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Abstract In medical research, the rising volume of randomized controlled trial (RCT) papers makes it challenging for 

researchers to quickly find and extract key information. Many abstracts are unstructured, which complicates skimming 

and synthesis of critical content. This project aims to address this issue by developing a natural language processing 

(NLP) model to classify sentences in medical abstracts by their functional roles—such as objective, methods, results, and 

conclusions. Using core NLP techniques like tokenization and word embeddings, this model organizes unstructured text 

into clear, labeled sections, improving navigation and comprehension. For example, abstracts can be segmented into 

easily identifiable parts, enabling quicker understanding of the study’s focus and findings. By converting dense, complex 

abstracts into structured formats, SkimLit seeks to streamline the research process, allowing scholars to efficiently locate 

and assess pertinent information. 
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I. INTRODUCTION 

Over 50 million scholarly articles have been published, 

with the annual number steadily rising. About half of these 

are biomedical papers. While this vast repository of 

knowledge holds invaluable insights that could spark new 

research or confirm phenomena, the sheer volume makes it 

challenging to fully utilize. Consequently, a technology that 

helps users quickly pinpoint relevant information is highly 

desirable, as it could significantly reduce the time needed to 

find pertinent content.  

Researchers often skim abstracts to determine if papers 

meet their criteria. This task is easier with structured 

abstracts, where content is organized under headings like 

objective, method, result, and conclusion.  

However, many abstracts remain unstructured, making it 

harder to access information quickly. Classifying sentences 

into appropriate sections could substantially shorten search 

time, a task we term "sequential sentence classification" to 

distinguish it from general text classification without 

contextual flow. This approach benefits both human 

researchers and supports tasks like automatic text 

summarization, information extraction, and retrieval. 

This paper introduces a system based on artificial neural 

networks (ANNs) to tackle sequential sentence 

classification, utilizing token and character embeddings 

alongside a jointly learned sequence optimization layer. 

Evaluated on a PubMed-based dataset, our model 

exemplifies the advancements in natural language 

processing (NLP) for sentence classification in medical 

literature, particularly for RCT abstracts, by facilitating rapid 

identification of key study sections.  

II. PROBLEM DEFINITION 

The immense volume of biomedical literature, especially 

in the form of unstructured abstracts, creates a substantial 

challenge for researchers seeking to efficiently extract and 

navigate essential information.  

The lack of structure in many abstracts slows the literature 

review process, delaying access to valuable research 

insights. Without clear section headings (e.g., Objective, 

Methods, Results, Conclusions), locating relevant details 

quickly becomes difficult.  

With millions of scholarly articles published each year, 

researchers face the complex task of identifying specific 

information within dense and lengthy text. Current 

approaches often depend on manual annotation and human 

effort to classify sentences, which is both time-consuming 
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and inconsistent. This project aims to address these 

challenges. By implementing automated classification 

methods, this project seeks to streamline the process of 

identifying critical information within biomedical abstracts.  

III. LITERATURE REVIEW 

A. Existing System 

Early approaches to sequential sentence classification in 

medical abstracts predominantly utilized traditional machine 

learning models such as Naive Bayes (NB), Support Vector 

Machines (SVMs), Hidden Markov Models (HMMs), and 

Conditional Random Fields (CRFs) [1]. These models 

heavily relied on handcrafted features, including lexical cues 

like n-grams, semantic information, and the structural 

aspects of sentences. While effective to a certain extent, the 

dependency on manually engineered features limited their 

ability to generalize across diverse biomedical texts and 

capture the intricate nuances inherent in medical literature. 

In recent developments, neural networks that 

automatically learn feature representations from data have 

shown significant promise in natural language processing 

(NLP) tasks [2]. Early artificial neural network (ANN) 

architectures, such as Recursive Neural Networks and 

Convolutional Neural Networks, incorporated word 

embeddings to grasp semantic relationships between words. 

However, these models often neglect the contextual 

dependencies between sentences, which are crucial for 

accurate sequential classification in structured texts like 

medical abstracts. 

A notable advancement was introduced by Dernoncourt et 

al. in 2016 [3], who proposed a model that combines both 

word and character embeddings with a sequence 

optimization layer. This ANN model markedly improved 

sentence classification performance by leveraging the rich 

information from token-level and character-level 

embeddings. Additionally, the inclusion of a sequence 

optimization layer allowed the model to effectively capture 

dependencies between consecutive labels through structured 

prediction, enhancing the overall accuracy in categorizing 

sentences into their functional roles. 

Conditional Random Fields (CRFs) continued to be 

extensively employed for sentence classification due to their 

robustness in modeling sequential data and integrating 

contextual sentence information. For example, studies by 

Kim et al. (2011) [4] and Hassanzadeh et al. (2014) [5] 

demonstrated the efficacy of CRFs in classifying sentences 

within medical abstracts by taking into account the sequence 

structure, thereby improving the coherence and consistency 

of the classification results. 

In 2012, Lui introduced a feature stacking technique, 

which involved combining multiple types of features into a 

single model for sentence classification in the domain of 

evidence-based medicine [5]. This approach achieved top 

performance in shared tasks such as ALTA 2012 [1], 

underscoring the benefits of integrating diverse feature sets 

to enhance classification accuracy and model robustness. 

Furthermore, character-level embeddings have been 

utilized to capture subtle nuances at the token level, which is 

particularly advantageous for tasks like sentiment analysis 

and text classification [6]. Research by Zhang et al. (2015) 

[8] and Conneau et al. (2016) highlighted the advantages of 

combining character-level and word-level embeddings, 

resulting in more robust and comprehensive sentence 

representations. This hybrid approach enables models to 

better handle morphological variations and out-of-

vocabulary words, thereby improving their ability to 

accurately classify sentences in complex biomedical texts. 

Overall, the evolution from traditional machine learning 

models with handcrafted features to advanced neural 

network architectures that automatically learn rich 

representations has significantly enhanced the capability of 

systems to perform sequential sentence classification in 

medical abstracts. These advancements facilitate more 

efficient information extraction and navigation within the 

vast corpus of biomedical literature. 

B. Drawbacks in Existing Systems 

Many early ANN-based models approached sentence 

classification by treating each sentence in isolation, 

disregarding the surrounding context. This lack of contextual 

consideration often led to reduced classification accuracy, as 

sequential dependencies are vital in medical abstracts where 

the interplay between sentences provides essential context. 

Furthermore, ANN-based models that utilize hybrid 

embeddings, incorporating both word-level and character-

level information, demand extensive datasets and significant 

computational resources. The complexity of these models 

can result in longer training times and present challenges in 

fine-tuning, making them less efficient and more difficult to 

optimize. 

Additionally, models that classify sentences 

independently fail to maintain label coherence throughout an 

abstract. This lack of consistency undermines the model’s 

ability to assign accurate and uniform sentence roles across 

structured documents, ultimately diminishing the overall 

effectiveness of the classification process. 

To address these issues, it is crucial to develop models that 

not only leverage rich embeddings but also incorporate 

sequential dependencies to ensure coherent and accurate 

classification of sentences within medical abstracts. Such 

advancements would enhance the reliability and efficiency 

of information extraction from the vast and complex 

biomedical literature. 

IV. PROPOSED MODEL 

Develop a deep learning model capable of automatically 
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classifying sentences within biomedical abstracts into 

predefined categories: Objective, Methods, Results, and 

Conclusions. This solution is designed to enhance the 

literature review process, allowing researchers to efficiently 

navigate and extract relevant information from unstructured 

biomedical abstracts. 

A. Key Features of the Project 

Tribrid Embedding Architecture: The model 

incorporates a unique combination of token embeddings 

(Universal Sentence Encoder), character embeddings, and 

positional embeddings (line number and total lines in the 

abstract). This architecture enables the model to capture 

sentence semantics, fine-grained text details, and position-

based contextual information. 

Structured Sequential Modeling: By integrating the 

embeddings and employing a Bidirectional GRU, the model 

effectively utilizes sentence dependencies, leading to 

improved sequential classification accuracy. 

Customized Layers and Preprocessing: The project 

incorporates tailored preprocessing techniques, including 

character splitting and token vectorization, designed to 

address the complexities of biomedical text, such as unique 

tokens, symbols, and numerical data. 

Efficiency Optimizations: Leveraging mixed precision 

training and data batching with prefetching, the model 

ensures faster training times and efficient resource 

utilization, making it scalable for large biomedical datasets. 

V. METHODOLOGY 

A. Data Preparation 

The PubMed 20k RCT dataset was utilized for this project. 

The initial step involved loading the dataset and performing 

text preprocessing, which included converting each abstract 

into a list of sentences and applying tokenization to break 

down the sentences into individual tokens (words). 

Following preprocessing, the dataset was divided into three 

subsets: training, validation, and testing, to facilitate model 

development and evaluation. 

Both token-level and character-level inputs were 

generated by further splitting the sentences into words and 

characters, respectively. These inputs were then vectorized 

using TensorFlow's TextVectorization layer, which 

transformed the textual data into numerical representations 

suitable for model ingestion. 

1. Embedding 

Token Embedding: After vectorization, each sentence 

was passed through a pre-trained Universal Sentence 

Encoder (USE) to obtain token embeddings. The USE 

effectively captures the semantic meaning of each token 

within the context of the sentence, leveraging its extensive 

pre-training on large-scale datasets. 

Character Embeddings: In addition to token 

embeddings, character-level embeddings were created by 

vectorizing each character in the sentences. A custom 

embedding layer was employed to embed these characters, 

allowing the model to capture fine-grained text features such 

as morphological variations and the presence of specific 

symbols or numerical data commonly found in biomedical 

literature. 

2. Positional Features 

To incorporate contextual positional information, each 

sentence within an abstract was assigned two positional 

features: the line number and the total number of lines in the 

abstract. These features were one-hot encoded to represent 

their categorical nature and subsequently processed through 

dense layers. Including positional information aids the model 

in understanding the typical structure and flow of biomedical 

abstracts, thereby enhancing the classification process by 

providing additional contextual cues. 

3. Hybrid Embeddings 

The hybrid embedding approach integrates token 

embeddings, character embeddings, and positional features 

through concatenation. This comprehensive embedding 

vector encapsulates semantic, fine-grained text, and 

positional information, providing a rich representation of 

each sentence. 

The concatenated hybrid embedding is then fed into a 

Bidirectional Gated Recurrent Unit (BiGRU) layer. The 

BiGRU effectively captures contextual dependencies by 

processing the sequence of embeddings in both forward and 

backward directions, thereby enhancing the model's ability 

to understand the relationships between consecutive 

sentences. 

The hybrid token embedding layer operates by taking a 

token as input and producing its vector representation 

through the combination of token embeddings and character 

embeddings. Specifically: 

Token Embeddings (VT): Each token is mapped to a 

vector using a pre-trained embedding model such as 

Universal Sentence Encoder (USE) or GloVe (Pennington et 

al., 2014) [9]. These embeddings provide a dense 

representation of tokens based on their usage in large, 

unlabeled datasets. 

Character Embeddings (VC): Each character within a 

token is individually mapped to a vector using a character 

embedding layer. For a token x composed of a sequence of 

characters z1, z2, …, zn, each character zi is first embedded as 

ci=VC(zi). The sequence of character embeddings [c1, c2, …, 

cn] is then input into a Bidirectional Gated Recurrent Unit 

(BiGRU) network, which generates a character-based token 

embedding c.  

The final output of the hybrid token embedding layer for 

a token x is obtained by concatenating the character-based 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-10,  Issue-08, Nov 2024 

19 | IJREAMV10I08116106                          DOI : 10.35291/2454-9150.2024.0409                    © 2024, IJREAM All Rights Reserved. 

token embedding c with the token embedding t=VT(x). This 

concatenated vector effectively combines both the semantic 

information from token embeddings and the morphological 

details from character embeddings, resulting in a robust 

representation that enhances the model's ability to accurately 

classify sentences within biomedical abstracts. 

B. Model Architecture 

The proposed model architecture implements a tribrid 

neural network that combines token-level embeddings, 

character-level embeddings, and positional information for 

abstract sentence classification. The architecture consists of 

four main components that are concatenated to form the final 

classification model. 

Fig. 1 illustrates the proposed tribrid neural network 

architecture designed for sequential classification. 

1. Token-Level Processing 

 Input: Raw text strings 

 Processing: 

 ● Utilizes the Universal Sentence Encoder (USE) for 

token embeddings 

 ● USEembeddings are processed through a dense layer 

(128 units, ReLU activation) 

 ● Output shape: 128-dimensional vector 

2.  Character-Level Processing 

 Input: Character-separated strings 

 Processing: 

 ● Character vectorization (custom vocabulary) 

 ● Character embeddings (25-dimensional) 

 ● Bidirectional GRU layer (24 units) 

 ● Output shape: 48-dimensional vector (2 × 24 due to 

bidirectional nature) 

3.  Positional Information Processing 

 Line Number Processing 

 ● Input: One-hot encoded line numbers (15-dimensional) 

 ● Processing: Dense layer (32 units, ReLU activation) 

 ● Output shape: 32-dimensional vector 

 Total Lines Processing 

 ● Input: One-hot encoded total lines (20-dimensional) 

 ● Processing: Dense layer (32 units, ReLU activation) 

 ● Output shape: 32-dimensional vector 

4.  Hybrid Integration & Classification 

 Initial Hybrid Embedding: 

 ● Concatenation of token and character embeddings 

 ● Dense layer (256 units, ReLU activation) 

 ● Dropout layer (0.5 rate) for regularization 

 Tribrid Integration: 

 ● Concatenation of hybrid embeddings with positional 

information 

 ● Dimension expansion using Lambda layer 

 ● Bidirectional GRU layer (64 units) 

 Classification Layer: 

 ● Dense layer with softmax activation 

 ● Output dimensions match the number of classes 

 

Fig. 1: Proposed Model Architecture 

VI. IMPLEMENTATION AND RESULT 

A. Model Training 

The training of our tribrid neural network architecture was 

conducted through a meticulously orchestrated process that 

encompassed data preparation, model optimization, and 

performance evaluation. This section delineates the 

comprehensive training methodology employed in our 

implementation, providing insights into each critical phase 

of the training pipeline. Fig. 2 illustrates the detailed training 
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algorithm, offering a visual representation of the workflow.  

B. Data Preparation and Preprocessing 

The model was trained on the PubMed 20k RCT dataset, 

which consists of medical abstracts with sentences labeled 

by rhetorical roles. To ensure uniformity, all numerical 

values in the text were standardized by replacing them with 

'@' symbols, allowing the model to focus on structural and 

semantic patterns rather than specific numerical values. 

The dataset preparation followed three distinct processing 

streams to align with our tribrid architecture. In token-level 

processing, sentences were kept at the word level and passed 

through the Universal Sentence Encoder to obtain pre-

trained representations. The maximum sequence length was 

set to the 95th percentile of sentence lengths in the training 

set, balancing coverage and computational efficiency. 

 

Fig. 2: Model Training Architecture 

Character-level processing involved breaking sentences 

into individual characters, with a vocabulary constructed 

from ASCII lowercase letters, digits, and punctuation marks. 

This detailed approach allowed the model to capture subtle 

character-level patterns. Like the token-level processing, 

character sequences were standardized to a length based on 

the 95th percentile of the character length distribution. 

Positional information was encoded using two features: 

line numbers transformed into one-hot encoded vectors with 

a depth of 15, and total lines per abstract encoded with a 

depth of 20. These features provided important structural 

cues about each sentence’s position and context within the 

abstract. 

C. Training Strategy and Optimization 

The training process used a sophisticated optimization 

strategy to maximize model performance while maintaining 

computational efficiency. The Adam optimizer, with its 

default learning rate, provided adaptive learning rate 

adjustments during training. Categorical Cross-Entropy with 

a label smoothing factor of 0.2 was used as the loss function 

to prevent overconfidence and improve generalization. 

To reduce overfitting, we applied regularization 

techniques. A dropout layer with a rate of 0.5 was included 

after the dense layer in the hybrid integration component, 

preventing neuron co-adaptation during training. Label 

smoothing at 0.2 was applied to further improve the model's 

predictive calibration. 

Early stopping was utilized with a patience of three 

epochs, halting training when validation accuracy plateaued 

to prevent overfitting and optimize performance. Model 

checkpointing was also implemented to save the best model 

weights during training. 

D. Implementation and Performance Optimization 

The implementation leveraged modern deep learning 

frameworks for optimal performance. The training pipeline 

was built using TensorFlow 2.x, with data handling 

optimized through the tf.data API. Prefetching 

with tf.data.AUTOTUNE ensured efficient CPU-GPU 

coordination, reducing pipeline bottlenecks. 

Mixed precision training with float16 representations was 

used to lower memory usage and accelerate training on 

compatible hardware without sacrificing accuracy. The batch 

size was set to 32, balancing training stability and 

computational efficiency. 

Each training epoch processed the dataset in batches, with 

forward passes computing loss and gradients followed by 

weight updates. Validation was conducted at the end of each 

epoch, tracking metrics such as training and validation 

accuracy and loss convergence. 

E. Performance Monitoring and Evaluation 

Model performance was continuously monitored using 

classification accuracy, precision, recall, and F1-score. 

These metrics were tracked for both training and validation 

sets to ensure proper convergence and early detection of 

overfitting. 

After training, model performance was evaluated on a 

held-out validation set, demonstrating strong classification 

accuracy. Evaluation metrics were visualized with bar charts, 

providing a clear analysis of the model's performance across 

various classification tasks. 
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F. Infrastructure and Technical Implementation 

The training infrastructure was designed for efficiency and 

reproducibility. GPU acceleration was used where available, 

and mixed precision training enabled optimal resource 

utilization. The data pipeline was memory-efficient, 

implementing prefetching and caching to minimize I/O 

bottlenecks. Model artifacts, including the architecture and 

weights, were saved in the Keras format, facilitating easy 

deployment and reproducibility. This approach resulted in a 

robust, efficient model capable of classifying sentences in 

medical abstracts, validating our tribrid architecture and 

training methods. 

This implementation carefully balanced performance and 

computational efficiency, applying modern deep learning 

best practices tailored to abstract sentence classification. The 

final model exhibited strong performance in identifying 

rhetorical roles in medical abstracts, proving the 

effectiveness of our tribrid approach. Fig. 3 shows the data 

pipeline and Fig. 4 highlights consistent convergence in 

training and validation accuracy over epochs, with no signs 

of overfitting.  

 

Fig. 3: Data Pipeline 

 

Fig. 4: Model Training Progress 

G. Results 

The proposed tribrid neural network architecture proved 

highly effective in classifying sentences from medical 

abstracts. A thorough evaluation showed strong 

performance across multiple metrics, highlighting the 

model’s capability in comprehending and categorizing 

abstract sentences accurately. 

Performance Analysis: The model achieved a training 

accuracy of 91.06%, indicating a strong learning capability 

on the training dataset. Notably, it maintained a validation 

accuracy of 87.34%, demonstrating excellent generalization 

to new data. The narrow gap between training and 

validation accuracy (3.72%) suggests that the model 

avoided overfitting while achieving high performance. 

A key highlight of the results is the model’s consistent 

performance across all evaluation metrics, including 

accuracy, precision, recall, and F1-score. This balance 

across metrics reflects reliable classification capabilities 

across categories, making it well-suited for practical 

applications where consistency is crucial. 

This strong performance is attributed to several 

architectural choices: 

● Integrating token-level embeddings from the Universal 

Sentence Encoder to capture complex semantic 

relationships. 

● Using character-level processing with bidirectional 

GRU networks to detect detailed text patterns. 

● Incorporating positional information, enabling the 

model to understand the structural context of sentences 

within abstracts. 

● Employing dropout and label smoothing to regulate the 

model’s learning process effectively. 

Model Reliability: The model’s balanced performance 

across metrics indicates strong reliability for real-world 

applications. The high validation accuracy of 87.34% shows 

that it can effectively generalize to unseen medical 

abstracts, making it a valuable tool for automated medical 

literature analysis. This performance level underscores the 

model’s practical applicability and robust design. 
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Fig. 5: Model Scores Plot 

VII. CONCLUSION 

This study introduces a novel tribrid GRU based neural 

network for sequential sentence classification in medical 

abstracts. The model demonstrates robust performance, 

achieving over 91% training and over 87% validation 

accuracy. Key Contributions include leveraging token, 

character, and positional embeddings to improve the 

extraction of structured information from biomedical texts, 

paving the way for more efficient research workflows. 

The minimal difference of approximately 4% between 

training and validation metrics indicates that the model 

effectively avoids overfitting while maintaining strong 

predictive accuracy. This reliability makes it especially 

suitable for practical applications in analyzing and 

classifying medical abstracts.  
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