the start of fuzzing

[5]. She et al., on the other hand, only used retraining with

the most beneficial data points, which resulted in a more

limited form of model re-training throughout the fuzzing

process [38]. Both of these techniques shorten training

times, but it is unclear how they will ultimately affect

fuzzing performance. The development of techniques to

transfer previously trained models between programmes

could be an alternative to reducing the size of the data. .

Although it is unclear how these methods may affect

performance, they may eliminate or drastically reduce the

amount of model training necessary for fuzzing previously

unexplored programmes. Performance consistency across

file formats is a second hindrance for DL applications to

fuzzing. Numerous of these studies showed that while

other file formats could not compete with state-of-the-art

methods, DL consistently improved fuzzing performance

for some file formats, such as PDF. Future studies may be

helpful to comprehend the suitability of DL and NNs for

particular file formats.

Reinforcement learning (RL) has been used by two

groups for input generation [29], [2]. By altering network

packets sent to a host, Becker et al. used the SARSA

algorithm [29] to fuzz the IPv6 protocol [4]. The SARSA

algorithm determines the agent's optimal behaviour by

taking into account both its current state and its actions. In

order to learn a grammar describing inputs for generation-

based fuzzers on the PDF format [9], Bottinger et al. used a

deep Q-learning network [42]. To translate states into

actions, the deep Q-learning network used a deep neural

network. These studies provide crucial information for RL

input generation applications. They first demonstrate the

importance of programme representation in the training of

successful RL agents. The IPv6 protocol was represented

by Becker et al. using a finite state machine, where each

state represented the host's current response to a specific

packet and transitions between states represented potential

packet mutations. The Markov decision process was

another type of finite state machine that Bottinger et al.

used to represent problems. Stochastic transitions between

states are a characteristic of Markov Decision Processes. In

this study, the transitions represented probabilistic rewrite

rules for the seed input at each state, while the states

represented a specific seed input for the fuzzer. Becker and

Bottinger, therefore, Second, they shed light on how to

define an agent's reward function, which is frequently the

most difficult part of RL. Becker and colleagues developed

a multi-part reward function using the following standards:

amount of programme functions that are called from a

single input, the existence of an error, and the potential for

message corruption or delay in the program's response [4].

The agent received the clearest indication that it had

entered an intriguing region of the code space when the

error appeared. Even in the absence of the error signal, the

programme response was used to direct the agent. As a

result, each component of the reward function had a

specific function in directing the agent, and omitting any

one of these criteria might have led to a less efficient agent.

Bottinger et al. experimented with three different reward

functions: one that used execution time, another that used

code coverage, and a third that combined the two. The

reward function affected the fuzzer's investigation of the

input space in both studies. For instance, the agent learned

inputs that made the programme terminate quickly when

Bottinger used execution time as a reward. The research by

Becker and Bottinger suggests that reward functions

should be carefully defined, taking into account the type of

software programme, the kinds of bugs that need to be

found, the fuzzing metrics at hand, and the ultimate

fuzzing goals. Traditional fuzzers don't yet support RL,

and applications are still hypothetical. A deeper

comprehension of reward functions is an important first

step in this direction. More specifically, it is not yet clear

whether there are reward functions that are consistently

effective or how programme dependent a reward function

should be.

Machine learning used for symbolic execution can aid in

producing useful new inputs for fuzzers, but computational

cost and path explosion continue to be major obstacles. The

viability of enhancing constraint solving, which could

support symbolic execution for fuzzer input generation, is

the subject of numerous ML research projects.

Unfortunately, current attempts to use ML are merely

feasibility studies and do not match state-of-the-art

methods using graph algorithms [31].

Supervised Learning is used to resolve equations

involving constraints. To determine whether constraint

equations had valid solutions or not, graph neural networks

were employed in one study [10]. In a different study, Wu

combined Monte Carlo techniques with logistic regression

to find the initial values that increased the likelihood of

discovering a workable solution to a constraint equation.

Using these initial, promising values, the constraint

equation was solved using the Monte Carlo methods, and

the validity of the solution was shown by logistic

regression. The Minisat solver ran faster after

incorporating these new initial values [6]. Another study

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-12, Mar 2023

79 | IJREAMV08I1296105 DOI : 10.35291/2454-9150.2023.0052 © 2023, IJREAM All Rights Reserved.

[42] trained LSTMs (i.e., DL) to resolve constraint

equations. The LSTMs were able to solve constraint

equations from domains they had not been trained on,

showing that the DL models can generalise even though

they could not outperform cutting-edge constraint solvers.

Another technique created by Shiqi et al. represented

constraint equations using NNs [30]. Gradient descent was

then used to find the answers to these constraint equations.

In general, these studies each present distinct approaches

to solving constraint equations. Despite not being state-of-

the-art, they still provide a solid foundation for using

supervised learning to reduce the amount of time needed to

solve constraint equations.

RL was used by Mairy et al. to enhance neighbourhood-

specific search techniques [40]. Local neighbourhood

search techniques find answers to constraint equations

iteratively by determining answers to different subsets of

the constraint equation and combining the subsets to create

the final solution. These local neighbourhood search

methods need to carefully consider the space of potential

subsets in order to find useful subsets. In an effort to speed

up the process of finding a valid solution, the RL agent was

directed to select subsets that were more likely to do so.

Instead of directly solving constraint equations, one

research project used machine learning to condense the

size of the solution search space. Li et al. attempted to

decrease the number of infeasible paths, i.e., paths that can

never be reached because of conflicting constraints, by

redefining the typical collection of path constraints as an

optimization problem [35]. They solve the optimization

problems using the ML technique RACOS [1], an

optimization technique that scales well to high

dimensional problems; however, only very small

programmes up to 335 lines were analysed. Initial

experiments with ML to enhance symbolic execution

appear promising, but it is still unclear how useful ML will

actually be in this situation. Modern research is typically

limited to minor issues that don't challenge cutting-edge

methods. Additionally, the combined fuzzer and symbolic

execution techniques described in Section 2 have not yet

had this research put to use. If ML can help improve these

combined techniques is an open question.

V. CONCLUSION

This study talks about fuzzing applications of machine

learning (ML) in this survey. Supervised learning is rarely

used to support the fuzzing process because unsupervised

and reinforcement learning techniques are more naturally

suited to fuzzing problems. The Generate Inputs phase of

the fuzzing process is where ML is most frequently used to

support it. As a result of tools like AFL incorporating

unsupervised algorithms into their workflow, unsupervised

methods currently offer the greatest advantages. Deep

learning and reinforcement learning, on the other hand,

are not yet widely used but are being researched for

potential advancements. Additionally, ML has been used to

post-fuzz Interesting Program States, which aids in

triaging crashes and supports root cause analysis. The

Select Inputs stage of the fuzzing process has not, however,

been subject to the application of ML, perhaps because it is

not a significant bottleneck. Additionally, post-fuzzing

reproducibility of crashes has not been evaluated using

ML. Lack of training data, difficulty transferring models

between programmes, and computationally intractable

training times are just a few of the reasons why ML is

likely absent from some parts of the fuzzing process.

Although ML has been crucial to the operation of

fuzzing systems, there are still many unresolved research

issues. Recently, a large number of researchers have started

allocating funds to tackle some of these problems. Future

vulnerability assessments of programmes will still place a

high priority on fuzzing. This research anticipate that ML

will continue to be used to address bottlenecks in the

fuzzing process as this field of study develops.

REFERENCES

[1] Yang Yu, Hong Qian, and Yi-Qi Hu. 2016. Derivative-Free

Optimization via Classification (Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence).

[2] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil

Anthony Bharath. 2017. A Brief Survey of Deep Reinforcement

Learning. CoRR abs/1708.05866 (2017). arXiv:1708.05866 https:

//arxiv.org/abs/1708.05866

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014.

Neural Machine Translation by Jointly Learning to Align and

Translate. CoRR abs/1409.0473 (2014). arXiv:1409.0473

http://arxiv.org/abs/1409.0473

[4] Sheila Becker, Humberto Abdelnur, Radu State, and Thomas Engel.

2010. An Autonomic Testing Framework for IPv6 Configuration

Protocols. In Mechanisms for Autonomous Management of Networks

and Services, Burkhard Stiller and Filip De Turck (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 65–76.

[5] William Blum, Mohit Rajpal, and Rishabh Singh. 2017. Not all bytes

are equal: Neural byte sieve for fuzzing. (November 2017).

https://www.microsoft.com/en-us/research/publication/ not-all-bytes-

are-equal-neural-byte-sieve-for-fuzzing/

[6] Haoze Wu. 2017. Improve SAT-solving with Machine Learning.

CoRR abs/1710.11204 (2017). arXiv:1710.11204

http://arxiv.org/abs/1710. 11204

[7] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik

Roychoudhury. 2017. Directed Greybox Fuzzing. In Proceedings of the

2017 ACM SIGSAC Conference on Computer and Communications

Security (CCS ’17). ACM, New York, NY, USA, 2329–2344. https:

//doi.org/10.1145/3133956.3134020

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016.

Coverage-based Greybox Fuzzing as Markov Chain. In 23rd ACM

Conference on Computer and Communications Security (CCS).

[9] Konstantin Böttinger, Patrice Godefroid, and Rishabh Singh. [n. d.].

Deep Reinforcement Fuzzing. ([n. d.]). arXiv:1801.04589 http://arxiv.

org/abs/1801.04589

[10] Benedikt Bünz and Matthew Lamm. 2017. Graph Neural Networks

and Boolean Satisfiability. CoRR abs/1702.03592 (2017).

arXiv:1702.03592 http://arxiv.org/abs/1702.03592

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1710.%2011204
http://arxiv.org/abs/1702.03592

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-08, Issue-12, Mar 2023

80 | IJREAMV08I1296105 DOI : 10.35291/2454-9150.2023.0052 © 2023, IJREAM All Rights Reserved.

[11] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley.

2013. Scheduling Black-box Mutational Fuzzing. In Proceedings of the

2013 ACM SIGSAC Conference on Computer Communications

Security (CCS ’13). ACM, New York, NY, USA, 511–522.

https://doi.org/10.1145/ 2508859.2516736

[12] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by

Principled Search. In 2018 IEEE Symposium on Security and Privacy

(SP). 711–725. https://doi.org/10.1109/SP.2018.00046

[13] Liang Cheng, Yang Zhang, Yi Zhang, Chen Wu, Zhangtan Li, Yu Fu,

and Haisheng Li. 2019. Optimizing seed inputs in fuzzing with

machine learning. CoRR abs/1902.02538 (2019). arXiv:1902.02538

http://arxiv. org/abs/1902.02538

[14] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry

Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.

2014. Learning Phrase Representations using RNN Encoder-Decoder

for Statistical Machine Translation. CoRR abs/1406.1078 (2014).

arXiv:1406.1078 http://arxiv.org/abs/1406.1078

[15] Yingnong Dang, Rongxin wu, Hongyu Zhang, Dongmei Zhang, and

Peter Nobel. 2012. ReBucket: A method for clustering duplicate crash

reports based on call stack similarity. (06 2012), 1084–1093.

[16] Valgrind. 2017. Valgrind tool. http://valgrind.org

[17] Jared D. DeMott, Richard J. Enbody, and William F. Punch. 2007.

Revolutionizing the Field of Grey-box Attack Surface Testing with

Evolutionary Fuzzing. (2007).

[18] Fabien Duchene. 2013. Fuzz in the Dark: Genetic Algorithm for

BlackBox Fuzzing. In Black Hat 2013. Black Hat, Sao Paulo, Brazil.

https: //hal.inria.fr/hal-00978844

[19] Joe W. Duran and Simeon Ntafos. 1981. A Report on Random Testing.

In Proceedings of the 5th International Conference on Software

Engineering (ICSE ’81). IEEE Press, Piscataway, NJ, USA, 179–183.

http://dl.acm. org/citation.cfm?id=800078.802530

[20] Joe W. Duran and Simeon C. Ntafos. 1984. An Evaluation of Random

Testing. IEEE Trans. Softw. Eng. 10, 4 (July 1984), 438–444. https:

//doi.org/10.1109/TSE.1984.5010257

[21] James Fell. 2017. A Review of Fuzzing Tools and Methods. Technical

Report. https://dl.packetstormsecurity.net/papers/general/a-review-

offuzzing-tools-and-methods.pdf

[22] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to

Sequence Learning with Neural Networks. In Advances in Neural

Information Processing Systems 27, Z. Ghahramani, M. Welling, C.

Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran

Associates, Inc., 3104–3112. http://papers.nips.cc/paper/ 5346-

sequence-to-sequence-learning-with-neural-networks.pdf

[23] Ari Takanen, Jared Demott, and Charlie Miller. 2008. Fuzzing for

Software Security Testing and Quality Assurance. Artech House, Inc.

http://index-of.co.uk/Reversing-Exploiting/Fuzzing.pdf.

[24] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn &

Fuzz: Machine Learning for Input Fuzzing. In Proceedings of the 32nd

IEEE/ACM International Conference on Automated Software

Engineering (ASE 2017). IEEE Press, Piscataway, NJ, USA, 50–59.

http://dl.acm.org/ citation.cfm?id=3155562.3155573

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep

Learning. MIT Press. http://www.deeplearningbook.org.

[26] Sherri Sparks, Shawn Embleton, Ryan K Cunningham, and Cliff

Changchun Zou. 2007. Automated Vulnerability Analysis: Leveraging

Control Flow for Evolutionary Input Crafting. In Twenty-Third Annual

Computer Security Applications Conference (ACSAC 2007). 477–

486. https://doi.org/10.1109/ACSAC.2007.27

[27] Alex Graves. 2013. Generating Sequences With Recurrent Neural

Networks. CoRR abs/1308.0850 (2013). arXiv:1308.0850 http://arxiv.

org/abs/1308.0850

[28] Sean Heelan, Tom Melham, and Daniel Kroening. 2018. Automatic

Heap Layout Manipulation for Exploitation. In 27th USENIX Security

Symposium (USENIX Security 18). USENIX Association, Baltimore,

MD. https://www.usenix.org/conference/usenixsecurity18/

presentation/heelan

[29] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore.

1996. Reinforcement Learning: A Survey. CoRR abs/cs/9605103

(1996). arXiv:cs/9605103 https://arxiv.org/abs/cs/9605103

[30] Shen Shiqi, Shweta Shinde, Soundarya Ramesh, Abhik Roychoudhury,

and Prateek Saxena. 2019. Neuro-Symbolic Execution: Augmenting

Symbolic Execution with Neural Constraints. In NDSS Symposium

2019. https://doi.org/10.14722/ndss.2019.23530

[31] Saparya Krishnamoorthy, Michael S. Hsiao, and Loganathan

Lingappan. 2010. Tackling the Path Explosion Problem in Symbolic

ExecutionDriven Test Generation for Programs. In Proceedings of the

2010 19th IEEE Asian Test Symposium (ATS ’10). IEEE Computer

Society, Washington, DC, USA, 59–64.

https://doi.org/10.1109/ATS.2010.19

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012.

ImageNet Classification with Deep Convolutional Neural Networks. In

Advances in Neural Information Processing Systems 25, F. Pereira, C.

J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.). Curran

Associates, Inc., 1097–1105. http://papers.nips.cc/paper/ 4824-

imagenet-classification-with-deep-convolutional-neural-networks. Pdf

[33] H. Lal and G. Pahwa. 2017. Root cause analysis of software bugs using

machine learning techniques. In 2017 7th International Conference on

Cloud Computing, Data Science Engineering - Confluence. 105–111.

[34] lcamtuf. 2014. afl-fuzz: crash exploration mode. https://lcamtuf.

blogspot.com/2014/11/afl-fuzz-crash-exploration-mode.html blog

[35] Xin Li, Yongjuan Liang, Hong Qian, Yi-Qi Hu, Lei Bu, Yang Yu, Xin

Chen, and Xuandong Li. 2016. Symbolic Execution of Complex

Program Driven by Machine Learning Based Constraint Solving. In

Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering (ASE 2016). ACM, New York, NY,

USA, 554–559. https://doi.org/10.1145/2970276.2970364

[36] Zachary C. Lipton, John Berkowitz, and Charles Elkan. 2015. A

Critical Review of Recurrent Neural Networks for Sequence Learning.

CoRR abs/1506.00019 (2015). arXiv:1506.00019

http://arxiv.org/abs/1506. 00019

[37] Guang-Hong Liu, Gang Wu, Zheng Tao, Jian-Mei Shuai, and

ZhuoChun Tang. 2008. Vulnerability Analysis for X86 Executables

Using Genetic Algorithm and Fuzzing. In 2008 Third International

Conference on Convergence and Hybrid Information Technology, Vol.

2. 491–497. https://doi.org/10.1109/ICCIT.2008.9

[38] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi

Ray, and Suman Jana. 2018. NEUZZ: Efficient Fuzzing with Neural

Program Smoothing. CoRR abs/1807.05620 (2018).

arXiv:1807.05620 http://arxiv.org/abs/1807.05620

[39] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by

Learning Correct Code. SIGPLAN Not. 51, 1 (Jan. 2016), 298–312.

https: //doi.org/10.1145/2914770.2837617

[40] Jean-Baptiste Mairy, Yves Deville, and Pascal Van Hentenryck. 2011.

Reinforced Adaptive Large Neighborhood Search. Doctoral Program at

the Interational Conference on Principles and Practice of Constraint

Programming, 55–60.

[41] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical

Study of the Reliability of UNIX Utilities. Commun. ACM 33, 12

(Dec. 1990), 32–44. https://doi.org/10.1145/96267.96279

[42] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang,

Leonardo de Moura, and David L. Dill. 2018. Learning a SAT Solver

from SingleBit Supervision. CoRR abs/1802.03685 (2018).

arXiv:1802.03685 http: //arxiv.org/abs/1802.03685

http://arxiv.org/abs/1406.1078
http://valgrind.org/
https://dl.packetstormsecurity.net/papers/general/a-review-offuzzing-tools-and-methods.pdf
https://dl.packetstormsecurity.net/papers/general/a-review-offuzzing-tools-and-methods.pdf
http://index-of.co.uk/Reversing-Exploiting/Fuzzing.pdf
http://www.deeplearningbook.org/
https://doi.org/10.1109/ACSAC.2007.27
https://arxiv.org/abs/cs/9605103
https://doi.org/10.14722/ndss.2019.23530
https://doi.org/10.1109/ATS.2010.19
https://doi.org/10.1145/2970276.2970364
http://arxiv.org/abs/1506.%2000019
https://doi.org/10.1109/ICCIT.2008.9
http://arxiv.org/abs/1807.05620
https://doi.org/10.1145/96267.96279

