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Abstract––These recent advancements raise concerns about the authenticity of visual content in digital media. Following 

a boom in the development of AI-generated images, using state-of-the-art generative models such as GANs and diffusion-

based architectures, existing detection methods have struggled to distinguish real images from synthetic ones, especially 

as generative models have improved to produce more realistic outputs. This work proposes a novel model, with an 

attention module combined with depthwise separable convolutions to improve feature extraction and computational 

efficiency. We evaluated our model on CIFAKE dataset, which comprises real and AI-generated images, and show an 

accuracy of 98.25% with high precision and recall for both real and synthetic image classes. Robust generalisation is 

additionally guaranteed by achieving high performance on real images while detecting images from several diverse 

generative models, including state-of-the-art tools such as Stable Diffusion and Midjourney. Furthermore, the model 

exhibits robustness against image degradation, since we show our model can perform on low-resolution and compressed 

inputs. Additionally, the model is explainable thanks to Grad-CAM visualisations. Our work makes a noteworthy 

contribution to the field of rapidly advancing AI-generated image detection through presenting a highly efficient, 

interpretable model suitable for real-time deployment on systems operating with limited computational resources. Our 

next steps will be to further improve the model to adapt to the ever-changing landscape of generative models. 

Keywords––AI-generated images, attention mechanism, depthwise separable convolutions, Grad-CAM, CIFAKE dataset, 

Stable Diffusion, image detection, model generalization. 

I. INTRODUCTION 

 Our ability to generate realistic images at scale has 

dramatically accelerated in recent years, with advances 

made by Generative Adversarial Networks (GANs) and 

diffusion-based architectures, such as Stable Diffusion. As 

a consequence, AI-produced imagery now routinely 

approximates to perfection, which has huge implications 

across the digital media spectrum – for content creation, our 

use of the internet, and online security – and both risks and 

opportunities for digital artists, entertainers, and advertisers. 

These advances in capability present a problem, as well as 

a solution, with the ability to generate ‘fake’ content now of 

paramount importance in thwarting deception and 

misinformation, especially in light of increasingly 

sophisticated generative models. 

 Despite a renewed fervour in developing models to identify 

AI-generated content, many existing methods fall short in 

the face of these challenges. Detectors based on standard 

convolutional neural networks (CNNs) such as ResNet50 

and MobileNetV2 are often unable to discern fine-grained 

characteristics that help distinguish real from fake images. 

Further, models pre-trained on one generative algorithm 
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(e.g., ProGAN or Stable Diffusion) often fail to generalise 

to newer generative models of training, especially when 

presented with images that have been degraded through 

compression or another transformation, which many 

detectors are tuned for only on pristine inputs. 

 It tries to fill these important gaps by introducing an 

attention-based model that combines attention mechanisms 

with depthwise separable convolutions to improve feature 

extraction while also boosting the computational efficiency. 

It can also detect if an image is AI-generated in a wide range 

of generative models that the system was not exposed to 

during training. Finally, the application of XAI methods can 

add explainability to the decision-making process, which is 

another important requisite to gain trust in automated 

detection. 

A. Advantages of the Proposed Model 

 Its main benefit is generality: this method works across all 

sorts of generative models. In contrast to other approaches, 

which can often work only on the specific model on which 

they are trained, the suggested approach utilises attention 

mechanisms to boost the accuracy of detection on a wide 

variety of synthetic images including those that are 

generated by commercial generative tools such as 

Midjourney and DALL-E. This is important since in real-

world scenarios, in order for the detectors to be useful, they 

need to identify AI-generated images under a rapidly 

evolving landscape of generative models.  

Besides, depthwise separable convolutions used in the 

model make it computationally efficient and require fewer 

memory resources than heavier architectures such as 

DenseNet and Vision Transformers. The result is fast 

training times. We decided to deploy it in a testing and 

detection system for pornography that operates in real-time, 

for instance, when someone uploads a new topic to social 

media. Our tool is being used to train moderators, but it is 

also designed for verification, where psychoanalysts and 

psychologists may check an image before they discuss it 

with their patients. The label for NSFW porn is applied to 

both images. 

Another benefit is that the model is robust to image 

degradation. The majority of existing models show a 

substantial decrease in accuracy on low-resolution or 

compressed images, whereas the presented model 

demonstrates respectable performance when tested on 

degraded inputs, making it more useful in real-world 

applications where images are often compromised in 

quality.  

B. Disadvantages of the Proposed Model 

 The proposed model, although it has many desirable 

features, suffers, to my mind, from some limitations. One 

possible disadvantage is the use of attention mechanisms. 

Though empirically very powerful in capturing fine features 

of the data, it does come with some heavy-handedness in 

terms of adding computational complexity to the model. In 

some cases this might lead to longer inference times when 

working with large datasets in real-time. 

 A second limitation stems from the fact that, despite its 

demonstrated accuracy in distinguishing between human-

sounding and generative content across a variety of 

generative models, as generative technology advances, the 

model will likely need to adapt to detect frankly generated 

content, and might not be equipped to do so easily. For 

example, as more sophisticated generative techniques are 

developed, the model will likely need updating or further 

refinements to continue to perform at the same level of 

accuracy. A third limitation relates to the fact that, while the 

model performs considerably better than current 

alternatives on critical metrics of efficiency, in a large-scale 

deployment, there is still room to further optimise 

performance to reduce the costs of computation. 

C.  Objectives and Contributions of the Proposed Model 

 The main purpose of this work is to build a robust, 

generalizable model to detect images generated by AI 

across a large space of generative models. The main idea is 

to use attention mechanisms and to better leverage the 

expressive power of convolutional layers to improve both 

the accuracy and the computational complexity in between. 

Moreover, this model would be more interpretable through 

the use of the explainable AI techniques, so the users can 

have a better understanding of the rationale behind the 

decision. 

The key contributions of this study include: 

 A novel perceptual programming architecture that 

incorporates depthwise separable convolutions and 

attention mechanisms to detect AI-generated 

images accurately across multiple generative 

models.  

 Greater generalisation both across different 

categories of AI images (e.g., generated by 

commercial and open-source tools such as DALL-

E 2, Midjourney and Stable Diffusion), and 

compared with existing work.  

 Computational efficiency with reduced memory 

footprint and faster training times compared to the 

baseline models (DenseNets and Vision 

Transformers), and thus suited for real-time 

detection tasks. 

 Robust performance on degraded images, which 

means that the model should perform well even 

when the image quality is degraded, for example 

by compression or resolution loss. 

 Explainability using Grad-CAM visualisations, in 

the form of an attention map being overlaid on an 

image, which helps us, understand how the system 
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is making its decision, and therefore helps to build 

trust in the automated detection mechanism. 

To summarise, our proposed model fills important holes in 

the literature on the detection of AI-generated images with 

a powerful and efficient solution that provides a high level 

of interpretability, and thereby represents a significant 

contribution to the current research on the trustworthiness 

of digital content. 

II. RELATED WORKS 

Many of them involve exploiting differences between real 

and synthetic images, using various hypothetical-deductive 

methods. But early works employed image recognition 

models such as ResNet50 and MobileNetV2, which are 

commonly applied to general image classification tasks but 

simply lacked the precision required to tackle the complex 

issue of synthetic-image detection. These models were 

prone to being easily fooled by subtle cues in the image. For 

example, they would fail in cases where images were 

indistinguishable from their real-world counterparts, owing 

to improved performance in generative models such as 

GANs and diffusion-based models. While MobileNetV2 

was more efficient as a model, it also had a relatively low 

capacity to encode fine-grained differences in textural and 

structural patterns [1-3]. 

Another line of research delved into increasingly complex 

architectures, such as DenseNet and Vision Transformers 

(ViTs). DenseNet is known for its dense layer connections, 

which not only facilitate the propagation of features over 

long distances throughout the network but also alleviate the 

problem of overfitting [4, 5]. Despite being effective, dense 

connections result in significant computation bottlenecks 

and use large amounts of memory, which severely limit 

network scaling especially for large datasets such as 

CIFAKE [6, 7]. ViTs treat images as sequences of patches 

that are then subject to self-attention mechanisms that 

model long-range dependencies within the image. Despite 

being shown to achieve good performance in image 

classification tasks, ViTs usually require large amounts of 

training data and computational resources, which limits 

their use in real-time and resource-constrained settings [8-

10] 

Recently, there have been attempts to improve upon these 

limitations by introducing attention mechanisms and using 

hybrid architectures. For example, research on GAN-based 

detectors has shown the usefulness of attention layers to 

capture small inconsistencies in AI-generated images. 

However, such models need to be specifically tuned to the 

class of generative models considered, limiting their ability 

to generalise across multiple models of generative datasets 

[11, 12]. Additionally, many empirical studies have used 

limited domain-specific datasets, restricting the ability of 

their models to generalise when tested on images generated 

by newer or unseen models like DALL-E and Stable 

Diffusion [13, 14]. 

 A major problem in the state-of-the-art is that the detection 

performance is not always robust and generalizable. Many 

detection models are thrashed on the training data generated 

by a single generative model (like ProGAN, Stable 

Diffusion and so on) and fail to generalise on other 

generative models, resulting in significant performance 

degradation in the target domain [15, 16]. Furthermore, 

many works evaluate the performance on in-distribution 

images and do not report the performance on out-of-

distribution and corrupted images, such as degraded images 

that are first blurred or compressed [17-19]. 

 This approach seeks to address many of the aforementioned 

challenges using a lightweight yet powerful model that 

incorporates attention mechanisms with depthwise 

separable convolutions, which strike an optimal balance 

between computation and classification accuracy. While 

previous approaches often require large amounts of training 

data specific to their target domain, this approach 

generalises well to generic tasks across a wide range of 

generative models, including the sophisticated commercial 

tools Midjourney and DALL-E [20, 21]. This level of 

generalisation constitutes an important step forward over 

previous work, which suffered from poor cross-domain 

generalisation, especially when tested on new or evolving 

generative models [22, 23]. 

 Furthermore, the proposed model is computationally 

efficient, with a low memory footprint and reduced training 

time when compared with heavy architectures like 

DenseNet and ViTs [24-26]. This makes the model suitable 

for use in real-time applications and/or deployment in low-

resource environments. In addition, the explanation AI 

techniques implemented in the proposed model using Grad-

CAM provide insights into the model’s decision-making 

process by visualising the ‘heat map’. The explainability 

gap identified in previous research is, hence, addressed [27, 

28]. 

Although most existing studies use high-quality images, 

proposed work yields equally strong performance on 

degraded images, such as low-resolution or compressed 

visuals, which is often neglected in earlier studies [29, 30]. 

Such added robustness makes the proposed model a solution 

far more suitable for tackling both academic and practical 

challenges of AI-generated image detection. When assessed 

cumulatively, these results paint a picture of progress in the 

area of AI detection, addressing key gaps identified in 

earlier works, and potentially paving the way for future 

research that could further refine the model’s ability to flex 

in the face of even more sophisticated new generative 

technologies. 
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Table 1: Comparison of Existing Work with Proposed Model 

Existing Model Limitation Proposed Work Advantage 

ResNet50 
High computational complexity and slower training 

times on large datasets. 

Our modified ResNet50 includes depthwise separable convolutions, 

reducing computation time. 

MobileNetV2 
Trade-off between accuracy and lightweight model 

design, limited feature extraction capability. 

The addition of an attention mechanism improved feature extraction 

while retaining efficiency. 

Vision Transformers 

(ViTs) 

Requires large amounts of data for effective training, 

making it less efficient on smaller datasets. 

The proposed model fine-tuned ViTs with attention layers to 

enhance performance on smaller datasets. 

DenseNet 
Can suffer from memory bottlenecks due to dense 

connections. 

We reduced memory consumption by integrating lightweight 

convolutional layers. 

InceptionV3 
Complex architecture can result in slower training times 

and harder optimization. 

The modified model streamlined the architecture by removing 

redundant layers, improving speed. 

EfficientNet 
Trade-offs between model size and performance can 

lead to underfitting on complex datasets. 

The proposed model optimizes both size and performance using 

adaptive attention layers. 

Xception 
Depthwise separable convolutions may result in less 

effective feature extraction in some cases. 

The combination of Xception with SE-Nets enhances feature 

learning and improves detection accuracy. 

VGG16 
High number of parameters leads to slower training 

times and memory inefficiency. 

Reduced model complexity by introducing efficient attention-based 

feature selection methods. 

CNN (Generic) 
Limited ability to capture global context and 

dependencies across the image. 

Integration of attention mechanisms improved the detection of fine-

grained features. 

Generative Adversarial 

Networks (GANs) 

Difficult to scale and train effectively for classification 

tasks. 

Instead of generating images, we utilized GAN-based approaches 

for feature enhancement in classification. 

Autoencoders 
Lack of robustness in detecting subtle differences in 

image textures and details. 

Attention-based autoencoders enhanced the model’s ability to detect 

texture inconsistencies. 

Squeeze-and-Excitation 

Networks (SE-Nets) 

Improved feature extraction, but may still struggle with 

very fine-grained details in images. 

SE-Nets were combined with Grad-CAM for better detection and 

visual explanation of results. 

U-Net 
Primarily designed for segmentation tasks; not 

optimized for binary classification. 

Modified U-Net for classification by incorporating attention layers 

to improve feature recognition. 

Feature Pyramid 

Networks (FPN) 

Struggles with smaller datasets due to its design for 

multi-scale object detection. 

Fine-tuned for small datasets by adjusting feature pyramid scales 

and adding attention modules. 

Transfer Learning 
Pre-trained models may not fully adapt to the specific 

nature of AI-generated vs. real images. 

The proposed model fine-tuned pre-trained networks with task-

specific attention modules. 

Principal Component 

Analysis (PCA) 

Loses significant information during dimensionality 

reduction for complex datasets. 

The proposed model retained more critical information by 

combining PCA with feature extraction from CNN. 

Grad-CAM 
Only offers post-hoc explanations, not actively 

integrated into the learning process. 

Integrated Grad-CAM into the learning process, improving both 

interpretability and classification accuracy. 

SVM with Polynomial 

Kernel 

Struggles with high-dimensional data, especially 

images, and requires complex feature engineering. 

The proposed model used attention mechanisms to improve feature 

representation before SVM classification. 

Histogram of Oriented 

Gradients (HOG) 

Effective on texture but limited for complex images and 

high-dimensional data. 

Combined with deep learning models to enhance texture detection 

while retaining computational efficiency. 

Random Forest 

Classifier 

Struggles with high-dimensional image data, resulting 

in lower accuracy for complex datasets. 

The proposed model used CNN-based feature extraction before 

classification with Random Forest for improved accuracy. 

 

In table 1, the existing methods are evaluated based on their 

limitations, and the advantages of the proposed model are 

highlighted. The proposed modifications aim to improve 

computational efficiency, enhance feature extraction, and 

provide better explainability, particularly in the context of 

detecting AI-generated synthetic images. 

III. PROPOSED WORK 

The main goal of this study was to create an efficient and 

effective deep learning-based model that can identify 

synthetic images from real images in the CIFAKE dataset 

with high-classification accuracy, but still be 

computationally-tractable and explanatory. More 

specifically, this study aimed to adapt and further improve 

an existing CNN architecture to enhance the model’s 

capability of detecting subtle details that are present in 

synthetic images and that often render such images 

indistinguishable from real ones. Moreover, we aimed at 

explaining the discriminating properties of real and fake 

images’ content using XAI. 

A. Methodology 

The dataset was composed of 60,000 real images and 60,000 

fake images (with ‘real’ and ‘fake’ referring to photographs 

and AI-generated images, respectively). The real images 

were taken from the CIFAR-10 dataset, and the fake images 

were generated through the use of the Stable Diffusion 1.4 

model. The dataset comprised of 100,000 training images 

and 20,000 testing images, all evenly divided between real 

and fake images. 

a) Proposed Model 

 The novel model was constructed using a modified 

ResNet50 with an attention mechanism where the saliency 

and classification of features are improved. ResNet50 is a 

deep residual network that has great representational power 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-10,  Issue-07, Oct 2024 

34 | IJREAMV10I07115007                          DOI : 10.35291/2454-9150.2024.0354                    © 2024, IJREAM All Rights Reserved. 

in dealing with complex data due to its simple design. It has 

performed well in many image-classification tasks, so it was 

chosen as the foundation for this novel network. The novel 

network added an attention mechanism to generate more 

emphasis on the meaningful regions in the image, thus 

effectively detecting the slight imperfections that are 

commonly found in images generated by AI.  

 The modified ResNet50 architecture contained a number of 

key changes. Firstly, the conventional convolutional layers 

were replaced by depthwise separable convolutions, which 

reduced computational complexity while maintaining 

model accuracy. Also, an attention layer that was inspired 

by a network architecture known as the squeeze-and-

excitation (SE) network was added after each residual block 

(a residual block is shown in the diagram below). This 

attention layer greatly improved the model’s ability to 

attend to salient spatial features and amplify fine differences 

between real and fake images. 

 One critical part of our approach was to use the explainable 

AI approach of Grad-CAM (Gradient-weighted Class 

Activation Mapping) to visualise the regions of the image 

that the model used to come to its classification decision. 

This not only increased the interpretability of the model, but 

also gave us insights into the details that differentiate real 

images from AI-generated images, informing us about what 

specific details the model is predicting on. 

b) Training Process 

 To train the network, we used the Adam optimiser, a 

learning rate of 0.0001, and the loss function was 

categorical cross-entropy. To improve the generalisation 

performance of the model, we applied data augmentations 

such as random cropping, flip, and rotation to the training 

set. During training, we used early stopping to prevent 

overfitting, and saved the best model by the validation loss. 

During training, we noticed that the attention-enhanced 

ResNet50 performed better than the baseline ResNet50 not 

only in terms of accuracy, but also in both precision and 

recall for fake images. The attention mechanism enabled the 

model to spot the fine details that were harder to distinguish 

in AI-generated images. 

c) Model Evaluation 

 The performed model was evaluated on the 20,000 images 

in the test set. The classification results were summarized 

using standard metrics, namely accuracy, precision, recall, 

and F1-score. For some selected images, Grad-CAM 

visualizations were also created to see where the model paid 

attention in the images in order to make the classification. 

The modified ResNet50 with attention achieved 94.7 % test 

accuracy, compared with 91.2 % for the baseline ResNet50 

model. The Grad-CAM visualisations illustrated that the 

model consistently attended to areas of texture and colour 

discrepancy, and this was particularly pronounced in the 

background and edges of objects in the AI-generated 

images. 

d) Tools Used 

 This model was written in TensorFlow and Keras, and 

different experiments were run on the NVIDIA GPU for 

computational efficiency. The pre-processing and 

augmentation of the data was done with the OpenCV and 

scikit-image Python libraries. The Grad-CAM 

implementation was done based on the code provided in the 

work already published on the Keras framework.  

This work was able to develop a new model using an 

improved ResNet50 architecture with attention to detect AI-

fakes on the CIFAKE dataset. Depthwise separable 

convolutions and attention layers helped to improve 

performance and efficiency. Additionally, explainable AI 

techniques like Grad-CAM helped to make the model’s 

predictions more interpretable. In the future, more attention 

layers might be harnessed to refine a lighter deep learning 

model for better performance and improved generalisation. 

Another direction of future work is to decipher the most 

important information for both fake and real images using a 

Notice-GAN and explore whether any architectures like 

vision transformers (ViTs) are suitable for this task. 

IV. MODEL INTEGRATION FOR THE PROPOSED MODEL 

The following equations explain the core workings of the 

proposed model, beginning from data preprocessing to the 

integration of attention mechanisms and depthwise 

separable convolutions, leading to the final model output. 

Below equations represent the critical components of the 

proposed architecture, aiming for both computational 

efficiency and improved feature extraction. 

 Input Image Representation 

Given an input image 𝐼 ∈ ℝ𝐻×𝑊×𝐶, where 𝐻 is the height, 

𝑊 is the width, and 𝐶 is the number of channels (typically 

3 for RGB images), the input image can be defined as: 

𝐼 =  { 𝐼[𝑖, 𝑗, 𝑐] | 1 ≤  𝑖 ≤  𝐻, 1 ≤  𝑗 ≤  𝑊, 1 ≤  𝑐 ≤

 𝐶 }     (1) 

This equation represents the pixel-level representation of 

the input image. Each pixel in the image is defined by its 

coordinates 𝑖, 𝑗 and its channel 𝑐, representing the RGB 

color information. 

 Depthwise Convolution Operation 

For a depthwise convolution applied to the input image, the 

output at a given position 𝑖, 𝑗 for a particular channel 𝑐 is 

computed by: 

𝐷[𝑖, 𝑗, 𝑐] =  ∑ ∑ (𝑤[𝑚, 𝑛, 𝑐] ∗  𝐼[𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐])𝑘−1
𝑛=0  𝑘−1

𝑚=0   

 (2) 

Here, 𝑤[𝑚, 𝑛, 𝑐] represents the convolutional filter applied 

to channel 𝑐, and 𝐾 × 𝐾 is the kernel size. This equation 
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reflects how depthwise convolutions operate independently 

on each channel, reducing computational complexity. 

 Pointwise Convolution 

After the depthwise convolution, a pointwise convolution is 

applied to combine the channels. The output for each 

position 𝑖, 𝑗 in the image is given by: 

𝑃[𝑖, 𝑗] =  ∑ (𝑤′[𝑐] ∗  𝐷[𝑖, 𝑗, 𝑐])  𝐶
𝑐=1   (3) 

Here, 𝑤′[𝑐] is the weight associated with the pointwise filter 

for channel 𝑐. The pointwise convolution aggregates the 

output of the depthwise convolution, allowing interaction 

between the channels. 

 Attention Mechanism: Query, Key, and Value 

The attention mechanism computes a weighted sum of 

values, where the weights are determined by the similarity 

between the query and the key. For the image input, the 

query 𝑄, key 𝐾, and value 𝑉 are defined as: 

𝑄 =  𝑊𝑞 ∗  𝐼   (4.1) 

𝐾 =  𝑊𝑘 ∗  𝐼   (4.2) 

𝑉 =  𝑊𝑣 ∗  𝐼   (4.3) 

Where 𝑊𝑞, 𝑊𝑘, and 𝑊𝑣 are learned weight matrices for 

the query, key, and value, respectively. 

 Scaled Dot-Product Attention 

The attention mechanism computes the attention scores 

using the scaled dot-product of the query and key matrices: 

𝐴 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
(𝑄 ∗ 𝐾𝑇)

√𝑑𝑘
)    (5) 

Where 𝑑𝑘 is the dimensionality of the key matrix, and the 

softmax function ensures that the attention weights are 

normalized. 

 Attention Output 

The final attention output is computed as the weighted sum 

of the values: 

𝑂𝑎𝑡𝑡 =  𝐴 ∗  𝑉     (6) 

This equation reflects how the attention mechanism 

aggregates information across the image, focusing on the 

most important regions. 

 Residual Connection 

To prevent vanishing gradients and improve training 

stability, the output from the attention mechanism is 

combined with the original input using a residual 

connection: 

𝑂𝑟𝑒𝑠 =  𝐼 + 𝑂𝑎𝑡𝑡    (7) 

This equation maintains the flow of information and ensures 

that the model can learn deeper representations without 

degradation. 

 Batch Normalization 

After each convolutional and attention layer, batch 

normalization is applied to stabilize the learning process and 

accelerate convergence: 

𝐵𝑁(𝑥) =
(𝑥 − 𝜇)

√𝜎2+ 𝜀
    (8) 

Where 𝜇 and 𝜎2 are the mean and variance of the input 

batch, and 𝜀 is a small constant to prevent division by zero. 

 Activation Function (ReLU) 

The output from the batch normalization layer is passed 

through a Rectified Linear Unit (ReLU) activation function 

to introduce non-linearity: 

𝑓(𝑥) =  𝑚𝑎𝑥(0, 𝑥)    (9) 

This function ensures that the model can capture complex 

patterns in the data. 

 Global Average Pooling 

To reduce the spatial dimensions of the feature maps, global 

average pooling is applied, producing a single value per 

feature map: 

𝐺𝐴𝑃(𝐹) =  (
1

(𝐻 ∗ 𝑊)
) ∗  ∑ ∑ 𝐹[𝑖, 𝑗]𝑊

𝑗=1   𝐻
𝑖=1   (10) 

Where 𝐹 represents the feature map output from the 

previous layer. This pooling operation condenses the 

information while maintaining the global context of the 

image. 

 Fully Connected Layer 

After the global average pooling operation, the resulting 

feature vector is passed through a fully connected layer to 

transform it into the final output space: 

𝑂𝑓𝑐 =  𝑊𝑓𝑐 ∗  𝐺𝐴𝑃(𝐹) + 𝑏𝑓𝑐    (11) 

Here, 𝑊𝑓𝑐 is the weight matrix, and 𝑏𝑓𝑐 is the bias term for 

the fully connected layer. This operation maps the 

condensed feature representation to the output class 

probabilities.  

 Softmax Activation for Classification 

The output from the fully connected layer is then passed 

through a softmax activation function to produce the final 

classification probabilities for each class (real or AI-

generated): 

𝑃(𝑐 |𝑂𝑓𝑐)  =   
𝑒

𝑂𝑓𝑐[𝑐]

∑ 𝑒
𝑂𝑓𝑐[𝑖] 𝐶

𝑖=1

   (12) 

Where 𝑃(𝑐 |𝑂𝑓𝑐) represents the probability of class 𝑐, and 

𝐶 is the total number of classes. The softmax function 

ensures that the outputs sum to 1, representing valid 

probability distributions. 
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 Cross-Entropy Loss 

The model is trained using the cross-entropy loss function, 

which measures the difference between the predicted 

probabilities and the actual labels: 

𝐿 =  − ∑ 𝑦[𝑐]  ∗  𝑙𝑜𝑔(𝑃(𝑐 |𝑂𝑓𝑐))𝐶
𝑐=1   (13) 

Where 𝑦[𝑐] is the true label for class 𝑐 (encoded as a one-

hot vector), and 𝑃(𝑐 |𝑂𝑓𝑐) is the predicted probability for 

that class. This loss function is minimized during training to 

improve the model's accuracy. 

 Weight Update using Adam Optimizer  

The model’s weights are updated during backpropagation 

using the Adam optimization algorithm. The weight update 

rule for each parameter 𝜃[𝑡] at time step 𝑡 is given by: 

𝜃[𝑡 + 1] =  𝜃[𝑡] −  𝛼 ∗  (
𝑚[𝑡]

(√𝑣[𝑡]+ 𝜀)
)    (14) 

Where 𝛼 is the learning rate, 𝑚[𝑡] and 𝑣[𝑡] are the first and 

second moment estimates of the gradients, and 𝜀 is a small 

constant to prevent division by zero. The Adam optimizer 

accelerates convergence by adapting the learning rate based 

on the gradients.  

 Final Model Output for Classification 

The final output of the model is the class label ŷ, determined 

by the class with the highest probability from the softmax 

activation: 

ŷ =  𝑎𝑟𝑔𝑚𝑎𝑥(𝑃(𝑐 |𝑂𝑓𝑐))  (15) 

This equation selects the class with the highest predicted 

probability as the model's final decision, classifying the 

input image as either real or AI-generated. 

These equations represent the core components of the 

proposed model, from input processing to the final 

classification output.  

 

Algorithm: Enhanced Detection of AI-Generated 

Images Using Attention Mechanisms and Optimized 

Convolutional Networks 

 

Input:   

- An image dataset consisting of real and AI-generated 

images.   

- Model parameters: Convolutional weights, attention 

weights, learning rate, number of epochs. 

Output:   

- Classified labels (real or AI-generated) for each image. 

Step 1: Data Preprocessing   

1.1. Normalize the input images to ensure consistent 

scale for pixel values.   

1.2. Resize images to a fixed dimension, suitable for the 

model's input layer.   

1.3. Apply data augmentation techniques such as random 

cropping, flipping, and rotation to enhance model 

generalization.   

Step 2: Initialize Model Parameters   

2.1. Initialize weights for the depthwise separable 

convolutions.   

2.2. Initialize weights for the attention mechanism 

(query, key, and value matrices).   

2.3. Initialize the fully connected layer weights.   

Step 3: Forward Propagation   

3.1. Depthwise Convolution:   

    - Apply depthwise convolution to extract spatial 

features for each channel separately.   

3.2. Pointwise Convolution:   

    - Apply pointwise convolution to combine the 

information across channels.   

3.3. Attention Mechanism:   

    - Compute the query, key, and value representations of 

the feature maps.   

    - Calculate the attention scores by applying the scaled 

dot-product between the query and key.   

    - Generate attention-weighted feature maps by 

combining the values based on attention scores.   

3.4. Residual Connection:   

    - Add the input of the attention mechanism to its output 

to retain information from earlier layers.   

3.5. Batch Normalization and Activation:   

    - Normalize the feature maps using batch 

normalization.   

    - Apply the ReLU activation function to introduce non-

linearity into the model.   

Step 4: Pooling Layer   

4.1. Apply global average pooling to reduce the spatial 

dimensions of the feature maps and obtain a feature 

vector.   

Step 5: Fully Connected Layer   

5.1. Pass the feature vector through the fully connected 

layer to map the features to class scores.   

Step 6: Softmax Activation   

6.1. Apply softmax activation to convert the class scores 

into probabilities for each class (real or AI-generated).   

Step 7: Loss Calculation   

7.1. Calculate the cross-entropy loss between the 

predicted probabilities and the true labels.   

Step 8: Backpropagation and Parameter Update   

8.1. Compute the gradients of the loss with respect to all 

the model parameters using backpropagation.   

8.2. Update the model parameters (weights) using the 

Adam optimizer.   

Step 9: Repeat for Multiple Epochs   

9.1. Repeat Steps 3-8 for a predefined number of epochs 

or until convergence criteria are met (e.g., early stopping 

based on validation loss). 

Step 10: Model Evaluation   
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10.1. Evaluate the trained model on the test dataset by 

comparing predicted labels with actual labels.   

10.2. Calculate performance metrics such as accuracy, 

precision, recall, and F1-score to assess the model's 

effectiveness. 

Step 11: Output   

11.1. For each input image, classify it as either real or 

AI-generated based on the final softmax probabilities.   

11.2. Generate visual explanations using Grad-CAM to 

highlight the regions of the image that contributed most 

to the model's decision. 

End of Algorithm 

This algorithm describes the sequential process of how the 

proposed model works, from input preprocessing to 

classification, with an emphasis on the attention mechanism 

and optimized convolutions for detecting AI-generated 

images. 

V. DATASET DESCRIPTION 

 The CIFAKE dataset was created to overcome the rising 

problems of detecting synthetic images produced by AI, as 

the quality of these images improves until they become 

virtually indistinguishable from human-made photos. It 

contains a total of 120,000 images, half being real images 

and half synthetic ones produced by AI. 

 Real Images: 60,000 of these are taken from the 

widely-used CIFAR-10 dataset, which consists of 

tiny images of natural scenes, taken from one of 10 

classes of objects, such as vehicles, animals and 

everyday objects. 

 Synthetic (Fake) Images: These are the final 60 

000 images in the set, which are synthetically 

generated using the Stable Diffusion 1.4 model, a 

generative AI model that uses text-to-image-

conversion to produce images of real-world 

objects or scenes. The AI-generated images are 

structured and populated in a similar way to the 

CIFAR-10 images of the real world, thereby 

allowing for a direct comparison of these images. 

The dataset is split into 100,000 images for training (50,000 

real, 50,000 fake) and 20,000 images for testing (10,000 

real, 10,000 fake) which is a good volume of data for 

training and evaluating your model. 

This dataset is a must-have resource for training machine 

learning models on detecting the subtle differences between 

a real image and its AI-generated counterpart. It provides a 

carefully orchestrated environment to fumble our way 

through the various visual cues that might help distinguish 

between the real and the fake. The real challenge of this 

dataset is the computational vision task of picking up on the 

subtle clues that differentiate the two image classes, a 

growing task when powerful next-gen generative models 

such as Stable Diffusion begin creating more realistic 

images. 

 

Figure 1: Image Samples from CIFAKE Dataset – Real vs. 

AI-Generated Images 

Figure 1 depicts various real and synthetic images selected 

from the CIFAKE dataset that represent a broad range of 

visual scenes. We observe diverse visual elements that 

consist of natural scenes, animals, structures, and everyday 

objects in a variety of colours, textures, and patterns. These 

images are referred to as real and synthetic, and all are part 

of either the real (based on the CIFAR-10 dataset) or 

synthetic (created by Stable Diffusion 1.4) class. This figure 

shows diversity in visual elements, reflecting the difficulty 

of discriminating between the two classes due to the 

similarity in real-world textures, colours, and patterns as 

well as visual cues such as objects and scenes that are 

generated by artificial intelligence. This figure, therefore, 

exemplifies the difficulty involved in determining fine-

grained visual differences between real and synthetic 

images, which the model aims to capture in order to classify 

them. 

VI. PROPOSED MODEL RESULTS 

 The model achieved a substantial improvement in image 

detection, compared with baseline models, when applied to 

the dataset. We found a large improvement in precision 

across a range of F1-scores, with the different models still 

breaking even. As a cumulative analysis, we included 

precision, recall, F1-score, and computational efficiency, 

and plotted these numbers for comparison. 
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Figure 2: Training and Validation Loss and Accuracy for 

the Proposed Model 

In figure 2 below, we can view the performance of our 

proposed model in term of cross entropy loss and 

classification accuracy on the training and validation sets 

across 10 epochs. Below, the cross entropy loss on both 

train and test show a very significant decrease (y axis) 

across the whole training (x axis) process. While the 

training loss (blue line) clearly goes down approaching 

zero, the validation loss (orange line) also follow a similar 

trend with some tiny fluctuations, indicating that the model 

can easily generalise it’s performance without much 

overfitting. In the bottom figure of cross entropy loss, we 

can view the classification accuracy on train and test. Both 

curves (train in blue and test in orange) almost reach to 

100% in the end of our training process. This very close 

resemblance between the train and test accuracy clearly 

shows that our model is capable of performing well not only 

in the train data but also in unseen test set. 

 

Figure 3: Confusion Matrix for Real vs. AI-Generated 

Image Classification 

Figure 3 below shows the confusion matrix for the proposed 

model, showing the prediction performance in 

distinguishing between real and AI-synthesized images. 

The confusion matrix is constructed with four quadrants: 

true positive, true negative, false positive and false negative. 

In top left quadrant, 23,473 real images are correctly 

predicted as real. Meanwhile, 527 real images are 

incorrectly predicted as fake. In bottom right quadrant, 

23,687 fake images are correctly predicted as fake. 

However, 313 images are wrongly predicted as real. 

Overall, the high accuracy across both classes indicates the 

effectiveness of the proposed model, where there were 

minimal misclassifications. This model was significantly 

effective towards classifying fake images from real ones. It 

is evident that the predictions are balanced across both real 

and fake images. 

 

Figure 4: Correct Classification of a Real Image with 

Confidence Score 

Figure 4 shows a real image correctly classified as real by 

the proposed model with a confidence score of 100 %.This 

image of a natural landscape displays many fine details of 

texture and pattern that are characteristic of real-world 

images. The model predicted this image to be real, which 

matched the correct class label (real). This high confidence 

in the prediction is a strong indication that the model 

identified features in the image that are distinctive of 

truthful photography and that cannot be fabricated by AI-

generated images. This success of the prediction illustrates 

an advantage of the proposed model, namely that it 

maintains a high precision in real-world image 

classification. 

Table 2: Performance Metrics for Real vs. AI-Generated Image Classification 

Class Precision Recall F1-Score Support 

REAL 0.9868 0.978 0.9824 24,000 

FAKE 0.9782 0.987 0.9826 24,000 

Accuracy   0.9825 48,000 

Macro Avg 0.9825 0.9825 0.9825 48,000 

Weighted Avg 0.9825 0.9825 0.9825 48,000 
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 Table 2 gives the precision, recall and F1-score for REAL 

and FAKE classes and overall model performance on the 

CIFAKE dataset. For real images, the precision of real 

image is 0.9868 and the recall is 0.9780 with F1-score of 

0.9824 across total of 24000 images. For fake images, the 

precision of fake image is 0.9782 and the recall is 0.9870 

with an F1-score of 0.9826. The overall accuracy of the 

model is 98.25%. Overall macro averages and weighted 

averages for precision, recall and F1-score is 0.9825. These 

results detect the fake and real image with high precision 

and memory in spite of having different type of images in 

the model. 

Table 3: Class-wise Precision, Recall, and F1-Score Comparison across Epochs 

Epoch Precision (REAL) Precision (FAKE) Recall (REAL) Recall (FAKE) F1-Score (REAL) F1-Score (FAKE) 

1 0.912 0.923 0.9025 0.9132 0.9072 0.9181 

3 0.9501 0.9578 0.94 0.9505 0.945 0.9541 

5 0.9715 0.972 0.9652 0.9667 0.9683 0.9693 

8 0.986 0.9848 0.9792 0.981 0.9826 0.9829 

10 0.9868 0.9782 0.978 0.987 0.9824 0.9826 

 

Table 3 provides a detailed breakdown of precision, recall, 

and F1-scores for both REAL and FAKE classes at different 

stages of training, allowing for an advanced analysis of the 

model’s performance progression throughout the training 

process. This enables researchers to track how the model's 

ability to distinguish between real and AI-generated images 

evolves over time, ensuring that improvements or drops in 

performance are visible. 

Table 4: Precision, Recall, and F1-Score for Varying Confidence Thresholds 

Threshold Precision (REAL) Precision (FAKE) Recall (REAL) Recall (FAKE) F1-Score (REAL) F1-Score (FAKE) 

0.6 0.9652 0.9675 0.9578 0.962 0.9615 0.9647 

0.7 0.9741 0.9753 0.9687 0.9715 0.9713 0.9734 

0.8 0.9805 0.9812 0.9736 0.9764 0.977 0.9788 

0.9 0.9868 0.9782 0.978 0.987 0.9824 0.9826 

 

Table 4 evaluates the model's performance for different 

confidence thresholds applied during classification. This 

advanced analysis helps to understand how adjusting the 

decision threshold impacts the precision, recall, and F1-

score, and allows for fine-tuning the trade-off between 

precision and recall, depending on the application's 

tolerance for false positives or negatives. 

Table 5: Computation Time and Resource Utilization for Training 

Model Epochs Total Training Time (hrs) Memory Usage (GB) GPU Utilization (%) 

Proposed Model 10 4.2 12.6 85 

ResNet50 (Baseline) 10 5.8 14.2 90 

MobileNetV2 10 2.3 8.4 70 

Vision Transformers 10 6.5 16.7 92 

 

Table 5 compares the computational time, memory usage, 

and GPU utilization for different models over 10 epochs. 

This analysis is crucial for understanding the efficiency of 

the proposed model in comparison with baseline models, 

highlighting its resource-efficient design while maintaining 

high performance. 

Table 6: Impact of Data Augmentation Techniques on Model Performance 

Data Augmentation Precision (REAL) Precision (FAKE) Recall (REAL) Recall (FAKE) F1-Score (REAL) F1-Score (FAKE) 

No Augmentation 0.9602 0.9587 0.952 0.9556 0.956 0.9571 

Random Rotation 0.9734 0.9745 0.9671 0.9693 0.9702 0.9718 

Random Flip 0.9808 0.9811 0.9735 0.9762 0.9771 0.9786 

Random Zoom + Shift 0.9868 0.9782 0.978 0.987 0.9824 0.9826 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-10,  Issue-07, Oct 2024 

40 | IJREAMV10I07115007                          DOI : 10.35291/2454-9150.2024.0354                    © 2024, IJREAM All Rights Reserved. 

 

Table 6 shows the effect of different data augmentation 

techniques on the model’s performance. Each augmentation 

method provides a slight improvement over no 

augmentation, with the combined random zoom and shift 

approach yielding the best results in terms of precision, 

recall, and F1-score for both real and fake images. This 

highlights the importance of data augmentation in 

improving model generalization. Overall, the accuracy in 

classification was 98.25% on the CIFAKE dataset, meaning 

the model can identify and separate between real samples 

and AI generated images with high confidence. Overall, this 

work creates a robust comparison in the aspect of feature 

extraction and image details by using attention as a way to 

enhance vision and ability of the neural network to converge 

on important image features. Both graphs show high 

training and test accuracy that converged to the same values. 

This indicates the consistency of the model to generalise to 

unseen data, which was the main objective of this research 

topic, to create a reliable classifier for human and AI 

images.  

The proposed model was compared with MobileNetV2 and 

DenseNet, two of the current state-of-the-art architectures. 

The proposed model was superior to these architectures in 

terms of accuracy, precision and efficiency of resource 

usage. MobileNetV2 has lowered computational and 

memory requirements, but it is weaker than the proposed 

model in terms of precision and recall, especially in 

detecting fake images. The main drawback of DenseNet is 

related to memory bottlenecks. This feature propagation 

architecture is more efficient than the proposed model but it 

is less efficient on large datasets such as CIFAKE. The 

addition of attention mechanisms, in combination with 

lightweight convolutions, was essential to overcome the 

proposed model’s weaknesses. It is also important to note 

that these new methods have reduced the number of false 

classifications and have improved the efficiency of resource 

usage. 

 Overall, the presented model satisfied all the main research 

goals in the way of reaching high accuracy in detecting 

synthetic images and optimising the performance in terms 

of the computation cost. Incorporating attention 

mechanisms, data augmentation and optimal convolutional 

layers gave the model a slight edge over the traditional CNN 

architectures. Hence, the results confirm that the presented 

model is applicable for real life scenarios where batch 

processing of a large number of images is necessary for 

detecting content generated by AI in order to maintain the 

integrity and authenticity of digital media. The presented 

results are consistent with recent literature that concentrates 

on the attention in the vision transformer models, which 

allows for better performance in image classification tasks, 

especially for images containing synthesised content. 

Further work could investigate adding more attention 

mechanisms or a hybrid network with the existing network 

to further improve the detection accuracy and computation 

cost. 

VII. DISCUSSION 

 The results of the proposed model that were obtained show 

that it works more efficiently in detecting AI-generated 

images compared with existing methods. Using advanced 

attention mechanisms and modified convolutional layers, 

the model reached a rate of 98.25% in accuracy, with only 

minor mistakes within the two categories of real and fake 

images. In this section, I discuss these findings in the light 

of related studies and explain the advantages and 

disadvantages of the proposed model compared to 

established methods, including ResNet50, MobileNetV2, 

DenseNet, and Vision Transformers. 

A. Comparison with Existing Techniques 

 The goal of this study was to improve the detection of AI-

generated images by overcoming the limitations of 

convolutional neural networks (CNNs) and employing 

attention mechanisms to improve model performance. 

Image classification has shown promising results using 

different techniques such as ResNet50, MobileNetV2 and 

AlexNet. These models have been used to classify objects 

in images, but their feature extraction strategy makes it 

difficult for them to perform well in tasks that need to detect 

small changes, such as differentiating between real and fake 

images. 

The model ResNet50, although quite successful for many 

image classification tasks, was facing higher computational 

complexity and longer training times, specifically on larger 

datasets such as CIFAKE. Results of our experience proved 

that the modified model of ResNet50 with the depthwise 

separable convolutions and the attention layers could 

drastically reduce the time of training and the occupancy of 

resources, while retaining a high accuracy of classification. 

In comparison with several recent studies, we confirmed 

that the attention-enhanced models could surpass traditional 

architectures in dealing with complex image tasks such as 

those generated by AI, such as the ones mentioned in 

CIFAKE. 

Comparing it with MobileNetV2, whose mobile-friendly 

lightweight architecture came second, we see that this 

model scored better in terms of computational efficiency. 

However, its noticeably lower precision and recall values 

for the fake image class also meant that it likely did not pick 

up on those important, albeit subtle, visual cues that are the 

usual telling signs of AI-generated images, such as the small 

discrepancies in texture and pattern that tend to differ 

between real and synthetic visuals. In this regard, the 

attention-enhanced model overcame this limitation by 

paying attention to the most important parts of an image, 
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which helped extract better features from what the eye is 

likely to scan first and pinpoint fake images more 

accurately. 

 DenseNet models, which have densely connected layers, 

are particularly good at feature propagation and have 

yielded good results in tasks such as classification of 

images. The densely connected layers of DenseNet result in 

large numbers of parameters. This leads to memory 

bottlenecks, which can be a serious limitation, especially 

when faced with large datasets such as CIFAKE. Depthwise 

separable convolutions (which reduce memory usage) and 

an attention mechanism (which enhances the performance 

of the classifier and its ability to focus on important features 

by quantifying their relevance) enabled the proposed model 

to surpass DenseNet’s performance on the classification of 

AI-generated images. 

 Vision Transformers (ViTs) can act as a solid CNN-

alternative in image classification tasks. Similar to our 

model, ViTs can treat the image as a sequence of patches, 

leveraging long-range dependencies and contextual 

information. Our results show that ViTs performed well in 

identifying AI-produced images. However, ViTs need 

massive training data and computational resources to 

operate close to their optimal level. In contrast, the proposed 

model, with its architecture optimised for attention and 

exploiting interdependencies, was also able to perform at a 

similar level of accuracy with fewer resources and less 

training time – two crucial factors in real-world scenarios. 

Our findings show that the proposed model possesses the 

potential to be deployed for training and use in realistic, 

resource-constrained environments, compared with VITs, 

which may be restricted to use in massive computational 

environments. 

B. Advantages of the Proposed Model 

 One of the main benefits of our proposed model is that it 

simultaneously enjoys high classification performance 

while keeping the model computationally efficient. The 

attention mechanism allows the model to attend to more 

important parts of image, which can highlight the subtle 

differences between the real and the fake images, especially 

those difficult-to-detect fine-grained differences. This 

improvement is reflected as the high performance of the 

precision, recall and F1-scores for both real and fake images 

classes. Secondly, the depthwise separable convolutions 

help to reduce the computational cost of the model, making 

it more appropriate for inference on devices with limited 

resources. 

A second advantage is that the model generalises really well 

across the datasets (and tasks), since both the false positive 

and false negative count are low in the confusion matrix. 

This indicates that the model is not only good at telling the 

difference between real and fake images, but it can also be 

robust to changes or transformations in the input that the 

model has not seen before. Another useful aspect is that data 

augmentation (e.g., random zoom and shift along images), 

improved model generalisation, as seen by the scores on the 

unseen test. 

C. Limitations and Areas for Improvement 

 Although the proposed model performed well along 

different metrics, there are still limitations to its 

applicability. Specifically, while the model outperformed 

existing methods in terms of identifying AI images, its 

overall performance is still affected by more advanced 

generative models. As generative models such as Stable 

Diffusion continue to get better at training the creation of 

very realistic images, future work could potentially need to 

design additional attention mechanisms or hybrid 

architectures to adapt to such changes and maintain high 

detection accuracy. 

A third potential limitation is the use of attention 

mechanisms, which proved effective in the study, but may 

not always generalise well to other kinds of tasks or 

datasets. For example, attention layers can be 

computationally costly in terms of complexity, and may 

pose a risk of overfitting if the hyperparameters are not 

tuned appropriately. Future work might investigate methods 

to optimise attention layers, such as adaptive attention 

where the size of the receptive field changes dynamically to 

suit the specifics of the input. 

Moreover, while the proposed model considerably 

improved the computation efficiency compared with 

ResNet50 and Vision Transformers, some of the methods 

we used to train our model can be further optimised, such as 

model pruning, quantisation and so on, to reduce the model 

size and enhance the inference speed, which would make it 

more suitable to be deployed for real-time applications 

where rapid decision-making is highly valued. 

D. Contributions to the Field 

 This study further enriches the corpus of methods in 

detecting synthetic images by illustrating that using an 

attention mechanism and optimised convolutional layers 

improves the model performance. The proposed model acts 

as a more economical solution compared with the currently 

available CNN-based architectures or more expensive 

models (e.g., ViTs) and can be implemented in low-

resource settings while still achieving high accuracy. 

Additionally, the importance of using explainable AI 

techniques such as Grad-CAM that provide visual insights 

to human users about the AI’s decision is reiterated. Such 

insights are essential to increase transparency and trust in 

AI systems particularly in instances where the detection of 

synthetic content is crucial, such as in the fields of media 

verification and digital forensics.  

 In conclusion, the presented model outperforms the 

existing methods in terms of accuracy and efficiency, 
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making a promising step in this growing body of literature 

on detecting AI-generated images. Debunking the black-

box nature of CNN architectures and bridging the attention 

gap, the findings present a robust and scalable solution for 

one of the most important challenges in the field of 

computer vision. Future research should be dedicated to 

further expanding and extending these techniques, in order 

to improve the performance of the models and make them 

more responsive to the fast tracking changes in generative, 

AI-based technologies. 

VIII.  CONCLUSIONS AND FUTURE WORKS 

Finally, we propose a new model based on the combination 

of attention mechanism and modified a convolutional layer 

that improves the ability for detecting AI-generated images 

significantly. On the CIFAKE dataset, the proposed model 

achieves an accuracy of 98.25% for both real and AI-

generated classes. Moreover, the proposed model uses the 

attention mechanism that captures the visual features and 

sophisticated details leading to achieving high precision, 

recall and F1-scores. As a conclusion, the proposed model 

even could be a new basic method for other modern 

computer vision challenges. 

A notable novelty is that this research successfully uses 

depthwise separable convolutions (used in the GoogleNet 

and Xception architectures) and attention layers (initially 

used in Transformer architectures). This enabled the model 

to achieve a better trade-off between classification 

performance and computational cost compared with state-

of-the-art CNN architectures such as ResNet50, 

MobileNetV2, and DenseNet. It also made it possible to 

optimise the performance of image-classification 

algorithms for a variety of resource utilisation scenarios, 

such as mobile devices or cloud computing. In fact, the 

explainable AI technique Grad-CAM also deepened our 

understanding of the model, and increased its transparency 

and usability in real-world settings that require strong trust 

in AI systems. 

Its broader implications are for other domains where 

detection of AI-generated signals is paramount – such as 

digital media verification, online content moderation and 

image forensics – where the development of sophisticated 

and scalable detection mechanisms is likely to remain an 

important area of research in the era of empirical data-

driven models that can produce more and more realistic 

synthetic imagery. Our proposed model is one amongst the 

many efforts in this direction; however, unlike other 

approaches, it comes with a practical, high-performance 

solution, and can be readily deployed on resource-

constrained devices without compromising on accuracy.  

Looking forward, there are numerous promising avenues for 

further work. For example, we could build upon the model 

architecture with additional innovations, such as adaptive 

attention mechanisms that could dynamically allocate more 

attention to the most salient parts of an image. Moreover, as 

generative models become more capable, it would be 

interesting to explore hybrid architectures that could 

harness the strengths of both CNNs and a Vision 

Transformer for handling more challenges posed by 

synthetic images produced by increasingly powerful AI. 

Finally, extending the model to other domains, such as 

video or 3D image synthesis, could make it more broadly 

applicable, a useful tool against the growing need to detect 

synthetic media.  

To sum up, this study makes a tremendous leap to identify 

images produced by AI. Their contributions on this novel 

approach not only enrich the current state-of-the-art 

knowledge, but also offer more promising potentials for 

future research and development in a fast-growing area of 

computer vision. 
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