# Prediction of Dengue using Machine Learning Techniques – A comprehensive Study

SHARLIE VASANTHI . N, Research Scholar , PhD Computer Science, Vels Institute of Science,
 Technology and Advanced Studies ,Associate Professor, Department of Computer Science and
 Technology, Women 's Christian College, Chennai, India. nsharlie74@gmail.com
 Dr. S. NAGASUNDARAM, Research supervisor, Assistant Professor, Department of Computer

Applications, Vels Institute of Science, Technology and Advanced Studies, Chennai, India.

### snagasundaram.scs@velsuniv.ac.in

Abstract : Dengue is a mosquito-borne viral disease that has predominately increased around the world in recent years. Early prediction of dengue is crucial based on the availability of clinical data . Dengue can not be controlled because of the unavailability of universal vaccination, but can be predicted early to prevent fatality . The transmission of this disease is influenced not only by the climatic factors like rainfall, temperature, wind speed and humidity, but also by non-climatic factors like socio-environmental factors such as the population density, land use activity, vector control and transportation This comprehensive study shows that this approach is classified under three categories clinical, climatic and demographic . The study focuses on the Dengue modeling using Machine Learning Techniques such as RF, SVM , DT, ANN,NN, GA and J48. It was found that Random Forest (RF) yielded better results under all the three categories of data.

Keywords : Dengue, support vector machine (SVM), Decision Tree (DT), Artificial Neural Network (ANN), Neural Network (NN), Genetic Algorithm(GA)

## I. INTRODUCTION

The dengue vector-borne diseases is highest in tropical and subtropical areas. It accounts for more than 17% of all infectious diseases globally, resulting in a death toll of more than 700,000 annually. The term "vector" is analogous with mosquito-borne illness, as vectors are the living organisms that can transmit infectious diseases caused by bacteria, viruses, and parasites across humans or from animals to humans. Among the deadly diseases such as yellow fever, Zika fever, Chikungunya, and dengue fever are transmitted mainly by the mosquito's genus, Aedes Aegypti. The female Aedes Aegypti mosquito feeds on humans and it is responsible for spreading the highly infectious dengue disease. The only way of combating mosquito-borne disease is the complete eradication of mosquitoes, which may sound feasible and easy theoretically. In its early stages, dengue is a 'flu-like' syndrome because it is often misdiagnosed.

Among many diseases, Chikungunya, malaria, enteric fever, and meningococcemia conditions that exhibit similar symptoms to dengue clinically preserve another challenge in dealing with this disease. The time period between the exposure and the onset of symptoms ranges from 2 to 14 days, but most often, it is 4–7 days. Hence, travelers returning from epidemic zones are likely to have dengue if fever or any other symptoms start within 3–14 days after reaching their homeland. Studies shows that the whole infection cycle's survivability increases as the temperature increases and concluded that they can hardly withstand cold temperatures, showing from periodic incidences where the dengue epidemic always peaks during the rainy season.

## **II. LITERATURE REVIEW**

In this review research paper, explored different prediction techniques and classified them under three categories a. clinical .b. climatic c.. demographic. Out of the forty research papers which it shows the timeline, methodologies or tool, datasets, conclusion, location and research gap or future scope of that research work has been identified.



| S.No . Paper Name and Year of Publication      | Author Name                                                                                                     | Methodology                     | Inference Made/Research Gap        |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|
| 1. A Three-Component Biomarker Panel for       | Allan R. Brasier, Hyunsu Ju, Josefina                                                                           | Random Forest                   | logistic regression is a           |
| Prediction of Dengue Hemorrhagic               | Garcia, Heidi M. Spratt, Sundar S.                                                                              |                                 | classification approach that       |
| Fever(2012)                                    | Victor, Brett M. Forshey, Eric S.                                                                               |                                 | provides                           |
|                                                | Halsey, Guillermo Comach, Gloria                                                                                |                                 | probabilistic information for the  |
|                                                | Sierra, Patrick J. Blair, Claudio                                                                               |                                 | development of DHF, a feature      |
|                                                | Rocha, Amy C. Morrison, Thomas W.                                                                               |                                 | selection that will aid in future  |
|                                                | Scott, Isabel Bazan, Tadeusz J.                                                                                 |                                 | validation studies.                |
|                                                | Kochel                                                                                                          |                                 |                                    |
| 2.A Comparison among Support Vector            | Motaz M. H. Khorshid , Tarek H. M.                                                                              | Support Vector Machine,         | The research can be extended       |
| Machine and other Machine Learning             | Abou-El-Enien , Ghada M. A.                                                                                     |                                 | with hybridization between GA      |
| Classification Algorithms(2015)                | Soliman                                                                                                         |                                 | and SVM to improve the             |
|                                                |                                                                                                                 |                                 | convergence speed                  |
| 3 Morbidity Rate Prediction of Dengue          | Kraisak Kesorn Phatsavee Ongruk                                                                                 | Support Vector Machine          | SVM-R-based model has high         |
| Hemorrhagic Fever (DHF) Using the              | Jakkrawarn Chompoosri. Atchara                                                                                  | Support Vettor Internite        | generalization performance and     |
| Support Vector Machine and the Aedes           | Phumee, Usavadee Thavara, Apiwat                                                                                |                                 | obtained the highest prediction    |
| aegypti Infection Rate in Similar Climates     | Tawatsin, Padet Siriyasatien                                                                                    |                                 | performance compared to            |
| and Geographical Areas(2015)                   |                                                                                                                 |                                 | classical models as measured by    |
|                                                |                                                                                                                 |                                 | the accuracy, sensitivity,         |
|                                                |                                                                                                                 |                                 | specificity, and mean absolute     |
|                                                |                                                                                                                 |                                 | error (MAE).                       |
| 4. Machine Learning Models for Early           | William Catedo-Torres, Angel                                                                                    | Support Vector Machine with     | Research gap was found that        |
| Deligue Severity Prediction(2016)              | Paternina and Hernando Pinz                                                                                     | Gaussian Kerner                 | feature selection procedure was    |
|                                                |                                                                                                                 |                                 | performed to improve predictive    |
|                                                |                                                                                                                 |                                 | accuracy.10-Fold Stratified Cross  |
|                                                |                                                                                                                 |                                 | Validation to show good            |
|                                                |                                                                                                                 |                                 | prediction .                       |
| 5.A Literature Review of Methods for           | Duc Nghia Pham , Syahrul Nellis ,                                                                               | Local Indicators of Spatial     | The combination between spatial,   |
| Dengue Outbreak Prediction(2016)               | Arun Anand Sadanand , Juraina binti                                                                             | Autocorrelation,                | statistical and mathematical       |
|                                                | Abd. Jamil, Jing Jing Khoo, Tarique                                                                             | Autoregressive Integrated       | analysis together with machine     |
|                                                | Aziz, I Dickson Lukose, Sazaly bin                                                                              | Moving Average , Artificial     | learning system can become a       |
|                                                | Abu Bakar and Abdul Sattar                                                                                      | Decision Tree Method Support    | application                        |
|                                                |                                                                                                                 | Vector Machine Adaptive         | application                        |
|                                                |                                                                                                                 | Neuro-Fuzzy Inference System    |                                    |
|                                                | en la constante de la constante |                                 |                                    |
| 6.Feature Selection Algorithms for             | Husam, I.S., Abuhamad, Azuraliza                                                                                | Particle swarm optimization ,   | PSO has reached the best           |
| Malaysian Dengue Outbreak Detection            | Abu Bakar, Suhaila Zainudin,                                                                                    | genetic algorithm and rank      | accuracy revealing new set of      |
| Model(2017)                                    | Mazrura Sahani & Zainudin Mohd Ali                                                                              | search . Based on the selected  | features to represent dengue data. |
|                                                |                                                                                                                 | features, three predictive      |                                    |
|                                                | "For p                                                                                                          | modeling techniques J48,        |                                    |
|                                                | Research                                                                                                        | Decision Table Naive Bayes      |                                    |
|                                                | arch in Enginee                                                                                                 | for dengue outbreak detection   |                                    |
| 7 Machine learning for dengue outbreak         | Naiyar Ighal Mohammad Islam                                                                                     | Decision Tree Neural            | A novel ensemble model             |
| prediction: An outlook(2017)                   | Turya Iqoa, wonanniad Islam                                                                                     | NetworkEvoilutionary Based      | designed Would aid the             |
|                                                |                                                                                                                 | Classifiers,Ensemable           | prediction of Dengue outbreak      |
| 8.Early Detection of Dengue Using Machine      | N.Rajathi, S.Kanagaraj,                                                                                         | Naive Bayes, J48, Random        | Random forest algorithm gave       |
| Learning Algorithms(2018)                      | R.Brahmanambika and                                                                                             | forest, Reduces Error Pruning   | better classification accuracy.    |
|                                                | K.Manjubarkavi,                                                                                                 | tree, Sequential minimal        |                                    |
|                                                |                                                                                                                 | optimization, Locally Weighted  |                                    |
|                                                |                                                                                                                 | ZeroP                           |                                    |
| 9.Classification of Dengue using Machine       | T.Sajana , M.Navva. YVSSV                                                                                       | Simple Classification and       | CART showed the best results in    |
| Learning Techniques(2018)                      | .Gayathri , N.Reshma                                                                                            | Regression Tree, Multi-layer    | all performance metrics like       |
|                                                |                                                                                                                 | perception, C4.5 algorithms     | Accuracy, Precision, Recall and    |
|                                                |                                                                                                                 |                                 | Fmeasure metrics which is the      |
|                                                |                                                                                                                 |                                 | best classifier                    |
| 10 .Kernel PCA and SVM-RFE based               | lke Annisa Octaria, Titin                                                                                       | Kernel Principal Component      | Kernel PCA requires a short        |
| reature selection for classification of dengue | Siswantining, Alhadi Bustamam, et al.                                                                           | Analysis Support Vector         | PEE in feature colocition          |
| microarray dataset(2019)                       |                                                                                                                 | Flimination and Support Vector  | KFE III leature selection.         |
|                                                |                                                                                                                 | Machine                         |                                    |
| 11. Finding the Best Feature Selection         | R Lathesparan, RMKT Rathnavaka                                                                                  | Artificial Neural Networks with | ANN with PCA resulted in the       |
| Method for Dengue Diagnosis                    | and WU Wickramaarachchi                                                                                         | Principal Component Analysis,   | higher accuracy of 72.47% and      |



| Predictions(2019)                                                                                                                                                            |                                                                                                            | Artificial Neural Networks with<br>Wrapper feature selection K-<br>Nearest Neighbor                      | ANN with Wrapper feature<br>selection (KNN) showed the<br>lowest accuracy of 54.47%.<br>initial 22-dimensional system<br>was reduced to an 8-dimensional<br>system with a cumulative<br>variance of 59%.                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 .Predictive Models for the Medical<br>Diagnosis of Dengue: A Case Study in<br>Paraguay(2019)                                                                              | Jorge D. Mello-Roma'n , Julio C.<br>Mello-Roma'n, Santiago Go'mez-<br>Guerrero, and Miguel Garc' 1a-Torres | Artificial Neural Network -<br>multilayer perceptron,<br>Polynomial support vector<br>machine.           | The research can be extended<br>with more exhaustive<br>investigations with controlled<br>data capturing systems.                                                                                                                                                                                                                                 |
| 13.Evaluating The Performance of Machine<br>Learning using Feature Selection Methods<br>on Dengue Dataset(2019)                                                              | Subhram Dasgupta, Naman Sharma,<br>Sweta Sinha, Raghavendra S                                              | Random Forest Classifier,<br>Decision Tree Classifier, Linear<br>Support Vector Machine                  | Among the techniques RFC,<br>DTC, LSVM, RFC produced<br>higher accuracy results.                                                                                                                                                                                                                                                                  |
| 14.Evaluation and comparison of eight<br>machine learning models in land use/land<br>cover mapping using Landsat 8 OLI: a case<br>study of the northern region of Iran(2019) | Ali Jamali                                                                                                 | Random Forest, Decision<br>Tree,DTNB,J48, Multilayer<br>Perceptron, Neural Network,<br>Simple Regression | key factor are various climate<br>change impacts including<br>increasing temperature of the<br>earth due to pollutant emissions<br>like carbon dioxide and also their<br>influence on the land cover are<br>also one key factors ,NN<br>Produced higher accuracy                                                                                  |
| 15.A Competent Approach to Predict<br>Dengue Diseases using a Hybrid Approach<br>in Machine Learning algorithm(2019)                                                         | R. Vijay Sai, S Madhiarasi, S<br>Keerthana, S Preethi                                                      | Sequential Minimal<br>Optimization                                                                       | The prognostic accuracy<br>determined by SMO formula<br>suggested that parameters used<br>in area unit reliable indicators to<br>predict the presence of break<br>bone fever diseases.                                                                                                                                                            |
| 16.Dengue fever prediction using classification techniques(2019)                                                                                                             | R. Sanjudevi, D. Savitha                                                                                   | Decision Tree , Support Vector<br>Machine                                                                | it has concluded that SVM is the<br>top performance classifier<br>technique by the way that, it has<br>achieved that an accuracy of 99%<br>takes fewer time to run and it has<br>smallest error rate.                                                                                                                                             |
| 17. Prediction for Dengue Fever in<br>Indonesia Using Neural Network and<br>Regression Method(2019)                                                                          | T H F Harumy , H Y Chan, and G C<br>Sodhy.<br>IJREA                                                        | K-Nearest Neighbor, Support<br>Vector Machine ,Linear<br>Regression                                      | Thet step is to determine seven<br>variables consisting of<br>temperature (x1), humidity (x2),<br>rainfall index (x3), wind (x4),<br>Air Pressure (x5), Sunlight (x6),<br>Population density (x7) are to be<br>used in predicting dengue cases<br>and determining the factors that<br>most influence in the spread of<br>dengue using regression. |
| 18.A Multi-Stage Machine Learning<br>Approach to Predict Dengue Incidence: A<br>Case Study in Mexico(2020)                                                                   | Annalisa Appice , Yulia R. Gel<br>Iliyan Iliev , Vyacheslav Lyubchich ,<br>And Donato Malerba              | AutoTiC-NN cluster model                                                                                 | same research direction, can be<br>achieved promising results in<br>spatio-temporal feature<br>extraction by combining<br>convolution neural networks and<br>long short-term memory, and<br>improving the accuracy of both<br>classification and regression<br>tasks.                                                                             |
| 19.Predicting Dengue Outbreaks with<br>Explainable Machine Learning(2020)                                                                                                    | Robson Aleixo, Fabio Kon, Rudi<br>Rocha, Marcela Santos Camargo,<br>Raphael Y. de Camargo                  | CatBoost                                                                                                 | A significant improvement over<br>the use of black-box results from<br>models such as Support Vector<br>Machines and Neural Networks.                                                                                                                                                                                                             |
| 20. Dengue Fever Classification Tool Using<br>Machine Learning(2020)                                                                                                         | Khaing Thanda Swe, Phyo Thu Zar<br>Tun                                                                     | Support Vector Machine                                                                                   | Support Vector Machine,<br>outputs whether the patient<br>suffers from severe fever or<br>dengue fever. If the patient<br>suffers the dengue fever, the<br>system assigns the level of the<br>dengue: (i) Febrile (ii) Critical<br>(iii) Recovery.                                                                                                |
| 21.Optimal Feature Selection with Neural Network-Based Classification Model for                                                                                              | Lokesh Nelligere , Sameswari Vadivel, Sudha Kothandapani, Jenifer                                          | Genetic Algorithm                                                                                        | Uncertain Neural Network model<br>is used to create a classification                                                                                                                                                                                                                                                                              |



| Dengue Fever Prediction(2020)              | Mahilraj, P Sivaram and Vidhyavathi<br>Ramasamy                                                                |                                | model. Accuracy (A), Specificity   |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|
| 22 Dangua Prediction Lloing ML p           | Dr. V. Japani M.E. Ph.D. N.                                                                                    | Multilayer Percentron          | SMO Produced higher accuracy       |
| (Multilayer Percentron) – A Machine        | Maadhuryaa D Pavithra S Ramya                                                                                  | Sequential minimal             | Backward logistic regression       |
| (Multilayer Ferception) – A Machine        | Sraa                                                                                                           | optimization                   | MIP is used in the feature         |
| Learning Approach(2020)                    | Sice                                                                                                           | optimization                   | reduction                          |
| 23.Neural Network Enhancement Forecast     | THF Harumy Dewi Sartika Br. Gintin                                                                             | Neural Network Back            | Multiple Linear Regression can     |
| of Dengue Fever Outbreaks in Coastal       |                                                                                                                | propagation Algorithm          | be used in the prediction of       |
| Region(2020)                               |                                                                                                                |                                | dengue.                            |
| 24.Predicting dengue importation into      | Donald Salami, CarlaAlexandra                                                                                  | Random Forest                  | A numeric outcome prediction       |
| Europe, using machine learning and model-  | Sousa, Maria do Rosário Oliveira                                                                               |                                | can be achieved by modifying       |
| agnostic methods(2020)                     | Martins & César Capinha                                                                                        |                                | our model training approach        |
|                                            |                                                                                                                |                                | from a classification model to a   |
|                                            |                                                                                                                |                                | regression model.                  |
| 25.Prediction of Dengue Fever Using        | M. Ganthimathi , Dr. M. Thangamani                                                                             | Support Vector Machine and     | By applying SVM it is produced     |
| Intelligent Classifier(2020)               | , C. Mallika , V. Prasanna Balaji                                                                              | K-Nearest Neighbor             | 100% accuracy                      |
| 26.Assessing the risk of dengue severity   | Sheng-Wen HuangID1 , Huey-Pin                                                                                  | Artificial Neural Network      | Further validation using external  |
| using demographic information and          | Tsai, Su-Jhen Hung , Wen-Chien                                                                                 |                                | cohorts in future research can be  |
| laboratory test results with machine       | KoID , JenRen Wa                                                                                               |                                | enhanced                           |
| learning(2020)                             |                                                                                                                |                                |                                    |
| 27.Early Detection of Dengue Hemorrhagic   | Nur Azmi Prasetyo, Hasbi Yasin,                                                                                | Feed forward neural network,   | Advanced research using GSA        |
| Fever (DHF) using Feed Forward Neural      | Budi Warsito                                                                                                   | Gravitational Search Algorithm | and to combine it with             |
| Network with Gravitational Search          |                                                                                                                |                                | unbalanced data handling, or to    |
| Algorithm Optimization(2020)               |                                                                                                                |                                | combine it with hybrid method to   |
|                                            |                                                                                                                |                                | obtain better result.              |
| 28.Dengue Prediction using Machine         | Dhiman Sarma, Sohrab Hossain, Md.                                                                              | Decision Tree , Random Forest  | Study seek additional attributes   |
| Learning Algorithm(2021)                   | Abdul Motaleb Bhuiy, Ishita Saha,                                                                              |                                | and risk factors for dengue fever  |
|                                            | Ravina Chakma                                                                                                  |                                | which are to be included in the    |
|                                            |                                                                                                                |                                | dataset. Besides, climate and      |
|                                            |                                                                                                                |                                | location-based data for effective  |
|                                            |                                                                                                                |                                | rule generation and                |
|                                            |                                                                                                                |                                | classification.                    |
| 29.Forecasting Dengue Fever Using          | Qanita Bani Baker, Dalya Faraj,                                                                                | Multilayer Perceptron, Neural  | The Poisson Regress ion model      |
| Machine Learning Regression                | Alanoud Alguzo                                                                                                 | Network, RT, Naïve Bayes,      | obtained the lowest error ratio by |
| Techniques(2021)                           |                                                                                                                | Decision Tree , Precision-     | 25.6., the target can be increased |
|                                            |                                                                                                                | Recall, Support Vector         | in collaboration with ML           |
|                                            | er la companya de la | Machine, K-Nearest Neighbor,   | techniques could be applied to     |
| 20 Ender Diamonia fan Danama Diamon        | Dist Alderlandi Caimer Alder                                                                                   | Bagging with Decision Tree .   | gain a more accurate prediction.   |
| Solearly Diagnosis for Deligue Disease     | Walcod M. Ismaal                                                                                               | R-Nearest Neighbor, Gradient   | SMOTE+ENN hybrid method of         |
| Learning Techniques Pased on Clinical      |                                                                                                                | Classifier aVtrama Gradiant    | solution methods which can be      |
| Data(2022)                                 |                                                                                                                | Boosting and Light Gradient    | improved further with              |
| Data(2022)                                 | 1215                                                                                                           | Boosting Machine               | framework's accuracy in making     |
|                                            | Or P-                                                                                                          | Boosting Machine .             | clinical decisions with large data |
|                                            | research in Fusion                                                                                             | ing AP.                        | sets                               |
| 31 Recurrent Neural Networks for Feature   | Jackson Daniel S Jrin Sherly                                                                                   | Random Forest Support          | Further the methods can be         |
| Extraction from Dengue Fever(2022)         | Veeralakshmi Ponnuramu Devesh                                                                                  | Vector Machine Neural          | improved on neural network can     |
| Extraction from Dongue Peter(2022)         | Pratap Singh S N Netra Wadi B                                                                                  | Network                        | be studied to avoid the problem    |
|                                            | Alonazi Khalid M.A. Almutairi                                                                                  |                                | of over fitting due to the inputs  |
|                                            | K.S.A. Privan, and Yared Abera9                                                                                |                                | from the previous layers           |
| 32.Dengue Prediction Using Machine         | Dr. Latha Jothi V. Rajasri S. Ramva                                                                            | Decision Tree . Random Forest. | additional attributes and risk     |
| Learning(2022)                             | Vipashinhi MSR                                                                                                 | Support Vector Machine, K-     | factors for dengue fever may be    |
| 200000000000000000000000000000000000000    | · · · · · · · · · · · · · · · · · · ·                                                                          | Nearest Neighbor               | included. Climatic changes can     |
|                                            |                                                                                                                |                                | also be taken for the              |
|                                            |                                                                                                                |                                | consideration in future            |
|                                            |                                                                                                                |                                | enhancements                       |
| 33.Predicting Infection Positivity, Risk   | Supreet Kaur . Sandeep Sharma .                                                                                | Random Forest                  | This paper has predicted the       |
| Estimation, and Disease Prognosis in       | Ateeg Ur Rehman . Elsaved Tag Eldin                                                                            |                                | effect of dengue infection on      |
| Dengue Infected Patients by ML Expert      | . Nivin A. Ghamry . Muhammad                                                                                   |                                | vital organs such as the liver.    |
| System(2022)                               | Shafiq, and Salil Bharany                                                                                      |                                | kidney, and general hematology     |
|                                            | 1 / 5                                                                                                          |                                | of the patient.                    |
| 34.Machine learning algorithms for dengue  | Fernanda Paula Rocha1 · Mateus                                                                                 | logistic regressions, linear   | The technique allows the usage     |
| risk assessment: a case study for São Luís | Giesbrecht                                                                                                     | discriminant analyses, Naive   | of policies to define the possible |
| do Maranhão(2022)                          |                                                                                                                | Bayes, decision tree, and      | spatial distribution of vectors,   |
|                                            |                                                                                                                | random forest classifier       | geographically recognize areas of  |
|                                            |                                                                                                                |                                | interest, and concentrate the      |
|                                            |                                                                                                                |                                | building infestation index to      |



|                                              |                                     |                                            | these locations.                   |
|----------------------------------------------|-------------------------------------|--------------------------------------------|------------------------------------|
| 35.Diagnosis classification of dengue fever  | Martselani Adias Sabara , Oman      | Genetic Algorithm on the                   | By using the Genetic algorithm,    |
| based on Neural Networks and Genetic         | Somantri, Heru Nurcahyo , Nanang    | Neural Network                             | optimization of the best neural    |
| algorithms(2022)                             | Kurnia Achmadi, Ulfatul Latifah and |                                            | network parameter values is the    |
|                                              | Harsono                             |                                            | level of learning and momentum     |
|                                              |                                     |                                            | can be obtained from the results.  |
| 36.Dengue Fever Prediction using Machine     | Sandeep Kumar Rana, Arpita Nath     | Synthetic Minority                         | A combination of clinical as       |
| Learning Analytics(2022)                     | Boruah, Saroj Kr. Biswas, Manomita  | Oversampling Technique,                    | well as symptomatic data could     |
|                                              | Chakraborty, Biswajit Purkayastha   | Decision Tree and Random                   | also help in creating a robust     |
|                                              |                                     | Forest                                     | model and also other latest class  |
|                                              |                                     |                                            | imbalance techniques can also be   |
|                                              |                                     |                                            | used                               |
| 37.Performance evaluation of artificial      | Yared Abera Ergu                    | Random Forest -based feature               | When using the RF approach, the    |
| neural networks for feature extraction from  |                                     | extraction,, Support Vector                | ANN achieved 88% accuracy          |
| dengue fever(2022)                           |                                     | Machine , Artificial Neural                | and 89.9% recall, but the NN       |
|                                              |                                     | Network, Neural Network                    | achieved 72% accuracy, 77%         |
|                                              |                                     |                                            | recall, and a 0.27 error rate.     |
| 38.A Hybrid Model using Genetic              | Nor Azura Husin, Norwati Mustapha,  | Genetic Algorithm of hybrid                | The model can be enhanced by       |
| Algorithm and Neural Network for             | Md. Nasir Sulaiman, Razali Yaakob   | model on the Neural Network,               | incorporating time series,         |
| Predicting Dengue Outbreak(2022)             |                                     |                                            | location and rainfall data to      |
|                                              |                                     |                                            | define the best architecture for   |
|                                              |                                     |                                            | early prediction .                 |
| 39.Data-driven methods for dengue            | Emmanuelle Sylvestre, Clarisse      | NLP, Support Vector Machine,               | two observations suggested that    |
| prediction and surveillance using real-world | Joachim, Elsa Cecilia-Joseph,       | Decision Tree                              | unsupervised learning and NLP      |
| and Big Data: A systematic review(2022)      | Guillaume Bouzille, Boris Campillo- |                                            | might become more prominent in     |
|                                              | Gimenez, Marc Cuggia, André Cabié   |                                            | dengue research. It is important   |
|                                              |                                     |                                            | to note that despite the use of    |
|                                              |                                     |                                            | real-world data, these statistical |
|                                              |                                     |                                            | methods were employed to           |
|                                              |                                     |                                            | analyze only retrospective data    |
| 40.Machine Learning-Based Detection of       | Hilda Mayrose , G. Muralidhar Bairy | Support Vector Machine ,                   | The future scope involves the      |
| Dengue from Blood Smear Images Utilizing     | , Niranjana Sampathila , Sushma     | Decision Tree                              | derivation of features from the    |
| Platelet and Lymphocyte                      | Belurkar and Kavitha Saravu         |                                            | lymphocyte cytoplasm in            |
| Characteristics(2023)                        |                                     |                                            | addition to nucleus features,      |
|                                              |                                     |                                            | which intends to involve pre-      |
|                                              |                                     |                                            | trained CNNs for classification    |
|                                              |                                     | Jet la | purposes.                          |

#### **III. OBJECTIVE OF THIS RESERCH**

Different machine learning techniques were used, we see that the predominant technique were the diagnostic models, are categorized as clinical such technique was frequently used were based on the clinical data and laboratory results. Dengue Fever is considered one of the diseases that spread mostly in tropical and semi-tropical regions and affects many countries. In the last 50 years, the incidence of dengue disease has increased dramatically. Dengue Fever is a critical disease that affects human life and countries' economies.

The spread of this disease is higher in frequency in several places that are related to climatic conditions such as rainfall ,humidity , temperature and other environmental. Studying the climatic conditions using environmental data is essential and such prediction are categorized as climatic.

Using Dengue historical data, facilitates at capturing the relations and patterns within the data and enhancing the predictive accuracy of dengue outbreaks. Based time series data, age group of the population over a particular region were to be Categorized as demographic. IV. RESULTS AND DISCUSSION

Based on the review of forty paper it was inferred that the machine learning techniques such as Random Forest (RF) showed higher Accuracy in all the three category of data such as clinical, climatic and demographic, followed by support vector machine (SVM), Decision Tree (DT), Artificial Neural Network (ANN), Neural Network (NN), Genetic Algorithm(GA), J48.



Fig .1 Comparison of Machine Learning Techniques under categories clinical, climatic and demographic.

Dengue is the fever which is difficult to be identified without the indications for its symptoms. Dengue can



begin from the fever which would further mellow up to deadly state which would prompt to the casualty under severe condition. Using the early diagnostic system would enable faster and better prediction system. It was found that Radom Forest was most suitable for prediction which yielded higher accuracy when compared all the other techniques.

#### **V. CONCLUSION**

A comprehensive evaluation of various machine learning classifiers has helped us to choose the best performing classifier for Dengue outbreak prediction. Keeping insight of the evaluation made that the Radom Forest Technique which yielded highest result can be enhanced to a novel Ensemble Hybrid classifier to make better prediction system at the early stage and hence prevent the severity in the dengue patients.

#### REFERENCES

[1] Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severedengue.

[2] Dengue. Available online: https://www.cdc.gov/dengue/index.html .

[3] Elke Annisa Octaria b) , Titin Siswantining a), Alhadi Bustamam c) , and Devvi Sarwinda d) Symposium on BioMathematics 2019

(SYMOMATH 2019) AIP Conf. Proc. 2264, 030004-1–030004-6.
[4] Husam, I.S., Abuhamad, Azuraliza Abu Bakar, Suhaila Zainudin\*, Mazrura Sahani & Zainudin Mohd Ali, Sains Malaysiana 46(2)(2017): 255–265 http://dx.doi.org/10.17576/jsm-2017-4602-10.

[5] R Lathesparan1#, RMKT Rathnayaka2 and WU Wickramaarachchi1, https://www.researchgate.net/publication/360587139\_Finding\_the\_Best\_F eature\_Selection\_Method\_for\_Dengue\_Diagnosis\_Predictions?enrichId=r greq-391ff7b8ea6097ecaa0658824a7e95f-

XXX&enrichSource=Y292ZXJQYWdlOzM2MDU4NzEzOTtBUzoxMTU 1NDcwMjc4NTYxNzkyQDE2NTI0OTY5OTAwMTE%3D&el=1\_x\_2& esc=publicationCoverPdf

[6] Early Detection of Dengue Using Machine Learning Algorithms, International Journal of Pure and Applied Mathematic, ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu

 [7] M. Montes-y-G´omez et al. (Eds.): IBERAMIA 2016, LNAI 10022, pp. in End 247–258, 2016. DOI: 10.1007/978-3-319-47955-2 21 Springer International Publishing AG 2016.

[8] Bilal Abdualgalil 1 R. Vijay Sai , Sajimon Abraham 2 , Waleed M. Ismael 3, Journal of Robotics and Control (JRC) Volume 3, Issue 3, May 2022 ISSN: 2715-5072, DOI: 10.18196/jrc.v3i3.14387

[9] Jackson Daniel,1 S. Irin Sherly,2 Veeralakshmi Ponnuramu,3 Devesh Pratap Singh,4 S.N. Netra,5 Wadi B. Alonazi,6 Khalid M.A. Almutairi,7 K.S.A. Priyan,8 and Yared Abera, "Evidence-Based Complementary and Alternative Medicine", Volume 2022, Article ID 5669580, 9 pages https://doi.org/10.1155/2022/5669580.

[10] A. Appice et al," Multi-Stage Machine Learning Approach to Predict Dengue Incidence", Received January 7, 2020, accepted March 6, 2020, date of publication March 13, 2020, date of current version March 25, 2020. Digital Object Identifier 10.1109/ACCESS.2020.2980634.

[11] Motaz M. H. Khorshid 1, Tarek H. M. Abou-El-Enien 2, Ghada M. A. Soliman 3, I PASJ I nternational Journal of Computer Science (I I JCS) Web Site: ttp://www.ipasj.org/IIJCS/IIJCS.htm.

[12] "A Literature Review of Methods for Dengue Outbreak Prediction", eKNOW 2016 : The Eighth International Conference on Information, Process, and Knowledge Management. [13] Am. J. Trop. Med. Hyg., 86(2), 2012, pp. 341-348 doi:10.4269/ajtmh.2012.11-0469 Copyright © 2012 by The American Society of Tropical Medicine and Hygiene

[14] R. Vijay Sai et al ," A Competent Approach to Predict Dengue Diseases using a Hybrid Approach in Machine Learning algorithm", International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Published by, www.ijert.org RTICCT - 2019 Conference Proceedings.

[15] Martselani Adias Sabara et al 2019 J. Phys.: Conf. Ser. 1175 012065, 1st International Conference on Advance and Scientific Innovation (ICASI), IOP Conf. Series: Journal of Physics: Conf. Series 1175 (2019) 012065.

[16] Robson Aleixo et al," Predicting Dengue Outbreaks with Explainable Machine Learning",

http://www.riocomsaude.rj.gov.br/Publico/MostrarArquivo.aspx?C=NqviPkhBljU%3D

[16] Ponnada Akhil et al , "Prediction of Dengue Fever Outbreaks using Machine Learning Methods", International Journal of Computer Applications (0975 – 8887) Volume 183 – No. 46, January 2022.

[17] Camila Malta Romano," Characterization of Dengue Virus Type 2: New Insights on the 2010 Brazilian Epidemic", PLoS ONE | www.plosone.org, July 2010 | Volume 5 | Issue 7 | e11811.

[18] T.Sajana , M.Navya , YVSSV .Gayathri , N.Reshma, "Classification of Dengue using Machine Learning Techniques", International Journal of Engineering & Technology, 7 (2.32) (2018) 212-218.

 [19] Khaing Thanda Swe , Phyo Thu Zar Tun," Dengue Fever Classification Tool Using Machine Learning", IJCIRAS | ISSN (O) - 2581-5334 May 2020 | Vol. 2 Issue. 12

[20] Sandeep Kumar Rana, Arpita Nath Boruah, Saroj Kr. Biswas, Manomita Chakraborty, Biswajit Purkayastha," Dengue Fever Prediction using Machine Learning Analytics", 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON), 26-27 May 2022.

[21] Subhram Dasgupta, Naman Sharma, Sweta Sinha, Raghavendra S," Evaluating The Performance of Machine Learning using Feature Selection Methods on Dengue Dataset", International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249-8958, Volume-8 Issue-5, June 2019

[22] V. Janani, N. Maadhuryaa, D. Pavithra and S. Ramya Sree," Dengue Prediction Using (MLP) Multilayer Perceptron - A Machine Learning Approach", EasyChair Preprint № 2444

[23] Ali Jamali," Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: a case study of the northern region of Iran", © Springer Nature Switzerland AG 2019

[24] Dr. Latha Jothi V et al, "Dengue Prediction Using Machine Learning", International Research Journal of Modernization in Engineering Technology and Science Volume:04/Issue:05/May-2022.

[25] Qanita Bani Baker et al," Forecasting Dengue Fever Using Machine Learning Regression

Techniques",https://www.researchgate.net/publication/352810389\_Foreca sting\_Dengue\_Fever\_Using\_Machine\_Learning\_Regression\_Techniques? enrichId=rgreq- 0e6af8a539e72db0-

XXX&enrichSource=Y292ZXJQYWdlOzM1MjgxMDM4OTtBUzoxMD Q0MzkyNDk2MzMyODAyQDE2MjYwMTM5ODMzMDc%3D&el=1\_x \_2&\_esc=publicationCoverPdf

[26] Ste'phanie Devignot et al "Genome-Wide Expression Profiling Deciphers Host Responses Altered during Dengue Shock Syndrome and Reveals the Role of Innate Immunity in Severe Dengue", www.plosone.org, July 2010 | Volume 5 | Issue 7 | e11671.

[27] T H F Harumy, H Y Chan and G C Sodhy," Prediction for Dengue Fever in Indonesia Using Neural Network and Regression Method ",ICCAI 2019 Journal of Physics: Conference Series 1566 (2020) 012019 IOP Publishing doi:10.1088/1742-6596/1566/1/012019.

[28] Khaing Thanda Swe , Phyo Thu Zar Tun ," Dengue Fever Classification Tool Using Machine Learning", IJCIRAS | ISSN (O) - 2581-5334 May 2020 | Vol. 2 Issue. 12.

[29] M. Ganthimathi et al ," Prediction of Dengue Fever Using Intelligent Classifier", International Journal of Emerging Trends in Engineering



Research, International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1338 – 1341

[30] V. Janani et al," Dengue Prediction Using Multilayer Perceptron - A Machine Learning Approac", International Journal of Research in Engineering, Science and Management Volume-3, Issue-3, March-2020.

[31] R. Sanjudevi, D. Savitha, "Dengue Fever Prediction Using Classification Techniques", International Research Journal of Engineering and Technology (IRJET), Volume: 06 Issue: 02 | Feb 2019, e-ISSN: 2395-0056

[32] Emmanuelle Sylvestre et al," Data-driven methods for dengue<br/>prediction and surveillance using real-world and Big Data: A systematic<br/>review", PLOS Neglected Tropical Diseases |<br/>https://doi.org/10.1371/journal.pntd.0010056 January 7, 2022

[33] Naiyar Iqbal et al ," Machine learning for dengue outbreak prediction: An outlook", International Journal of Advanced Research in Computer Science, Volume 8, No. 1, Jan-Feb 2017, ISSN No. 0976-5697.

[34] Naiyar Iqbal and Mohammad Islam," Machine Learning for Dengue Outbreak Prediction: A Performance Evaluation of Different Prominent Classifiers", https://doi.org/10.31449/inf.v43i1.1548

[35] Kraisak Kesorn," Morbidity Rate Prediction of Dengue Hemorrhagic Fever (DHF) Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas", http://datadryad.org/review?doi%EF%BF%BD=%EF%BF%BDdoi:10.506 1/dryad.078bn

[36] Norma J. Apao, Larmie S. Feliscuzo, Cherry Lyn C. Sta. Romana, Jennifer Aurea S. Tagaro," Multiclass Classification Using Random Forest Algorithm To Prognosticate The Level Of Activity Of Patients With Stroke", International Journal Of Scientific & Technology Research Volume 9, Issue 04, April 2020 ISSN 2277-8616.

[37] Yared Abera Ergu," Performance evaluation of artificial neural networks for feature extraction from dengue fever" https://doi.org/10.1080/23311916.2022.2129364

[38] Sheng-Wen Huang et al, "Assessing the risk of dengue severity using demographic information and laboratory test results with machine learning", https://doi.org/10.1371/journal.pntd.0008960

[39] Nur Azmi Prasetyo, Hasbi Yasin, Budi Warsito," Early Detection of Dengue Hemorrhagic Fever (DHF) using Feed Forward Neural Network with Gravitational Search Algorithm Optimization", Journal of Physics: Conference Series 1655 (2020) 012094 IOP Publishing doi:10.1088/1742-6596/1655/1/012094.

[40] Donald Salami," Predicting dengue importation into Europe, using machine learning and model-agnostic methods", 2020 10:9689 https://doi.org/10.1038/s41598-020-66650-1