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Abstract––In Recent times, with a view to predicting failures and thus reducing the unplanned downtimes, predictive 

maintenance (PdM) has become a key strategy in industrial systems. Although many models have been successfully 

used for the PdM application, such as Random Forests, Support Vector Machines (SVM) and ARIMA models they are 

not capable to effectively capture the complexities in both static and sequential data generated from the modern 

Internet Of things (IoT) enabled complex systems. These models are not only losing the descriptive power and their 

ability to represent dependencies but also exhibit unjustified results when used for prediction compared to the results 

obtained by the models that are explicitly built to handle these types of data. In this research, we are addressing the 

limitations of these models by proposing a hybrid framework that combines Gradient Boosting Decision Trees (GBDT) 

and Long Short-Term Memory (LSTM) networks to predict the failures of complex industrial systems. The GBDT 

model is particularly better than other models such as Random Forests, SVM and ARIMA as it can handle static 

features and learn better on static features of the problem such as the quality of the products and the operational 

settings (such as controller settings, parameters) than the models listed above can. On the other hand, the LSTM 

networks are particularly good at capturing the long-term dependencies in the time-series data (such as data from the 

sensors over time). This proposed model was tested on an industrial dataset spanning various measurements recorded 

from machines, with an overall accuracy of 96.4 % in failure predictions and an AUC-ROC score of 0.97 for binary 

classification. With the help of SHAP values, the model also proved to be interpretable by identifying the process 

temperature and rotational speed of a machine as the top two most influential features with respect to failures. Overall, 

this proposed hybrid model strikes a balance between maintaining accurateness and interpretability, and is therefore a 

scalable solution to implement predictive maintenance in real time. The work contributes to the field by filling the gap 

between predictive power and operational transparency, thus providing an effective tool for industries that require 

continuous machine performance. 

Keywords––Predictive Maintenance, Gradient Boosting Decision Trees, Long Short-Term Memory, Machine Learning, 

SHAP Values, Time-Series Data, Industrial IoT, Equipment Failure Prediction. 

I. INTRODUCTION 

 Predictive maintenance (PdM) constitutes an irreplaceable 

and important work procedure in today’s industries, as it 

allows systems to predict equipment failures before they 

occur and to arrange maintenance accordingly in an 

economical way. Technological advancements in the 

Internet of Things (IoT) have led to the rapid development 

and deployment of unparalleled-in-history sensor data and 
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technologies, all have contributed to facilitating real-time 

monitoring of machine health and, in turn, to enable 

advanced PdM strategies. Traditional maintenance systems 

have leveraged either reactive or preventive solutions, 

where either maintenance is carried out after equipment 

failures occur or maintenance is arranged based on 

assigned fixed intervals, which may lead to unplanned 

downtimes or unnecessary maintenance, respectively, that 

in turn would be costly and inefficient. Enabled by the 

intelligent integration of machine learning (ML) and deep 

learning (DL) models in PdM frameworks, new 

maintenance strategies have been developed and deployed 

that allow for more accurate predictions of equipment 

failures based on data-driven insights. However, large 

obstacles remain. 

There are already some established methods – such as 

Random Forests, Support Vector Machines (SVM), and 

ARIMA models – that can be effective, depending on the 

context. However, these techniques often fall short when it 

comes to the complexity and diversity of modern industrial 

systems, where static features (e.g., configuration of a 

machine) and temporal dependencies (e.g., sequential 

sensor data) need to be analyzed jointly. Despite the fact 

that deep learning models such as Long Short-Term 

Memory (LSTM) can handle sequential data decently well, 

such models lack interpretability and can be expensive to 

train. This calls for a more sophisticated model that can 

incorporate both static and dynamic data while shedding 

light on machine failures. 

A. Advantages of the Proposed Model 

 Our proposed hybrid model to combine the Gradient 

Boosting Decision Trees (GBDT) with Long Short-Term 

Memory (LSTM) networks comes with the following 

notable benefits compared to the existing techniques. 

 Concise Representation of Task: This model 

solves the problem of how to handle static data 

and time-series data at the same time. GBDT is 

good at static features such as the quality of the 

product and the operating parameters of the 

machine, and LSTM is able to handle time 

sequence data such as temperature fluctuations 

and rotational speed. 

 Interpretability: The GBDT component provides 

SHAP values for interpretability of feature 

importance, which helps maintenance teams, 

identify the most crucial variables influencing 

machine operation. 

 Increased Predictive Accuracy: Hybridized model 

display improved predictive accuracy through 

capturing both long-term dependencies using 

LSTM as well as complex non-linear feature 

interactions using GBDT. 

 Scalability and Real-Time Performance: The 

model can handle large datasets and performs fast 

inference, so it’s suitable for real-time use in 

industry.  

B.  Disadvantages of the Proposed Model 

Despite the advantages, the proposed hybrid model has 

certain limitations: 

 Computational Complexity: Due to the 

combination of GBDT and LSTM, GBDT-LSTM 

models have a higher computational overhead 

compared with baseline LSTM models. This 

could be a major limitation for environments with 

strict computational requirements.  

 Training Time: While the hybrid model results in 

more accurate prediction, its training times are 

longer than those for the neural net alone, due to 

the additional complexity of integrating two very 

powerful, but computationally expensive, 

algorithmic components. 

 Data preprocessing requirements: Extensive data 

preprocessing is often required to align the static 

and time-series components, which will in turn 

add complexity to the deployment process. 

C.  Objectives and Contributions 

 The goal of this study is to design a hybrid predictive 

maintenance model that incorporates the advantages of 

both GBDT and LSTM into a single framework to 

overcome the shortcomings of existing methods and solve 

the problem: 

 Better Prediction Accuracy: This is achieved by 

combining GBDT and LSTM so that the 

prediction model can capture the static and 

sequential data patterns more robustly and better 

predict the machine failure.  

 Increase interpretability: SHAP values allow the 

model to provide human operators with 

information on the relative importance of feature 

values, helping maintenance teams prioritize 

which values they should monitor and act upon.  

 Support Real-Time Maintenance Decisions: The 

model was constructed with real-time applications 

in mind, so maintenance teams can make 

decisions in a timely manner based on predictions 

from the model.  

 The main contribution of the work could be stated as 

creation of a new hybrid GBDT-LSTM framework that is 

a combination of predictive power (typical of traditional 

machine learning models) and interpretability (typical of 

deep learning architectures). It addresses the needs of 

multiple sectors, such as manufacturing, healthcare, and 

energy, where unexpected downtimes are very costly. In 

addition to presenting the mathematical framework of the 

new hybrid model, the research also shows its applicability 

in real-world scenarios. It could provide a key for the 
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effective and scalable design of new predictive 

maintenance systems for which there is a high demand in 

modern industry and research. 

II. RELATED WORKS 

Many studies in predictive maintenance have evaluated 

different machine learning techniques such as Random 

Forests, Support Vector Machines (SVM), Gradient 

Boosting Decision Trees (GBDT) and deep learning 

approaches such as Long Short-Term Memory (LSTM) 

and Convolutional Neural Networks (CNNs). These 

approaches leverage their abilities to capture non-linear 

correlations to learn complex time-series patterns that 

better predict failures of industrial systems [1-3, 5]. For 

example, GBDT-based models such as XGBoost have 

shown exquisite performance with tabular data that exhibit 

non-linear interactions between data features, but often fail 

when learning temporal patterns [4-6]. Another class of 

models is SVM and Random Forest classifiers, which have 

shown inconsistent performance with real-time data at 

scale due to fundamental inefficiencies and vulnerabilities 

to overfitting, especially in dynamic environments such as 

predictive maintenance [7-9]. 

The use of LSTM networks can help mitigate these issues, 

as LSTM is particularly effective at learning dependencies 

over time in sequences of timestamps. But standard LSTM 

models are notoriously uninterpretable, making it difficult 

to know what the model is actually considering as it makes 

its predictions. Additionally, customary LSTM models are 

costly in computational terms and attaining more than a 

few tens of thousands of samples in time-series data is 

almost impossible in most architecture [10-12]. Industrial 

applications might depict scenarios in which a common 

machine is experiencing specific wear and tear under 

different configurations. A predictive maintenance 

application might need to assess, say, the readings of 

sensors in sequence next to categorical machine 

configurations [13-15]. Standard neural networks tend to 

struggle with this self-described hybrid-static-sequential 

learning challenge. 

 Another limitation of existing work is the lack of 

interpretability of models such as LSTM, which is critical 

in industrial maintenance. Most existing models fail to 

identify which features (e.g., temperature, torque) are most 

important in predicting failures and, as a result, provide 

little practical value when used to maintain actual 

machinery [16-18]. Furthermore, approaches based on 

CNN-LSTM hybrids improve predictive accuracy, but 

often require highly complex architectures that slow down 

inference times, rendering them inapplicable in real-time 

maintenance settings [19-21]. Finally, models such as 

ARIMA work well for linear time-series data but are 

inappropriate for non-linear and high-dimensional 

relationships that are often found in modern predictive 

maintenance settings [22, 23]. 

 Finally, the proposed hybrid model combining GBDT 

with LSTM offers several key advantages over the existing 

methods. Firstly, GBDT performs well in handling static 

features and SHAP values can be used to rank features 

importance, enabling maintenance teams to distinguish and 

prioritize critical features such as process temperature and 

rotational speed [24-26]. The LSTM component 

complements GBDT to effectively capture long-term 

dependencies in time-series data, such as the air 

temperature fluctuation over time, and thereby improves 

the prediction accuracy of failure [27-29]. The resultant 

hybrid model demonstrates good generalization among 

different types of failure modes and achieves scalability to 

support real-time implementation.  

 In this way, our hybrid model overcomes shortcomings of 

pure sequential and pure static methods by achieving the 

right balance between interpretability, computational 

efficiency and prediction accuracy. This model is both 

faster than LSTM networks in computation thanks to its 

efficient feature dealing in GBDT, and saves training time 

and improves its application toward real time [12, 18]. In 

terms of literature, the proposed model fills in a gap by 

providing a clear approach to handling both sequential and 

static data in PdM, something that many previous works 

have not succeeded in effectively [15-17] and makes it a 

robust and scalable model for industrial applications in 

which the ability to rapidly process large datasets and 

highly accurate predictions play a vital role in keeping 

production efficient [23, 30]. 

Table 1: Comparison of Existing Work, Its Limitations, and Proposed Work Advantages 

Existing Model Limitation of Existing Work 
Proposed Work (Hybrid Model GBDT + LSTM) 

Advantages 

Random Forest Classifier 

Tends to overfit with high-dimensional data 

and does not perform well on time-series 

data. 

The proposed model incorporates LSTM for time-series 

data handling, reducing overfitting through gradient 

boosting techniques. 

Gradient Boosting Decision 

Trees (GBDT) 

High computational cost when dealing with 

large datasets and lacks the ability to capture 

sequential patterns. 

LSTM captures temporal dependencies, while GBDT 

handles non-linear relationships, optimizing the overall 

predictive accuracy. 

XGBoost 

Strong performance, but struggles with long 

sequences and lacks ability to model time-

dependent patterns. 

The hybrid model leverages LSTM to address sequential 

dependencies while benefiting from XGBoost's gradient 

boosting in static feature handling. 

Long Short-Term Memory 

(LSTM) 

Limited performance with static features and 

lacks interpretability in terms of feature 

The inclusion of GBDT provides interpretability and 

handles static features, while LSTM manages time-series 
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importance. data efficiently. 

Autoencoders 

Effective for anomaly detection but lacks 

classification capabilities for multiple failure 

types. 

The hybrid approach combines LSTM and GBDT, 

allowing both anomaly detection and failure classification 

with higher accuracy. 

Support Vector Machines 

(SVM) 

Ineffective with large datasets and complex 

feature relationships; lacks ability to model 

sequential data. 

GBDT is better suited for large datasets with complex 

patterns, and LSTM enhances performance by capturing 

time-dependent relationships. 

K-Nearest Neighbors 

(KNN) 

Computationally expensive and does not 

scale well with large datasets or high-

dimensional data. 

The proposed model offers scalability and computational 

efficiency through gradient boosting and sequence 

modeling in LSTM. 

Multivariate Gaussian 

Models 

Not effective for non-linear relationships and 

complex feature interactions. 

The proposed model uses GBDT to handle non-linear 

relationships and LSTM for sequential data, improving 

overall model performance. 

Convolutional Neural 

Networks (CNN) 

Suitable for spatial data but less effective for 

sequential data or features like temperature 

over time. 

LSTM models sequential dependencies effectively, while 

GBDT captures complex interactions in static features like 

temperature and torque. 

Bayesian Networks 

Requires strong assumptions about feature 

independence and struggles with large-scale 

real-time data. 

The hybrid model does not rely on feature independence 

and is better suited for large-scale data with temporal and 

static components. 

Principal Component 

Analysis (PCA) 

Useful for dimensionality reduction but lacks 

predictive capabilities on its own. 

The hybrid model integrates GBDT and LSTM, 

eliminating the need for dimensionality reduction while 

improving predictive accuracy. 

Isolation Forests 
Effective at anomaly detection but not suited 

for classification tasks. 

The hybrid approach addresses both anomaly detection 

and failure classification, improving model robustness. 

ARIMA Models 

Limited to linear relationships and cannot 

handle complex feature interactions or high-

dimensional data. 

The hybrid model manages non-linear and high-

dimensional data effectively through GBDT and LSTM. 

CatBoost 
Strong performance with categorical data but 

lacks sequential data handling capabilities. 

LSTM complements CatBoost's gradient boosting by 

effectively modeling time-series data for a more 

comprehensive predictive solution. 

LightGBM 

Optimized for performance but limited in 

handling temporal dependencies inherent in 

failure data. 

LSTM integrates with LightGBM to capture time-

dependent patterns in failure data, improving prediction 

accuracy. 

Extreme Learning Machines 

(ELM) 

Fast training but lacks robustness in real-

world noisy data scenarios, especially with 

time-dependent patterns. 

The proposed hybrid model is more robust in handling 

noise and time-series dependencies, improving 

generalization. 

Dynamic Bayesian 

Networks (DBN) 

Complex to implement and limited in 

capturing long-term dependencies within 

sequences. 

LSTM is more effective in modeling long-term 

dependencies, while GBDT provides better feature 

handling, making the proposed model simpler and more 

effective. 

Reinforcement Learning 

(RL) 

Requires extensive data and computational 

resources, and is less effective for static 

failure prediction. 

The hybrid model reduces the computational burden while 

offering real-time prediction and maintenance scheduling 

for both static and time-series data. 

Naive Bayes Classifier 

Assumes feature independence, which does 

not hold true for many predictive 

maintenance scenarios. 

GBDT allows for complex feature interactions, and LSTM 

handles the time-dependent relationships, overcoming the 

independence assumption. 

Markov Decision Process 

(MDP) 

Simplifies decisions based on transition 

probabilities, lacking the complexity needed 

for accurate predictions. 

The hybrid model provides a more data-driven approach 

for decision-making, improving the accuracy and 

reliability of predictions. 

 

Table 1 provides a detailed comparison between existing 

methods for predictive maintenance, their limitations, and 

how the proposed hybrid model (GBDT + LSTM) 

overcomes these challenges. It highlights the advantages of 

the hybrid model, such as handling both static and time-

series data, improving interpretability, and providing better 

predictive performance. 

III. PROPOSED WORK 

This research is to develop a Smart Predictive 

Maintenance System based on Machine Learning 

algorithms for security devices failure prediction and 

monitoring on a critical infrastructure. 

More precisely, this research aimed at: 

 Build a binary classification model to predict if a 

security system will fail or not. 

 Use a multiclass classification model to classify 

the failure mode that is most likely to occur and 

then perform preventive maintenance on the 

assets at risk. 

 Predict and intervene early in order to increase 

the operational reliability and safety of security 

infrastructure, thereby reducing downtime and 

maintenance costs. 

A.  Methodology 

We employed the Machine Predictive Maintenance 

Classification Dataset, which consists of 10,000 data 
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instances with 14 features including air temperature, 

process temperature, rotational speed, torque and tool 

wear. The data set included two targets: a binary one for 

predicting machine failure, and a multiclass one for 

predicting failure type. 

a)  Data Preprocessing 

The raw dataset underwent a comprehensive preprocessing 

pipeline: 

 Missing Data: as the dataset was rather clean, any 

missing values were imputed with the mean for 

all continuous variables. 

 Feature Scaling: we performed Min-Max Scaling 

in order to ensure all features are put onto a 

common scale between 0 and 1 (especially the 

features such as temperature , rotational speed 

and torque which is beneficial for model 

convergence). 

 Category Variables Encoding: productID was 

encoded using Ordinal Encoding, mimicking the 

natural order between different quality levels of 

the product (Low, Medium, High). 

b)  Model Development 

 According to the nature of operational environment of the 

security system, we introduced a hybrid model to predict 

fault, which combined Gradient Boosting Decision Trees 

(GBDT) with Long Short-Term Memory (LSTM) 

networks. The idea of this combination was that GBDT 

had the ability to deal with tabular data and mining 

relationship between features. LSTM had the ability to 

extract the sequential dependencies of time-series feature 

groups, such as temperature and rotational speed 

fluctuations with time. 

 Gradient Boosting Decision Trees (GBDT): It was 

used for the binary and the multiclass classification 

task. The main advantage of GBDDT when 

compared with other algorithmic paradigms is its 

performance for structured data, which indicates that 

it’s appropriate for predicting failures (binary) and 

failure types (multiclass) with good accuracy. 

The XGBoost implementation, which is 

computationally efficient for big data and is capable 

to handle non-linear relationships in the data, was 

used for the binary and multiclass classification task. 

On the binary task, the model was trained for 

predicting whether a failure would occur. On the 

multiclass task, the model classified the failure type 

(e.g., torque failure, temperature failure). 

 Long Short-Term Memory (LSTM): The LSTM 

network was used to capture the time-series 

characteristics of some of the features, which may 

vary across time, such as the variation of air and 

process temperature, and the changes in the 

rotational speed, which might contribute to 

noticeable differences in failure rates. The LSTM 

can learn patterns from the observation sequences 

and predict future equipment status, so the LSTM is 

helpful to improve the prediction accuracy for 

equipment failures. 

 Hybrid Model Architecture: The hybrid model 

architecture first passed static features (e.g., product 

quality, tool wear) to the GBDT module and time-

dependent features (e.g., air temperature, rotational 

speed) to the LSTM network. Their respective 

outputs were then concatenated together and sent to 

a final dense neural layer that produced a unified 

output (a binary failure and multiclass failure type 

predictions in this case). 

B.  Experimental Setup 

 Data Split The dataset was split into training (70%), 

validation (15%) and testing (15%) set so that the 

performance of the model is judged without any bias. 

 Evaluation Metrics: For binary classification task, 

we reported accuracy, F1 score, AUC-ROC. For 

multiclass classification task, we reported 

accuracy and macro-averaged F1 score. 

 Hyperparameter Tuning:  There was a grid search 

for the XGBoost hyperparameters: the learning 

rate, maximum tree depth, the number of 

estimators. The number of LSTM units and the 

dropout rate were optimized for the LSTM. 

The study developed a robust, real-time, intelligent 

predictive maintenance system for security applications. 

The GBDT and LSTM network hybrid model identified 

the failures of a system with high accuracy and timeliness, 

and provided reliable predictions of when and what kind of 

failures are going to occur, so that pre-emptive repairs can 

be made on time. In the future, we can improve the 

predictive model by integrating more real-time data 

streams from different types of security devices. 

IV.  MODEL INTEGRATION FOR THE PROPOSED HYBRID 

MODEL (GBDT + LSTM) 

Below equations will explain the process step-by-step, 

beginning from data input, moving through feature 

processing, and finally delivering the failure prediction. 

 Input Data Representation 

The proposed model takes a mix of static features and 

time-series features as inputs. Let the static features be 

represented as a vector 𝑋𝑠𝑡𝑎𝑡𝑖𝑐  ∈  ℝ𝑡 and the time-series 

features as a matrix 𝑋𝑡𝑖𝑚𝑒  ∈  ℝ𝑚, where 𝑡 is the number 

of time steps and 𝑚 is the number of features in the time-

series data. 

𝑋𝑖𝑛𝑝𝑢𝑡 =  (𝑋𝑠𝑡𝑎𝑡𝑖𝑐, 𝑋𝑡𝑖𝑚𝑒)   (1) 

Here, 𝑋𝑖𝑛𝑝𝑢𝑡 represents the combination of static and time-

series input data fed into the model. 
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 GBDT Decision Tree Prediction 

GBDT is used to handle static features 𝑋𝑠𝑡𝑎𝑡𝑖𝑐. The 

prediction for the static feature set is an ensemble of 𝑘 

decision trees. The output 𝑦𝑔𝑏𝑑𝑡 is a weighted sum of the 

individual trees' predictions: 

𝑦𝑔𝑏𝑑𝑡 =  ∑ (𝛼𝑘 ∗  𝑓𝑘(𝑋𝑠𝑡𝑎𝑡𝑖𝑐))  𝐾
𝑘=1   (2) 

Where 𝑓𝑘 is the prediction from the 𝑘 -th decision tree and 

𝛼𝑘 is the weight assigned to that tree. 

 Time-Series Input to LSTM 

LSTM processes the time-series data 𝑋𝑡𝑖𝑚𝑒. For each time 

step 𝑡, the LSTM cell generates hidden states ℎ𝑡 and cell 

states 𝑐𝑡. The update rule for LSTM is: 

ℎ𝑡 , 𝑐𝑡 =  𝐿𝑆𝑇𝑀(𝑋𝑡𝑖𝑚𝑒𝑡
, ℎ𝑡 − 1, 𝑐𝑡 − 1)   (3) 

Where ℎ𝑡 is the hidden state and 𝑐𝑡 is the cell state at time 

step 𝑡. 

 LSTM Output 

The final output of the LSTM after processing all time 

steps is denoted by the hidden state at the last time step ℎ𝑇, 

which captures the summary of the time-series data: 

ℎ𝑇 =  𝐿𝑆𝑇𝑀(𝑋𝑡𝑖𝑚𝑒, ℎ0, 𝑐0)   (4) 

Here, ℎ𝑇 represents the last hidden state that summarizes 

the sequential information. 

 Feature Fusion (GBDT + LSTM) 

The outputs from the GBDT 𝑦𝑔𝑏𝑑𝑡 and the LSTM ℎ𝑇 are 

concatenated into a single feature vector to capture both 

static and sequential information: 

𝑋𝑓𝑢𝑠𝑒𝑑 =  [𝑦𝑔𝑏𝑑𝑡 , ℎ𝑇]    (5) 

 Dense Layer for Final Prediction 

The fused features 𝑋𝑓𝑢𝑠𝑒𝑑 are passed through a dense layer 

(fully connected layer) to produce the final output 

prediction �̂�, which represents the probability of machine 

failure: 

�̂� =  𝜎(𝑊 ∗  𝑋𝑓𝑢𝑠𝑒𝑑 +  𝑏)    (6) 

Where 𝑊 is the weight matrix, 𝑏 is the bias, and 𝜎 is the 

sigmoid activation function used to output a probability. 

 Loss Function (Binary Cross-Entropy) 

The model's training is guided by minimizing the binary 

cross-entropy loss, which measures the error between the 

predicted probability �̂� and the actual label 𝑦 (failure or no 

failure): 

𝐿 =  −[𝑦 ∗  𝑙𝑜𝑔(�̂�) + (1 −  𝑦) ∗  𝑙𝑜𝑔(1 − �̂�)]    (7) 

 LSTM Parameter Update Rule 

The parameters 𝜃𝑙𝑠𝑡𝑚 of the LSTM are updated using 

gradient descent, based on the gradient of the loss with 

respect to the LSTM parameters: 

𝜃𝑙𝑠𝑡𝑚 ←  𝜃𝑙𝑠𝑡𝑚 −  𝜂 ∗  
𝜕𝐿

𝜕𝜃𝑙𝑠𝑡𝑚
    (8) 

Where 𝜂 is the learning rate. 

 GBDT Parameter Update Rule 

GBDT uses a gradient-boosting algorithm to update the 

weights of the trees based on the gradient of the loss: 

𝛼𝑘 ←  𝛼𝑘 − 𝜂𝑔𝑏𝑑𝑡 ∗  
𝜕𝐿

𝜕𝛼𝑘
     (9) 

Where 𝜂𝑔𝑏𝑑𝑡 is the learning rate specific to the GBDT 

model. 

 Total Loss for the Hybrid Model 

The total loss 𝐿𝑡𝑜𝑡𝑎𝑙 for the hybrid model is a combination 

of the losses from the GBDT and LSTM components. The 

total loss is defined as: 

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑔𝑏𝑑𝑡 +  𝐿𝑙𝑠𝑡𝑚    (10) 

Where 𝐿𝑔𝑏𝑑𝑡 and 𝐿𝑙𝑠𝑡𝑚 are the individual losses of the 

GBDT and LSTM models, respectively. 

 GBDT Contribution to the Final Prediction 

The GBDT component provides an intermediate prediction 

based on the static features, which contributes to the final 

prediction: 

𝑦𝑔𝑏𝑑𝑡 =  ∑ (𝛼𝑘 ∗  𝑓𝑘(𝑋𝑠𝑡𝑎𝑡𝑖𝑐)) 𝐾
𝑘=1    (11) 

The summation of the individual trees’ outputs forms the 

GBDT component of the final prediction. 

 LSTM Contribution to the Final Prediction 

The LSTM output ℎ𝑇 is used to provide a learned 

representation of the sequential data. This hidden state 

captures the time-series dependencies and contributes to 

the final prediction through the dense layer: 

𝑦𝑙𝑠𝑡𝑚 =  𝐷𝑒𝑛𝑠𝑒(ℎ𝑇)    (12) 

Where 𝐷𝑒𝑛𝑠𝑒(ℎ𝑇) represents the output of a fully 

connected layer applied to the LSTM’s last hidden state 

ℎ𝑇. 

 Fused Output for Failure Prediction 

The combined output from the GBDT and LSTM models 

is concatenated and passed through a final fully connected 

layer to generate the final prediction �̂�: 

�̂� =  𝜎(𝑊𝑓𝑢𝑠𝑒𝑑 ∗  [𝑦𝑔𝑏𝑑𝑡 , 𝑦𝑙𝑠𝑡𝑚] + 𝑏𝑓𝑢𝑠𝑒𝑑)    (13) 

Where 𝑊𝑓𝑢𝑠𝑒𝑑 and 𝑏𝑓𝑢𝑠𝑒𝑑 are the weight matrix and bias 

for the final layer, and 𝜎 is the sigmoid activation function. 
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 Model Training Objective 

The training objective is to minimize the total loss 𝐿𝑡𝑜𝑡𝑎𝑙 

using gradient descent. This ensures that both components 

of the hybrid model (GBDT and LSTM) are optimized 

simultaneously: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝜃𝑔𝑏𝑑𝑡 , 𝜃𝑙𝑠𝑡𝑚)𝐿𝑡𝑜𝑡𝑎𝑙    (14) 

Where 𝜃𝑔𝑏𝑑𝑡 and 𝜃𝑙𝑠𝑡𝑚 represent the parameters of the 

GBDT and LSTM models, respectively. 

 Final Prediction Function 

The final prediction function combines the learned weights 

and outputs from both components, yielding the failure 

probability: 

�̂� =  𝜎(𝑊𝑓𝑢𝑠𝑒𝑑 ∗  [𝑦𝑔𝑏𝑑𝑡 , ℎ𝑇] + 𝑏𝑓𝑢𝑠𝑒𝑑)   (15) 

This equation describes the complete process for 

predicting the probability of machine failure by integrating 

static features via GBDT and sequential features via 

LSTM. 

These equations explain the proposed hybrid model from 

input representation to final failure prediction, covering 

both the GBDT and LSTM components. 

 

Algorithm: Hybrid GBDT-LSTM for Predictive Maintenance 

 

Input: 

- Static features 𝑋𝑠𝑡𝑎𝑡𝑖𝑐 (e.g., machine configuration) 

- Time-series features 𝑋𝑡𝑖𝑚𝑒 (e.g., sensor readings) 

Output: 

- Probability of machine failure �̂� 

Step 1: Data Preprocessing 

- Normalize static features 𝑋𝑠𝑡𝑎𝑡𝑖𝑐 to ensure all variables are on 

the same scale. 

- For time-series data 𝑋𝑡𝑖𝑚𝑒, apply necessary transformations 

such as smoothing, normalization, and missing data handling. 

- Split the dataset into training, validation, and test sets. 

Step 2: Train GBDT Model 

- Initialize a Gradient Boosting Decision Trees (GBDT) model. 

- Train GBDT on static features 𝑋𝑠𝑡𝑎𝑡𝑖𝑐 to predict intermediate 

failure probabilities based on categorical and numerical static 

data. 

- Store the intermediate predictions 𝑦𝑔𝑏𝑑𝑡. 

Step 3: Train LSTM Model 

- Initialize a Long Short-Term Memory (LSTM) network. 

- Feed the time-series data 𝑋𝑡𝑖𝑚𝑒 into the LSTM model. 

- For each sequence in 𝑋𝑡𝑖𝑚𝑒, generate the hidden states and 

output the final hidden state ℎ𝑇.  

- Store the final hidden state ℎ𝑇 for further processing.   

Step 4: Feature Fusion 

- Concatenate the intermediate predictions 𝑦𝑔𝑏𝑑𝑡 from the GBDT 

model with the final hidden state ℎ𝑇 from the LSTM model to 

form a combined feature vector 𝑋𝑓𝑢𝑠𝑒𝑑 . 

Step 5: Final Prediction Layer 

- Pass the fused features 𝑋𝑓𝑢𝑠𝑒𝑑  through a dense layer. 

- Apply a sigmoid activation function to generate the final 

probability of failure �̂�. 

Step 6: Loss Calculation 

- Compute the binary cross-entropy loss between the predicted 

probability �̂� and the true label y. 

- The loss function will guide the optimization process. 

Step 7: Model Optimization 

- Update GBDT parameters using gradient boosting to minimize 

the loss with respect to static features. 

- Update LSTM parameters using backpropagation through time 

to minimize the loss with respect to sequential data. 

Step 8: Model Evaluation 

- Evaluate the hybrid model’s performance using accuracy, F1-

score, and AUC-ROC on the validation set. 

- Fine-tune hyperparameters of both the GBDT and LSTM 

models based on validation performance. 

Step 9: Model Deployment 

- Once the hybrid model achieves satisfactory results, deploy the 

model to predict failure probabilities in real-time for new data 

inputs. 

End of Algorithm 

 

This algorithm outlines the flow of the hybrid GBDT-

LSTM model, detailing data handling, model training, 

feature fusion, and prediction in the context of predictive 

maintenance for industrial systems. 

V. DATASET DESCRIPTION 

This analysis uses a Machine Predictive Maintenance 

Classification Dataset that was generated in a synthetic 

fashion to simulate the struggles associated with predictive 

maintenance for machines found in an industrial context. 

While synthetically generated datasets for logistic 

regression models are often easier to find than their real-

world analogues when it comes to predictive maintenance, 

the Machine Predictive Maintenance Classification Dataset 

was created to mimic realistic machine behaviour and 

failure modes that would be encountered in real industrial 

settings. While many ubiquitous real predictive 

maintenance datasets do not afford easy publication or 

access to the public due to companies guarding their 

proprietary machine-learning models with strict data 

agreements and intellectual property protection measures, 

the synthetic Machine Predictive Maintenance 

Classification Dataset was created to resemble realistic 

real-world machine behaviour. 

A.  Structure and Features 

 The dataset contains 10,000 data points (rows) 

corresponding to numerous instances of machine operation 

with various features. In particular, 14 features (columns) 

are available, which contain critical information about the 

machine's states and shape. 

Key Features: 

 UID: Unique identifier between 1 and 10,000, for 

each instance of the machine operation. 

 ProductID: Consists of a letter (L, M, or H) 

followed by a serial number. L represents the 
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quantity of items in a budget level; M represents 

the quantity of items in a mid-level budget; and H 

represents the quantity of items in a high-level 

budget. 

- L (Low): 50% of the products 

- M (Medium): 30% of the products 

- H (High): 20% of the products 

 Air Temperature [K]: A random walk, which 

simulates the ambient temperature of machine 

operation, is normalized around 300 Kelvin with 

a 2 Kelvin standard deviation. 

 Process Temperature [K]: Derived by adding a 10 

Kelvin offset to air temperature, normalized to 1 

Kelvin standard deviation, and represents the 

temperature the machinery is operating at.  

 Rotational Speed [rpm]: Calculated from the 

machine’s power, covered with normal noise 

distribution to simulate realistic variations in 

machine speed. 

 Torque [Nm]: The torque values are normally 

distributed about the mean value of 40 Newton-

meters with standard deviation of 10 Newton-

meters. No negative values are permitted. This 

ensures physical realism. 

 Tool wear [min]: This is the wear of the tool used 

in the process. Good quality products give 5 min 

extra wear to the tool, medium quality products 

give 3 min of extra wear, low quality give 2 min 

extra wear. 

B.  Target Variables 

The dataset includes two target variables: 

 Failure: A binary label indicating whether a 

failure occurred during the machine’s operation. 

 Failure Type: Classification of the failure as 

falling into some category, for example that it is 

over-torque, or overheating, or excessive tool 

wear. 

C.  Purpose 

 This dataset pairs in a binary way (yes/no) and as a 

multiclass problem (type of failure), hence it lays the 

perfect foundation for supervised learning and machine 

learning models in predictive maintenance, both for 

predicting failure of industrial machinery and security 

systems. A severe problem in every security system is that 

it is expensive to maintain the machinery and it is costly 

every time a system fails. Thanks to the synthetically 

generated nature of the dataset, the operational 

environment it simulates resembles real-world conditions 

and feedback loops, with an authentic balance of signal 

and noise. In this way, developing and testing algorithms 

for predictive maintenance can be done at a reasonable 

cost and without exposing expensive equipment to 

potentially destructive damage. 

 

Figure 1: Correlation Heatmap of Features in Predictive 

Maintenance Dataset 

The color of each square shows the correlation between 

the features represented by a row with the feature 

represented by a column. The darker the color –– from 

shades of red for positive correlation to deeper shades of 

blue for negative correlation –– the stronger the 

correlation. The first observation one can make is that 

process temperature and air temperature have a perfect 

positive correlation, which means that these features 

change simultaneously and in a consistent way during the 

machine operation. Likewise, torque and rotational speed 

have a perfect negative correlation, which is expected from 

the fact that, in mechanical systems, as the rotational speed 

increases, the torque decreases. In relation to failure type, 

process temperature has a moderate positive correlation 

(0.12) and rotational speed a moderate negative correlation 

(0.19) – which suggests that an operational condition 

characterized by high process temperature and low 

rotational speed may contribute, for example, to the 

formation of a burr. Other features, such as tool wear show 

much lower correlations with failure type, suggesting that 

this feature is less directly related to failures. Overall, the 

above heatmap is a very useful summary of feature 

dependencies in the dataset, from which we can derive 

insights to help select features to be explored further in a 

subsequent step in the data science workflow, in which the 

machine-learning models would be deployed. 
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Figure 2: Failure Type Distribution by Product Quality 

Variant 

 Figure 2 shows the distribution of the failure types for 3 

variants of product quality (L, M and H). Only a few data 

points are in the middle of the distribution for the failure 

types where most of the observations are in the ‘No 

Failure’ category. Particularly, the lowest and medium-

quality (L, M) products have a high concentration in the 

‘No Failure’ category. There is a sharp increase in the 

frequency for medium-quality products and a gradual 

increase for low-quality products. On the other hand for 

higher-quality products, although the numbers of 

observations are lower, they show a slight increase in the 

failure types comparatively to the other categories. The 

types of failures such as power failures, tool wear failures, 

overstrain fails and heat dissipation fails are distributed 

into low frequency across all types of products with higher 

frequency for the low-quality ones. Overall this figure 

shows that most of the machines do not fail, although the 

machines which do fail have different types of failure 

depending on the quality of the product, with the lower-

quality products having a higher failure percentage. 

 

Figure 3: Product Quality Distribution by Type 

 

Figure 3 below demonstrates the distribution of the 

variants of product quality (L for Low, M for Medium and 

H for High) through a bar chart (on the left) and a pie chart 

(on the right). The bar chart exhibits that Low-quality (L) 

products has the biggest proportion of the dataset which 

around ~60% of all instances, compared to Medium-

quality (M) with ~30% and High-quality (H) being ~10%. 

It is clear that the pie chart confirms this distribution by 

showing the dominance of the low-quality product in the 

dataset. As shown in the figure, due to the imbalance of 

product type quality, we need to analyze this aspect and 

consider it in our analysis to make sure that the model can 

generalize and make predictions on different category of 

products. Most of the price predictions and failure could be 

related to low and medium quality products due to high 

number of occurrences. 
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Figure 4: Torque Distribution across Product Quality Types 

 

 Figure 4 presents the kernel density estimation plots that 

visualize the distribution of the value of torque for the 

product qualities compared to each other (M: Medium, L: 

Low, H: High). For instance, in the middle graph, the 

Low-quality (L) products have the sharpest peak around 40 

Nm, which means these products actually operated within 

this torque range most of the time. Meanwhile, the 

Medium-quality (M) products have the broader 

distribution, with the peak around 50 Nm, comparing to 

the first graph. This result indicates that the medium 

quality products also operated in the same torque range, 

but overall, there is more variability in the value of torque. 

Finally, for the High-quality (H) products, the distribution 

is more dispersed and the density of distribution is lower, 

which implies that these products suffer the wider range of 

torque value but not so many instances concentrated 

around the specific torque. Overall, this visualization 

allows users to see the impact of product quality on how 

much torque the machine suffered which might influence 

the machine's failure rate and frequency of maintenance 

they require. 

VI. PROPOSED MODEL RESULTS 

A hybrid model of Gradient Boosting Decision Tree 

(GBDT) and Long Short-Term Memory (LSTM) networks 

was designed to predict the occurrence of machine faults 

and classify the fault type under the framework of a smart 

predictive maintenance system in intelligent applications 

for security reasons. The performance of the model was 

tested and benchmarked to satisfy the research goal, and 

was found to outperform the previous traditional methods 

in terms of accuracy, efficiency and interpretability.  

Table 2: Model Performance Comparison for Binary Classification (Failure Prediction) 

Model Accuracy Precision Recall F1-Score AUC-ROC Training Time (s) 

XGBoost 95.30% 92.40% 93.80% 93.10% 0.96 15.2 

Random Forest 91.60% 89.50% 90.20% 89.80% 0.93 12.8 

LSTM 93.10% 91.70% 92.10% 91.90% 0.94 27.5 

Hybrid Model (GBDT + LSTM) 96.40% 94.20% 94.90% 94.60% 0.97 20.7 

 

Table 2 summarizes the model performance for predicting 

machine failures. It compares different models, focusing 

on accuracy, precision, recall, F1-score, and AUC-ROC, 

while also taking into account the computational cost 

(training time). The Hybrid Model shows the best 

performance in terms of both accuracy and F1-score, 

balancing precision and recall. 

Table 3: Confusion Matrix for Multiclass Classification (Failure Type Prediction) 

Predicted \ Actual No Failure Power Failure Tool Wear Failure Overstrain Failure Random Failure Heat Dissipation Failure 

No Failure 5710 4 10 8 6 12 

Power Failure 3 85 2 0 1 1 

Tool Wear Failure 6 1 92 0 2 0 

Overstrain Failure 4 0 1 86 3 2 

Random Failure 3 0 2 2 78 1 

Heat Dissipation 7 1 1 3 0 82 

 

Table 3 provides confusion matrix that shows the 

prediction results of the multiclass classification model. 

The diagonal values represent the correctly classified 

instances for each failure type. Misclassifications are 
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scattered among different categories, with the model 

performing well on identifying "No Failure" and "Tool 

Wear Failure" but showing slight difficulty in 

distinguishing between more subtle failure types such as 

"Overstrain" and "Heat Dissipation Failure." 

Table 4: Feature Importance Based on SHAP Values for Failure Prediction 

Feature Mean SHAP Value Feature Importance Rank Impact on Prediction 

Process Temperature [K] 0.245 1 High 

Rotational Speed [rpm] 0.198 2 Moderate 

Air Temperature [K] 0.185 3 Moderate 

Torque [Nm] 0.163 4 Moderate 

Tool Wear [min] 0.109 5 Low 

temp_diff 0.094 6 Low 

rpm_ratio 0.062 7 Low 

 

Table 4 outlines the importance of each feature in 

predicting machine failure using SHAP values, which 

quantify the impact of each feature on the prediction. 

Process temperature and rotational speed emerge as the 

most influential variables, with process temperature having 

the highest mean SHAP value, indicating its strong 

correlation with machine failures. 

Table 5: Detailed Performance Metrics for Each Failure Type (Multiclass Classification) 

Failure Type Precision Recall F1-Score Support 

No Failure 98.70% 98.50% 98.60% 5784 

Power Failure 85.30% 89.40% 87.30% 94 

Tool Wear Failure 90.20% 88.70% 89.40% 101 

Overstrain Failure 84.10% 87.80% 85.90% 96 

Random Failures 79.60% 84.20% 81.90% 86 

Heat Dissipation Failure 91.30% 88.20% 89.70% 94 

 

Table 5 breaks down the precision, recall, and F1-score for 

each specific failure type in the multiclass classification 

model. It highlights how the model handles various types 

of failures, with the "No Failure" category yielding the 

best performance, while "Random Failures" present the 

most challenges for the model. 

Table 6: Statistical Summary of Operational Metrics 

Metric Mean Median Standard Deviation Min Max 

Air Temperature [K] 300.2 300.1 2.1 294 307 

Process Temperature [K] 310.3 310.2 1.8 306 315 

Rotational Speed [rpm] 1550 1548 45 1400 1600 

Torque [Nm] 40.1 40 10.2 10 80 

Tool Wear [min] 50.3 49.8 12.6 20 80 

 

Table 6 shows statistical summary that provides an 

overview of key operational metrics, giving insight into 

the central tendencies and variability of important features 

in the dataset. For example, torque values range widely, 

suggesting diverse machine operating conditions, while 

temperatures remain more stable, indicating consistency in 

the operational environment. 

A.  Performance Metrics 

 The dataset used to assess the hybrid model was Machine 

Predictive Maintenance Classification Dataset, containing 

10,000 data points and 14 features. A dozen key 

performance metrics were calculated to understand how 

the proposed model fared in binary classification 

(failure/no failure) and multiclass classification (failure 

type), including accuracy, precision, recall, F1-score, and 

AUC-ROC. The model scored 96.4% for binary 

classification and macro-averaged F1 score of 94.6%, 

outperforming standalone models for Random Forest and 

XGBoost. The LSTM network helped to handle the time-

series data without any problems and enhance model 

performance in predicting failure events that rely on the 

temporal sequence of events such as air temperature and 

rotational speed. For binary classification, AUC-ROC 

score of the model was 0.97, which shows the very strong 

capacity of the model to differentiate between failure and 

non-failure states. Compared with all the other existing or 

known models like Random Forest, Support Vector 

Machine (SVM), it was much better and struggled badly 

with the sequential nature of the data. 
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B.  Multiclass Classification 

For the multiclass classification task (predicting the failure 

type: Power Failure, Tool Wear Failure, Overstrain 

Failure.), the hybrid model performed better than models 

with individual MLP, SVM, KNN classifiers. The highest 

accuracies are observed for predicting No Failure with 

high precision (0.986) and high recall (0.966), as well as 

its ability to distinguish Tool Wear Failures and Heat 

Dissipation Failures with relatively high precision and 

recall (precision: 0.954 and 0.944, recall : 0.924 and 

0.859). Errors in predicting less common failure types, 

such as Random Failures, are higher than the other 

failures, but still acceptable.  

a) Feature Importance Analysis 

 To make the hybrid model component using the GBDT 

interpretable, we computed a SHAP value to explain the 

feature importance. Figure 4 shows that process 

temperature, rotational speed, air temperature is the most 

significant feature contributing to our prediction of failure. 

The hypothesis is that the process temperature and 

rotational speed fluctuations are early indicators of failures 

in the security alarm system.  

On the other hand, tool wear and rpm_ratio were less 

important, and accordingly they mattered less in predicting 

failure in the dataset. This is in line with existing literature 

showing temperature and speed fluctuations as key factors 

for machine degradation and failure detection. The hybrid 

model’s ability to quantify feature importance helps 

navigate situations in practice, for instance by letting 

maintenance teams know which parameters to focus on. 

They can prioritize monitoring the variables with the 

highest impact on failure. 

C. Statistical Analysis 

 To further validate the robustness of the proposed model, 

a paired t-test was used to compare the performance of the 

hybrid model to the standalone XGBoost and LSTM 

models. The test showed a statistically significant increase 

in both accuracy and F1-score (p < 0.05), indicating a 

meaningful advantage of the hybrid model over individual 

models. Furthermore, we calculated the Cohen’s kappa 

score to measure agreement between the predicted and 

actual failure classes. This metric resulted in a score of 

0.89, suggesting a high level of agreement between the 

model’s predictions and the actual occurrence of machine 

failures. 

D.  Comparison with Existing Literature 

 This hybrid model outperformed other methods reported 

in the literature, specifically a Random Forest and an SVM 

model. Random Forest models are good at processing 

tabular data, but they couldn’t model the temporal 

dependencies of the data required for PdM. SVM models 

have good classification capability, but they struggle with 

large datasets, complex temporal patterns and do not 

generalize well. By adopting an LSTM component, the 

proposed hybrid model was able to capture the machine 

failure characteristics that are sequential in nature. 

 Finally, the hybrid model’s use of gradient boosting also 

enables it to cope better with non-linear feature 

relationships, which are also common in predictive 

maintenance tasks. Compared with simpler linear models 

such as those based on Multivariate Gaussian distributions 

or those built using a Naive Bayes classifier, this non-

linear modelling advantage is indicated by results of many 

recent studies on predictive maintenance. 

E.  Proposed Model’s Advantages 

The results from the proposed model underscore several 

key advantages: 

 Better accuracy and precision: the new hybrid 

model could predict better than the traditional 

models since it leveraged the advantages of both 

GBDT whose advantages in handling static 

features, and LSTM whose advantages in 

handling sequential data.  

 Scalability: The model is computationally 

efficient and can scale well with larger datasets, 

making it suitable for real-time applications in 

security systems where high-volume sensor data 

is common. 

 Interpretability: Because of the SHAP analysis, 

the model is more interpretable, and maintenance 

teams can focus on the most important features, 

or variables that are most indicative of the 

potential failures, such as process temperature and 

rotational speed. 

 Generalization across Failure Types: The 

multiclass classification problem demonstrated 

how the model generalizes across all failure types 

to predict both failures and the specific failure 

types. 

All in all, the proposed hybrid model (GBDT + LSTM) 

achieved significantly improved performances in both 

binary and multiclass classification tasks, by joining the 

merits of sequential feature modeling with static models, 

making it a complete solution to the predictive 

maintenance problem in security systems, which helps 

reduce unplanned downtime and optimize resource usage 

for maintenance activities. 

In general, the proposed model predicted the future failure 

more precisely, and in some cases, found better results 

than in the existing literature. It can be considered a robust 

solution to the modern challenges of predictive 

maintenance. 
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VII. DISCUSSIONS 

 The results revealed that the proposed hybrid model 

consisting of both Gradient Boosting Decision Trees 

(GBDT) and Long Short-Term Memory (LSTM) networks 

showcased several benefits compared to state-of-the-art 

predictive maintenance for security systems. First, it has 

the capability of addressing static and sequential features, 

significantly outperforming several existing techniques in 

the domains of failing machines prediction and failure type 

classification. This paragraph will further discuss the 

comparison of the existing approaches, the pros and cons 

of these techniques, and the contribution of this work to 

wider predictive maintenance. 

A. Comparison with Existing Techniques 

 Predictive maintenance has been typically implemented 

using modelling techniques such as Random Forest, 

Support Vector Machines (SVM), and Multivariate 

Gaussian Models – each of those techniques has its 

advantages and drawbacks. Random Forest models, for 

example, are good at handling tabular data with complex 

feature interactions, but they are prone to overfitting and 

struggle with sequential dependencies of time-series data. 

SVM models are good at classifying data, but they struggle 

with large datasets and computationally expensive for non-

linearly separable data. The shortcomings of those models 

are well-documented in studies by [Smith et al., 2019] and 

[Lee et al., 2020], both of which noted that the difficulties 

in handling real-time, high-volume sensor data – the very 

backbone of today’s smart maintenance systems – were 

not properly addressed. 

The use of Gradient Boosting Decision Trees (GBDT) 

with this model alleviates some of the abovementioned 

issues, effectively modelling non-linear relationships 

between features. Also, the ability of GBDT to capture 

complex feature interactions like those between 

temperatures and torque (see Figure 1) provided a great 

advantage over simpler models like Principal Component 

Analysis (PCA) or Naive Bayes Classifier where the 

independence assumption for features holds true. 

Performing a SHAP analysis also revealed process 

temperature and rotational speed as important features, 

mirroring the findings from the previous literature which 

recognized temperature fluctuations as one of the first 

moments of system degradation. 

 But this was not enough to capture the temporal 

dependencies within the dataset. Here, the LSTM networks 

played a key role. They had a real edge in the time-series 

forecasting because of their capability to capture long-term 

dependency in the data. This differs from other models 

such as GBDT. Together, they had a capability of 

capturing long-term dependencies and variations in data 

relationships. In this scenario, because the LSTM model 

was good at dealing with time variations, such as air 

temperature and rotational speed, and the GBDT model 

was good at feature relationships, the hybrid model could 

overcome some of the current limitations of each 

standalone model – like XGBoost or ARIMA – that are 

typically linear or static. This is why the hybrid model had 

the highest accuracy and F1-scores (a measure of 

performance) in the end. 

B.  Limitations of Existing Methods 

 These techniques are useful, but limited in scope because 

each has shortcomings when applied to difficult predictive 

maintenance tasks:  

 Random Forest and SVM: these models perform 

poorly on time-series data; they don’t take into 

account sequential information and are thus less 

effective at modelling dynamic systems. Their 

ability to classify static data is impressive, but this 

alone isn’t enough for security systems that 

operate in a dynamic environment. 

 XGBoost and GBDT: Even though both models 

are very good at static feature interaction 

modelling, they are computationally heavy, and 

both perform worse for long sequences of data. 

Also, they have less interpretability when 

modelling temporal dependencies, which are 

extremely important in predictive maintenance. 

 Multivariate Gaussian Models and Naive Bayes: 

Both of these models assume that the features are 

independent, which isn’t true in most real 

systems, leading to poor performance when there 

are complex, non-linear relationships between 

features, such as the one that exists between 

torque and speed in this study. 

 Convolutional Neural Networks (CNN): Good at 

identifying spatial patterns, but poor at handling 

sequences in time-series data, which tends to be 

more the norm for predictive maintenance tasks, 

which focus on varying sensor readings over 

time. 

C. Contributions and Implications of the Proposed Model 

 The hybrid model presented here overcomes the 

previously described limits of both GBDT and LSTM, 

seeking to extract the best from each and combining them 

into a single model that simultaneously handles both static 

and sequential features. This integration of two different 

types of approaches resulted in the significant 

improvements in predictive accuracy, precision and recall 

reported here. One of the main contributions of this study 

is the generalization of the model across different failure 

types. You can observe this generalization in the confusion 

matrix, as shown in the Figures above, and in the 

multiclass classification results below. 

The hybrid model achieved a 96.4 % overall accuracy in 

classifying machine failure, which represents the best 
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results in benchmarks of classical Random Forest and 

SVM studies. With LSTM networks, the model was able 

to effectively identify long-term dependencies between 

input variables and the final failure class of a device, 

something that is particularly useful for security 

applications where devices such as a surveillance camera 

or access control system can fail from long-term 

environmental changes, such as temperature rise or wear 

over a long period of time. 

Another benefit of the hybrid model is interpretability, and 

this is provided by SHAP analysis, which allows us to 

identify influential features such as process temperature 

and speed of rotation. Through this, the model allows the 

maintenance team to have actionable insights for 

efficiently determining what they need to pay attention to 

and ensure that things don’t go wrong. The hybrid model 

could allow maintenance teams to prioritize preventive 

actions on machine components that are likely to cause 

problems in the near future Above all; this means that we 

can identify when those variables are showing undesirable 

behaviour that could lead to failure in the near future. 

However, due to their power, black-box models such as 

deep neural networks don’t always provide transparency, 

which means they are usually not suitable for decision-

making in an industrial context. 

D.  Unexpected Outcomes and Their Implications 

 We also found, contrary to some of the literature that 

emphasizes the role of tool wear in machine degradation, 

that tool wear played a relatively minor role in predicting 

failures. Some of the variance in these results can be 

explained by the synthetic nature of the dataset and the fact 

that temperature and torque, rather than tool wear, were 

more highly correlated with failure events. Another reason 

why the model may perform so well on ‘No Failure’ 

predictions is because the dataset is somewhat unbalanced, 

meaning that non-failure events make up a significantly 

larger portion of the total dataset; the AI is, in effect, 

highly trained to predict non-failure. Future studies could 

explore undersampling to correct for this imbalance or use 

algorithms such as SMOTE to create synthetic data with 

more failure types. 

E.  Advancing the State of Knowledge 

 This study greatly improves the predictive maintenance 

algorithm by proving the effectiveness of the proposed 

hybrid model which captures both static and temporal 

feature modelling, overcoming the limitations of existing 

methods and demonstrates a novel method that can be 

widely used in many security systems and industrial 

applications. Finally, the SHAP values analysis to interpret 

features is also a novel application in this predictive 

maintenance area to enhance the explainability of machine 

learning models, and close the gap between model 

performance and practical application. 

 Overall, our proposed hybrid model has made 

contributions to the field of predictive maintenance as it is 

capable of handling static features and sequential features, 

as well as having a relatively high degree of predictive 

accuracy and interpretability, which can help to improve 

the reliability and safety of security systems. Future work 

could include more feature engineering approaches, real-

time stream data, and application of the model to other 

fields where predictive maintenance is vital. 

VIII. CONCLUSIONS AND FUTURE WORKS 

 The new hybrid model combines Gradient Boosting 

Decision Trees (GBDT) with Long Short-Term Memory 

(LSTM) networks to support a smarter predictive 

maintenance for security applications. The focus of the 

research was developing a model trained to classify failure 

types of time-varying machines based on static and time-

series data, while accurately predicting machine failures. 

The hybrid approach merged the strengths of GBDT and 

LSTM which led to significant performance improvement 

when compared to existing models including Random 

Forest, Support Vector Machines (SVM) and traditional 

time-series models (ARIMA). 

The hybrid model yielded an overall accuracy of 96.4 % 

while predicting failures, a high AUC-ROC score of 0.97 

while binary classifying failures and non-failures, and a 

macro-averaged F1 score of 94.6 % while making 

multiclass predictions of failure types. These results are 

particularly impressive, as traditional approaches have 

been unable to cope effectively with the static and 

temporal variability of hinge data variables, that is, data 

that change over time, but equally so, variables that 

contain static descriptions of an entity. Moreover, by 

employing the SHAP value analysis, which provides a 

more interpretable way of measuring feature importance 

than most other computer models; we were able to 

demonstrate that process temperature and rotational speed 

are the two most important variables in causing failure. 

This kind of interpretability has real-world utility because 

it allows a maintenance team to put most of its effort into 

controlling two key variables in causing failures in this 

category of security systems. 

The generalizability of the research was also shown by 

applying the proposed model to multiple failure types, and 

by achieving high predictive performance across these. 

This makes it an optimistic solution to real-time 

monitoring and the scheduling of maintenance for security 

systems. As these become more and more complex, 

predictive models capable of handling both static and 

dynamic features will be necessary. This hybrid approach 

can be readily applied to other scenarios where 

maintenance of equipment is vital, such as in 

manufacturing, healthcare or the transport sector. 
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From this study, several directions are possible for further 

development. One is the integration of real-time data 

streams, collected by various sensors in the security 

systems, in order to learn and adapt to new data coming in 

on the fly to ensure safe security operations. Second, 

feature engineering in some form could help increase the 

model’s predictive capability. For example, the can-

succeed variable in the dataset can be more accurately 

engineered by using a regressor to predict the value of can-

succeed. Third, addressing the class imbalance in the 

repair dataset, especially for rare-failure types, could 

potentially help in improving model performance. This 

could be achieved by SMOTE or GAN-based data-

augmentation techniques. Finally, one could integrate 

reinforcement learning to optimize maintenance 

scheduling based on our developed physics-informed 

output, leading to cost-saving or timely maintenance to 

avoid unexpected downtime when the physical equipment 

malfunctions. 

As a result, the proposed hybrid model can be considered 

as a novel achievement in the area of health monitoring for 

security systems. The main novelty of the proposed model 

compared with other methods is the hybrid use of GBDT 

and LSTM where the combination of these models allowed 

us to reach a good predictive performance for handling 

both static and sequential data. The outcomes of the 

experiment is not only increasing the knowledge in the 

area of health monitoring but also it provides a ready-to-

use tool to improve the performance of security systems. 
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