
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-09, Issue-10, Jan 2024

64 | IJREAMV09I10106019 DOI : 10.35291/2454-9150.2024.0008 © 2024, IJREAM All Rights Reserved.

hAirLenGth Chainage Storage Wage (GLH)
1Mr. Buddh Bhagwan Sahu, 2Assistant Professor

Dept. of Computer Science & Engineering, Columbia Institute of Engineering and Technology,

Near Vidhan Sabha, Tekari-493111, Raipur (C.G.), India.

Abstract: Hair Length Technology is one of the techniques of storage of data in the form of computer language. It will

store the data as like a hair length. Dot bounded or chainage methods it’s stabled in the one small point and can be able

to store more data from the other ROM or Storage devices. The mapping and storage is a major different from the

other methodology that technique is more challenging and cannot be defeat by any other formula at that time. The

digital data will be stored in the form of hair grow. Hair grow on the route like data will be stored on the route

occupied less point spaces & can be stored big data. The basic understanding of how software functions is helpful for

anyone who interacts with technology. With a background in programming, you can get an implantation by coding,

designing software, data architecture, or creating intuitive user interfaces.

Keywords: Procedural programming languages, Functional programming languages, Object-oriented programming

languages, Scripting languages, Logic programming languages, Front-end language, Back-end languages.

I. INTRODUCTION

While you'll find dozens of ways to classify various

programming languages, they generally we are describing

and implementing using following key and programming

languages that will be PPl, FPL, OOPL, SL, LPL, FeL, BeL

etc.. A procedural language follows a sequence of

statements or commands in order to achieve a desired

output functional languages focus on the output of

mathematical functions and evaluations [5].

This type of language treats a program as a group of objects

composed of data and program elements, known as

attributes and methods. Objects can be reused within a

program or in other programs. Scripting languages to

automate repetitive tasks, manage dynamic web content, or

support processes in larger applications. Some common

scripting languages include [7].

A logic programming language expresses a series of facts

and rules to instruct the computer on how to make

decisions. The front end deals with all of the text, colours,

buttons, images, and navigation that the user will face when

navigating your website or application. Back-end languages

deal with storage and manipulation of the server side of

software. By combining all of the above methods we can

implement Hair Length Chainage Storage wage.

The optimization of distributed-ROM-based finite state

machine (FSM) implementations as an alternative to

conventional implementations based on look-up tables

(LuT). In distributed-ROM implementations with constant

output value is called constant look-up tables and LuT’s

with the same content is called equivalent look-up tables

can be saved [6]. A popular test of working memory is the

complex span task, in which encoding of memoranda

alternates with processing of distracters. A recent model of

complex span performance, the Time-Based-Resource-

Sharing (TBRS) model has seemingly accounted for several

crucial findings, in particular the intricate trade-off between

deterioration and restoration of memory in the complex

span task working memory has often been characterized as

a system for the simultaneous maintenance and processing

of information [4].

This working definition is reflected in the complex span

paradigm, which has become the most popular method for

psychometric measurement of working memory capacity

And which also serves in many experimental investigations

of working memory processed in reading span, participants

read a series of sentences and try to remember the last word

of each sentence. The number of sentences in each series is

gradually increased, and a participant’s span is determined

as the maximum number of sentence-final words they can

recall correctly in the order of presentation and capping

more size of stage space.

It is not a solution to increase its storage capacities why we

should not try to increase its functional medium. In this

research we are giving theory how to increase storage in the

different medium i.e. hAirLenGth Chainage Storage Wage

[9].

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-09, Issue-10, Jan 2024

65 | IJREAMV09I10106019 DOI : 10.35291/2454-9150.2024.0008 © 2024, IJREAM All Rights Reserved.

II. DISTRIBUTED-ROM-BASED

IMPLEMENTATION

The (The time-based resource-sharing theory) theory makes

the following basic assumptions: Representations in

working memory decay over time, but they can be

refreshed by directing attention to them. Attention is

conceptualized as a domain-general mechanism that can be

devoted to only one process at a time, and hence creates a

bottleneck. In tasks like the complex span task, the

cognitive system must devote attention to carrying out each

step of the processing task interleaved with encoding of the

memoranda [3]. In between processing steps, however, the

attention mechanism can be used to refresh memory items.

Thus, during each processing period the attention

bottleneck is assumed to rapidly switch between carrying

out a processing step and refreshing one or more memory

items. Each series of steps is called a procedure, and a

program written in one of these languages will have one or

more procedures within it. The architecture of the time-

based resource-sharing theory is a two-layer connectionist

network with one layer dedicated to the representations of

positions and the other to the representation of the items.

The two layers are fully interconnected, and their weights

initialized at zero and commonly use of procedural

languages includes [9]:

1. C/C++

2. Java

3. Pascal

4. BASIC

Each function–a reusable module of code–performs a

specific task and returns a result. The result will vary

depending on what data you input into the function. For

calculating the weight changes for response suppression,

only the activation of the item selected for output is

maintained in the item layer on popular functional

programming languages include [2]:

1. Scala

2. Erlang

3. Haskell

4. Elixir

5. F#

This makes it a popular language type for complex

programs, as code is easier to reuse and scale. In between

encoding of items, a series of processing operations must be

carried out like simple arithmetic computations or two-

alternative forced-choice tasks common object-oriented

languages include [10]:

1. Java

2. Python

3. PHP

4. C++

5. Ruby

Programmers use scripting languages to automate repetitive

tasks, manage dynamic web content, or support processes

in larger applications. To calculate the necessary variables

for the simulations, we start from an estimate of mean

processing duration for a given experimental condition

scripting languages include:

1. PHP

2. Ruby

3. Python

4. Perl

5. Node.js

We do not use the mean duration as the duration of each

individual processing step, because we want to simulate a

distribution of durations of attention capture, analogous to

the distribution of durations of other processes A logic

programming language expresses a series of facts and rules

to instruct the computer on how to make decisions like

examples of logic languages include [11]:

1. Prolog

2. Absys

3. Datalog

4. Alma-0

III. TECHNICAL IMPLEMENTATIONS

The complex span paradigm requires many modelling

decisions about which processes occur when. Among the

most important initial decisions is a consideration of the

nature of task switching in a complex span task. Any

complex span task involves at least two tasks, namely

encoding of the memoranda and processing of the

distracters. Each item peaks when it is refreshed and drops

again while other items are refreshed [12].

Occasionally, an item fails to be retrieved for refreshing

and drops out; the gradual decelerated decline illustrates the

effect of decay when unbridled by refreshing.

After the final burst of processing operations, items are

recalled and then suppressed (which can reduce their

strength to be below baseline; thus the beginning of recall

can be identified by the “below-zero” dips of activation).

During recall of each item, the remaining items continue to

decay. Each trial begins with the encoding of the first

memory item by associating it to the first position marker

[1].

After encoding of the first item, refreshing can only apply

to that item, so refreshing effectively means continued

encoding of the first item, which is of little consequence

because the item has reached nearly asymptotic memory

strength already [14].

During the presentation time of later memory items,

refreshing in the remaining presentation time includes

earlier items and thereby contributes to counteracting decay

of these earlier items. We instantiated a refreshing schedule

that started from the first list item and proceeded.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-09, Issue-10, Jan 2024

66 | IJREAMV09I10106019 DOI : 10.35291/2454-9150.2024.0008 © 2024, IJREAM All Rights Reserved.

in forward order, resetting to the first item whenever

refreshing was interrupted.

The decision to use this refreshing schedule was not

arbitrary but the selection was based on consideration of

several alternatives refreshing Schedules selective-

refreshing scheme would still require a stepping through the

list to retrieve the items in order before their strength can be

ascertained [15]. Thus, the processing steps of the selective-

refreshing approach are identical to the one we

implemented, and its outcome is identical as well, because

items whose strength is close to asymptote do not gain

strength from refreshing whether they are skipped or not.

One consequence of cumulative refreshing is that the

distribution of refreshing time over memory items across a

trial is very uneven. Before the second item is presented, all

refreshing is concentrated on the first item. After

presentation of the second item, refreshing time is divided

roughly equally between the first two items

Fig. 1: HairLenGth Chainage Storage Wage

This memory also displays write-before-read behaviour,

common in static memories. What is that? It means that

during a write-cycle the data being returned is the same as

that being written. Without this, the data returned through

the data out port would be the data just being overwritten.

Not ideal. This model synthesises into internal block

memories in the majority of FPGA architectures. To

summarise the key code points from this RAM model, we

have data edge to storage edge on end point [16]. That end

point will calculate the forwarded data in read mode, read

mode will go through the read and write mode to chainage

the forwarded data in between route ES/1...n-UD/1----n

data edge.

Data edge and storage edge to inflector CU-Dryer (Cluster

Up) will host or work as a consortium like sever data.

Before releasing the end data it will leave here clone

storage ball for the forwarded data point to U-D hanger

(Up-Down Data Hanger). For example that VHDL is

resolving the many types of data or RAM/ROM/Cache

storage technology and its technical implementations using

its tools. That is taken for the learning and understanding

purposes [13].

entity sync_ram is

 port (

 clock : in std_logic;

 we : in std_logic;

 address : in std_logic_vector;

 datain : in std_logic_vector;

 dataout : out std_logic_vector

);

Unconstrained ports

Std_logic_vector to integer conversion

Write-before-read

End of the classifying the implementation of storage

method and clarifying its data signal over data routes. This

VHDL post presents a VHDL code for a single-port RAM

(Random Access Memory) [18][17]. The VHDL test bench

code is also provided to test the single-port RAM in Xilinx

ISIM. The RAM's size is 128x8 bit. You also can use many

libraries like IEEE, Kaggle, and GitHub etc...

end entity sync_ram;

architecture RTL of sync_ram is

 type ram_type is array (0 to (2**address'length)-1) of

std_logic_vector(datain'range);

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-09, Issue-10, Jan 2024

67 | IJREAMV09I10106019 DOI : 10.35291/2454-9150.2024.0008 © 2024, IJREAM All Rights Reserved.

 signal ram : ram_type;

 signal read_address : std_logic_vector(address'range);

begin

1. RAM_CLOCK: the clock signal for sequentially

writing data to the single-port RAM.

2. RAM_DATA_IN: 8-bit input data to be written to

RAM at the provided input address RAM_ADDR

when it is enabled.

3. RAM_WR: Write enable signal for writing to

RAM, only if RAM_WR = 1, RAM_DATA_IN is

written to the RAM at the rising edge of the clock

signal.

4. RAM_ADDR: 6-bit Address where 8-bit input

data are written to and data are read out.

5. RAM_DATA_OUT: 8-bit output data read out

from the provided input address RAM_ADDR.

Logic Design to talk about the implementation of many

simply types of RAM in the Hardware Description

Language (HDL) that we covered during my series which is

VHDL! I promised to do Verilog will come in to

understand what I will be talking about I highly suggest you

to refresh your knowledge using my series that contains

simulating the circuits and even the implementation of

more complex units like the ALU that does mathematical

operations for CPU's!. RAM is defined as Random-Access

Memory and allows us to read and write information to a

physical location inside of the RAM which is the so called

memory array [20][19].

-- A 128x8 single-port RAM in VHDL

entity Single_port_RAM_VHDL is

port(

 RAM_ADDR: in std_logic_vector(6 downto 0); -- Address

to write/read RAM

 RAM_DATA_IN: in std_logic_vector(7 downto 0); -- Data

to write into RAM

 RAM_WR: in std_logic; -- Write enable

 RAM_CLOCK: in std_logic; -- clock input for RAM

 RAM_DATA_OUT: out std_logic_vector(7 downto 0) --

Data output of RAM

);

end Single_port_RAM_VHDL;

architecture Behavioral of Single_port_RAM_VHDL is

-- define the new type for the 128x8 RAM

type RAM_ARRAY is array (0 to 127) of std_logic_vector

(7 downto 0);

-- initial values in the RAM

signal RAM: RAM_ARRAY :=(

 x"55",x"66",x"77",x"67",-- 0x00:

 x"99",x"00",x"00",x"11",-- 0x04:

 x"00",x"00",x"00",x"00",-- 0x08:

 x"00",x"00",x"00",x"00",-- 0x0C:

 x"00",x"00",x"00",x"00",-- 0x10:

 x"00",x"00",x"00",x"00",-- 0x14:

 x"00",x"00",x"00",x"00",-- 0x18:

 x"00",x"00",x"00",x"00",-- 0x1C:

 x"00",x"00",x"00",x"00",-- 0x20:

 x"00",x"00",x"00",x"00",-- 0x24:

 x"00",x"00",x"00",x"00",-- 0x28:

 x"00",x"00",x"00",x"00",-- 0x2C:

 x"00",x"00",x"00",x"00",-- 0x30:

 x"00",x"00",x"00",x"00",-- 0x34:

 x"00",x"00",x"00",x"00",-- 0x38:

 x"00",x"00",x"00",x"00",-- 0x3C:

 x"00",x"00",x"00",x"00",-- 0x40:

 x"00",x"00",x"00",x"00",-- 0x44:

 x"00",x"00",x"00",x"00",-- 0x48:

 x"00",x"00",x"00",x"00",-- 0x4C:

 x"00",x"00",x"00",x"00",-- 0x50:

 x"00",x"00",x"00",x"00",-- 0x54:

 x"00",x"00",x"00",x"00",-- 0x58:

 x"00",x"00",x"00",x"00",-- 0x5C:

 x"00",x"00",x"00",x"00",

 x"00",x"00",x"00",x"00",

 x"00",x"00",x"00",x"00",

 x"00",x"00",x"00",x"00",

 x"00",x"00",x"00",x"00",

 x"00",x"00",x"00",x"00",

 x"00",x"00",x"00",x"00",

 x"00",x"00",x"00",x"00"

);

begin

process(RAM_CLOCK)

begin

 if(rising_edge(RAM_CLOCK)) then

 if(RAM_WR='1') then -- when write enable = 1,

 -- write input data into RAM at the provided address

 RAM(to_integer(unsigned(RAM_ADDR))) <=

RAM_DATA_IN;

 -- The index of the RAM array type needs to be integer so

 -- converts RAM_ADDR from std_logic_vector ->

Unsigned -> Interger using numeric_std library

 end if;

 end if;

end process;

 -- Data to be read out

 RAM_DATA_OUT <=

RAM(to_integer(unsigned(RAM_ADDR)));

end Behavioral;

RAM is a synchronous circuit which means that the

information will be stored into it (or the requested send to

the output) after a clock event. If the application we have

needs to be able to read at the same clock without having to

wait for a clock event or even a whole clock period, then

we can simply define only a write signal (1 -> write, 0 ->

not write) and make the output show us directly what the

specified address has, which means that we read all the

times, without having to specify that we want to! Keep in

mind that this implementation should contain a memory

enable signal [21].

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-09, Issue-10, Jan 2024

68 | IJREAMV09I10106019 DOI : 10.35291/2454-9150.2024.0008 © 2024, IJREAM All Rights Reserved.

1. Data Input -> information to write

2. Data Output -> information to read

3. Address -> we need to know where to read or

write

4. Read/Write -> specifying if we want to read or

write from an address

5. Enable -> we enable the RAM only when needed

to "save power".

6. Clock -> RAM is of course a synchronous circuit

and so needs a Clock Input.

Depending on the application we may want to read and

write at the same time, and maybe even on different

addresses. This can of course be done by having 2

addresses and two separate read and write signals. This

means that RAM can also be splitted into these categories:

1. Single-Port RAM with separate read and write

signals (no enable needed)

2. Single-Port RAM with a single read/write signal

and RAM enable

3. Dual-Port RAM with separate signals (that may be

combined R/W signals) for each "line".

We can of course continue on and insert 3, 4 or even more

lines as we wish, but I guess that after a point a second or

even third memory might be better [22].

-- VHDL testbench code for the single-port RAM

ENTITY tb_RAM_VHDL IS

END tb_RAM_VHDL;

ARCHITECTURE behavior OF tb_RAM_VHDL IS

 -- Component Declaration for the single-port RAM in

VHDL

 COMPONENT Single_port_RAM_VHDL

 PORT(

 RAM_ADDR : IN std_logic_vector(6 downto 0);

 RAM_DATA_IN : IN std_logic_vector(7 downto 0);

 RAM_WR : IN std_logic;

 RAM_CLOCK : IN std_logic;

 RAM_DATA_OUT : OUT std_logic_vector(7

downto 0)

);

 END COMPONENT;

 --Inputs

 signal RAM_ADDR : std_logic_vector(6 downto 0) :=

(others => '0');

 signal RAM_DATA_IN : std_logic_vector(7 downto 0)

:= (others => '0');

 signal RAM_WR : std_logic := '0';

 signal RAM_CLOCK : std_logic := '0';

 --Outputs

 signal RAM_DATA_OUT : std_logic_vector(7 downto

0);

 -- Clock period definitions

 constant RAM_CLOCK_period : time := 10 ns;

BEGIN

-- Instantiate the single-port RAM in VHDL

 uut: Single_port_RAM_VHDL PORT MAP (

 RAM_ADDR => RAM_ADDR,

 RAM_DATA_IN => RAM_DATA_IN,

 RAM_WR => RAM_WR,

 RAM_CLOCK => RAM_CLOCK,

 RAM_DATA_OUT => RAM_DATA_OUT

);

 -- Clock process definitions

 RAM_CLOCK_process :process

 begin

 RAM_CLOCK <= '0';

 wait for RAM_CLOCK_period/2;

 RAM_CLOCK <= '1';

 wait for RAM_CLOCK_period/2;

 end process;

 stim_proc: process

 begin

 RAM_WR <= '0';

 RAM_ADDR <= "0000000";

 RAM_DATA_IN <= x"FF";

 wait for 100 ns;

 -- start reading data from RAM

 for i in 0 to 5 loop

 RAM_ADDR <= RAM_ADDR + "0000001";

 wait for RAM_CLOCK_period*5;

 end loop;

 RAM_ADDR <= "0000000";

 RAM_WR <= '1';

 -- start writing to RAM

 wait for 100 ns;

 for i in 0 to 5 loop

 RAM_ADDR <= RAM_ADDR + "0000001";

 RAM_DATA_IN <= RAM_DATA_IN-x"01";

 wait for RAM_CLOCK_period*5;

 end loop;

 RAM_WR <= '0';

 wait;

 end process;

END;

In VHDL we will of course only implement static RAM

that is build up of memory cells and so creates a memory

array.

IV. DISTRIBUTED-ROM

ARCHITECTURES

We will use the multiple methods on HairLenGth Chainage

Storage Wage (GLH). ROM is Read-Only-Memory which

means that predefined data/information (mostly) is written

inside of it and we can only read this information and to do

so we have to give an address, which corresponds to the

point in the storage-array in which the needed data is stored

[23]. This makes ROM non-volatile memory because it

keeps the information stored "forever", unlike RAM which

loses the information on a power loss or reset. So, ROM

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-09, Issue-10, Jan 2024

69 | IJREAMV09I10106019 DOI : 10.35291/2454-9150.2024.0008 © 2024, IJREAM All Rights Reserved.

refers to memory that is hard-wired and cannot be changed

after manufacture.

Fig 2.: Common ROM Architecture.

Modifying the data stored inside of a ROM is very difficult,

slow and sometimes not even possible. That's why such

memory is mostly used to store firmware which doesn't

need frequent updates [24]. Firmware is software directly

binded/bounded to the Hardware and mostly contains

programs that need to be run at the system start (BIOS).

But, restricting ROM from being altered in the

manufacturing process makes it useless when an update is

required to fix a security issue or bug that's been detected

afterwards.

As you can see from the above image, every one-wire

device comes in an open drain configuration which means

every one-wire device (O-W-D) on the 1-wire bus can pull

the voltage to the ground, but no device can drive the bus

high and that is why every 1-wire bus includes a pull-up

resistor, the resistor value need to be adjusted according to

the number of devices that are connected to the bus [25]. A

1-wire device transmits, receives, and provides power to the

devices with the same bus so it becomes important to set

the resistor value according to the number of devices that

are connected to the bus. The resistor value (RV) can vary

from a couple of hundred ohms to kilo/h/m/s.

As a 1 wire bus is open-drain there is a MOSFET in the I/O

line to pull the bus down when it's time to send data and

there is also a buffer B1 to square up the signal in the I/O

line. For power, a diode and a capacitor are used. This is the

so-called parasite power and with the help of this feature,

multiple 1-wire devices can operate simultaneously when

the I/O line is low [26].

Fig. 3: Common Internal Power Interface

V. EXPERIMENTAL RESULTS

We just need to include the required libraries for the

Adriano and we can load up the example sketch for that. If

everything is connected correctly, we can see the output

data on the serial monitor window, but let's just not take the

easy way and try to understand how the code works. We

initialize our code by including all the required libraries and

we define the pin to which the temperature sensor is

connected.

// Include the libraries we need

#include <OneWire.h>

#include <DallasTemperature.h>

// Data wire is plugged into port 2 on the Arduino

#define ONE_WIRE_BUS 2

One handles the one wire protocol and the other one

handles the pass the one wire instance through the Dallas

Temperature instance [27].

// Setup a oneWire instance to communicate with any

OneWire devices (not just Maxim/Dallas temperature ICs)

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-09, Issue-10, Jan 2024

70 | IJREAMV09I10106019 DOI : 10.35291/2454-9150.2024.0008 © 2024, IJREAM All Rights Reserved.

OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.

DallasTemperature sensors(&oneWire);

We have our setup () function, in the setup function we

enable the serial with the begin method and we print a

statement so that we can be sure that the serial monitor is

working properly.

void setup(void)

{

 // start serial port

 Serial.begin(9600);

 Serial.println("Dallas Temperature IC Control Library

Demo");

 // Start up the library

 sensors.begin();

}

Next, we have our loop function, in the loop function; we

first request data from the sensor with the help of the

sensors. Request temperatures () command. We also print

statements on the serial monitor window to check if the

process was completed successfully or not [28].

// call sensors.requestTemperatures() to issue a global

temperature

 // request to all devices on the bus

 Serial.print("Requesting temperatures...");

 sensors.requestTemperatures(); // Send the command to

get temperatures

 Serial.println("DONE");

Next we store the received read data from the local variable

named temperature-C and in the next line, we check if it

was successful or not. If the data acquisition was

successful, we print the temperature on the serial monitor

window else we print an error message on the serial

monitor window.

// We use the function ByIndex, and as an example get

the temperature from the first sensor only.

 float tempC = sensors.getTempCByIndex(0);

 // Check if reading was successful

 if(tempC != DEVICE_DISCONNECTED_C)

 {

 Serial.print("Temperature for the device 1 (index 0) is:

");

 Serial.println(tempC);

 }

 else

 {

 Serial.println("Error: Could not read temperature

data");

 }

}

1. Temperature Sensor Reading- Hear is what you

should do

2. Check -ve and +ve leads are connected correctly.

3. Check the Operating voltage of the Device (3.0V

to 5V is the normal operating voltage)

4. If you have more Temperature Sensors check the

value of the pull-up resistor.

5. If you are interfacing the Temperature Sensor with

Adriano check out if you are using the correct

library [29].

VI. REFERENCES

[1] Ackerman, P. L., Beier, M. E., & Boyle, M. O.

(2005). Working memory and intelligence: The same

or different constructs? Psychological Bulletin, 131,

30–60.

[2] Atkinson, R. C., & Shiffrin, R. M. (1968). Human

memory: A proposed system and its control processes.

In K. W. Spence & J. T. Spence (Eds.), The

psychology of learning and motivation: Advances in

research and theory (Vol. 2, pp. 90–195). New York:

Academic Press.

[3] Baddeley, A. D. (1986). Working memory. Oxford:

Clarendon Press.

[4] Barrouillet, P., & Camos, V. (2001). Developmental

increase in working memory span: Resource sharing

or temporal decay? Journal of Memory and Language,

45, 1–20.

[5] Bhatarah, P., Ward, G., Smith, J., & Hayes, L. (2009).

Examining the relationship between free recall and

immediate serial recall: Similar patterns of rehearsal

and similar effects of word length, presentation rate,

and articulatory suppression. Memory & Cognition,

37, 689–713.

[6] Ackerman, P. L., Beier, M. E., & Boyle, M. O.

(2005). Working memory and intelligence: The same

or different constructs? Psychological Bulletin, 131,

30–60.

[7] Atkinson, R. C., & Shiffrin, R. M. (1968). Human

memory: A proposed system and its control processes.

In K. W. Spence & J. T. Spence (Eds.), The

psychology of learning and motivation: Advances in

research and theory (Vol. 2, pp. 90–195). New York:

Academic Press.

[8] Baddeley, A. D. (1986). Working memory. Oxford:

Clarendon Press.

[9] Barrouillet, P., & Camos, V. (2001). Developmental

increase in working memory span: Resource sharing

or temporal decay? Journal of Memory and Language,

45, 1–20.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-09, Issue-10, Jan 2024

71 | IJREAMV09I10106019 DOI : 10.35291/2454-9150.2024.0008 © 2024, IJREAM All Rights Reserved.

[10] Barrouillet, P., Bernardin, S., & Camos, V. (2004).

Time constraints and resource sharing in adults'

working memory spans. Journal of Experimental

Psychology: General, 133, 83–100.

[11] Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe,

E., & Camos, V. (2007). Time and cognitive load in

working memory. Journal of Experimental

Psychology. Learning, Memory, and Cognition, 33,

570–585.

[12] Barrouillet, P., Gavens, N., Vergauwe, E., Gaillard,

V., & Camos, V. (2009). Working memory span

development: A time-based resource-sharing model

account. Developmental Psychology, 45, 477–490.

[13] Bhatarah, P., Ward, G., Smith, J., & Hayes, L. (2009).

Examining the relationship between free recall and

immediate serial recall: Similar patterns of rehearsal

and similar effects of word length, presentation rate,

and articulatory suppression. Memory & Cognition,

37, 689–713.

[14] Bhatarah, P., Ward, G., & Tan, L. (2008). Examining

the relationship between free recall and immediate

serial recall: The serial nature of recall and the effect

of test expectancy. Memory & Cognition, 36, 20–34.

[15] Bjork, R. A., & Whitten, W. B. (1974). Recency-

sensitive retrieval processes in long-term free recall.

Cognitive Psychology, 6, 173–189.

[16] Brown, S., & Heathcote, A. (2005). A ballistic model

of choice response time. Psychological Review, 112,

117–128.

[17] Bunting, M. F., Cowan, N., & Saults, J. S. (2006).

How does running memory span work? The Quarterly

Journal of Experimental Psychology, 59, 1691–1700.

[18] Camos, V., Lagner, P., & Barrouillet, P. (2009). Two

maintenance mechanisms of verbal information in

working memory. Journal of Memory and Language,

61, 457–469.

[19] Conway, A. R. A., Kane, M. J., Bunting, M. F.,

Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005).

Working memory span tasks: A methodological

review and user’s guide. Psychonomic Bulletin &

Review, 12, 769–786.

[20] Cowan, N. (1995). Attention and memory: An

integrated framework. New York: Oxford University

Press.

[21] Daneman, M., & Carpenter, P. A. (1980). Individual

differences in working memory and reading. Journal

of Verbal Learning and Verbal Behavior, 19, 450–

466.

[22] Davelaar, E. J., Goshen-Gottstein, Y., Ashkenazi, A.,

Haarmann, H. J., & Usher, M. (2005). The demise of

short-term memory revisited: Empirical and

computational investigation of recency effects.

Psychological Review, 112, 3–42.

[23] Ecker, U. K. H., Lewandowsky, S., Oberauer, K., &

Chee, A. E. H. (2010). The components of working

memory updating: An experimental decomposition

and individual differences. Journal of Experimental

Psychology. Learning, Memory, and Cognition, 36,

170–189.

[24] Zhang, B., Song, S.: Design of CNC oscillator based

on field programmable gate array. J. Xi’an Univ. Posts

Telecommun. 4, 72–75 (2017)

[25] Kai, Y., Huang, H., Xing, Y.: Design of CNC

oscillator circuit in GPS receiver. Inf. Technol. 9, 58–

61+66 (2017)

[26] Xue, O., Zou, W.: ASIC design of NC oscillator using

look-up table method. Electron. Packag. 8, 13–15

(2012).

[27] Nie, Q.: Design and implementation of direct digital

frequency synthesizer based on CORDIC algorithm.

Xi’an Univ. Electron. Sci. Technol. (2011).

[28] Li, F.: FPGA implementation of digitally controlled

oscillator (NCO). Appl. Electron. Compon. 11, 42–44

(2010).

[29] S.S. Kamate, A. Naikar, S.S. Malaj, Design and

implementation of low power flash ADC using

cadence tool. J. Adv. Sci. Technol. 12(25), (2016).

BIOGRAPHY

I am Mr. Buddh Bhagwan Sahu, B.Tech/M.Tech in

Computer Technology and Application in Computer

Science & Engineering. At present I am working as an

Assistant Professor at Columbia Institute of Engineering

and Technology in Computer Science Department. I

have a more then 8 year teaching excellent experience in

Degree cum Technical Academic sector. On behalf of this

research paper we are finding the theorem of How to store

1GB data in a 500kb storage capacity without losing its

image or graphics. By combining the methodology of Ram

and ROM including cache cum cloud tactics it is possible to

execute. My basic thought to believe in Innovation,

Invention, Research and Relay including Moral, Emotion,

Ethics and Rules/Regulation.

