
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Special Issue - iCreate April - 2018

48 | IJREAM_SP180111 Special Issue on iCreate April -2018 © 2018, IJREAM All Rights Reserved.

Hadoop Performance Modeling For Job Estimation

And Resource Provisioning
1
Prof. Sumeet Pate,

2
Ganesh Phad,

3
Pratik Dhage,

4
Saurabh Wagh

1
Asst. Professor,

2,3,4
UG Student,

1,2,3,4
Computer Engg. Dept. Shivajirao S. Jondhle College of Engineering &

Technology, Asangaon, Maharashtra, India

1
sumeetpate09@gmail.com,

2
phadganesh37@gmail.com

3
dhagepratik94@gmail.com,

4
saurabhsuhaswagh@gmail.com

Abstract— For information escalated applications MapReduce is vital processing model in exhibit period. Open source

execution of MapReduce is Hadoop. It has been embraced by an inexorably developing client group. Distributed

computing specialist organizations like Amazon, EC2 Cloud are putting forth the open doors for Hadoop clients to rent

a specific measure of assets. Problem for cloud service providers is that they do not have technique to comply user jobs

within time. Nowadays user has to estimate the required amount of resources for running his job in the cloud.This

paper is displaying Hadoop work execution demonstrate which precisely gauges work finish time. It provides number

of resources needed to complete the job within specific time. This model depends on past job execution records. It

utilizes Locally Weighted Linear Regression (LWLR) method to compute the execution time of a job. It also uses

Lagrange Multipliers technique for estimating resources amount needed to satisfy jobs within given timeline.

Keywords: Cloud computing, Hadoop MapReduce, performance modeling, job estimation, resource provisioning.

I. INTRODUCTION

Many organizations have systems to collect huge amount of

data information from World Wide Web, sensor networks

and social networks etc. The essential undertaking for them

is to perform versatile and opportune examination of these

unstructured informational collections. It is extremely

intense occupation for conventional system and database

frameworks to process these persistently developing

datasets.

MapReduce[1] was initially created by Google and now it

has turned into a noteworthy figuring model in help of

information serious applications. This system is an

exceedingly adaptable, fault tolerant and information

parallel model that consequently disperses the information

and parallelizes the calculation over a group of PCs[2].

Because of open source nature of Hadoop it has turned out

to be well known in group than it's countrymen like

Mars[3], Phoenix[4], Dryad[5].

This framework displays an enhanced Hadoop Performance

(HP) model for work execution estimation and asset

provisioning. Key highlights of this framework are as per the

following:-

The enhanced HP work mathematically models all the three

center periods of a Hadoop work though the HP work does

not numerically model the non-overlapping shuffle phase in

the primary wave.

The enhanced HP model utilizes locally weighted linear

regression (LWLR) strategy to estimate the execution time of

a Hadoop work with a fluctuated number of lessened tasks

despite what might be expected the HP model utilizes a

basic straight relapse procedure for work execution

estimation which confines to a consistent number of

decreased tasks.

Based on job execution estimation, the improved HP model

employs Lagrange Multiplier technique to provision the

amount of resources for a hadoop job to complete within a

given deadline.

II. LITERATURE SURVEY

 A. Compute VM Load from data nodes

Input: ith Node input

Output: Idle or Normal Or Overloaded in percent Compute

Load (VM id):

Weight Degree Inputs: The static parameter comprise the

number of CPUs, the CPU dispensation speeds, the

reminiscence size, etc. active parameters are the memory

consumption ratio, the CPU exploitation ratio, the network

bandwidth.

Procedure:

Step 1: Characterize a load limit set: F= {F1, F2. .Fm} with

each Fire present the total number of the consideration.

Step 2: Calculate the load capacity as weight Load Degree

(N) = (∑αi Fi), Where, i= (1,...,m).

Step 3: Ordinary cloud partition degree from the node

consignment degree statics as: Load amount avg =∑ (i=1...n)

LoadDegree (Ni)

Step 4: Three height node position are defined Load Degree

(N) =0 for Inactive.

0 <Load Degree (N) <Load Degree (N) for overfull. Load

Degree (N) high ≤ Load Degree (N) for overloaded.

B. Equally Spread Current Execution Throttled Load

balancing Algorithm

Input: File form user as Fi.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Special Issue - iCreate April - 2018

49 | IJREAM_SP180111 Special Issue on iCreate April -2018 © 2018, IJREAM All Rights Reserved.

Output: Equally distributed chunks on data servers

Step 1: Read Fi from data owner with size

Step 2: count total number of data nodes Ni

Step 3: for each (score=read each vm node and call to

compute node (k)) Read when k==null End for

Step 4: create data chunks base on server loads score.

Step 5: save all data on data nodes.

C. MapReduce: Simplified data processing on large

clusters

MapReduce is a programming model[2] and a related usage

for handling and creating expansive datasets that is amiable

to a wide assortment of real-world tasks. Clients indicate the

calculation in terms of a map and a reduce function, and the

fundamental runtime framework naturally parallelizes the

calculation crosswise over expansive scale clusters of

machines, handles machine disappointments, and schedules

inter-machine communication to make productive utilization

of the network and disks. Software engineers discover the

framework simple to utilize. In excess of ten thousand

distinct MapReduce programs have been actualized inside at

Google in the course of past four years. A normal of one

hundred thousand MapReduce jobs are executed on Google's

clusters each day. It processes a sum of more than twenty

petabytes of information for every day.

MapReduce keeps running on large clusters of product

machines and it is largely scalable.

D. Mars: A MapReduce framework on graphics

processors

This paper proposes outline and usage of Mars[3], a

MapReduce system, on graphics processors (GPUs).

MapReduce is a circulated programming structure initially

proposed by Google for the simplicity of development of

web seek applications on an expansive number of product

CPUs. Contrasted and CPUs, GPUs have a request of

greatness higher calculation power and memory bandwidth,

yet are harder to program since their models are planned as a

unique reason co-processor and their programming interfaces

are normally for graphics applications.

ALGORITHM: Graph-Based Video Sequence Matching

Step 1) Segment the video frames and extract features of the

key frames. Auto dual-threshold method used to segment

the video sequences, and then extract SURF and SIFT

features of the key frames.

Step 2) Match the query video and target video.

Assume

 Qc = {C1Q, C2Q, C3Q, …..CmQ} and Tc = {C1T, C2T,

C3T , ….. CmT}

are the segment sets of the query video and target video

from Step1, respectively. For each CiQ in the query video,

compute the similarity sim (CiQ,CjT) and return k largest

matching results. K=8n, where n is the number of segments

in the target set, and 8 is set to 0.05 based on our empirical

study.

Step 3) Generate the matching result graph according to the

matching results. In the matching result graph, the vertex

Mij represents a match between CiQ, andCjT .To determine

whether there exists an edge between two vertexes, two

measures are evaluated. Time direction consistency: For Mij

and Mlm, if there exists (i-l)*(j-m) > 0, then Mij and Mlm

satisfy the time direction consistency. Time jump degree:

For Mij and Mlm, the time jump degree between them is

defined as ?tijlm=max (| ti-tl |, | tj-tm |)

Step 4) Search the longest path in the matching result graph.

The problem of searching copy video sequences is now

converted into a problem of searching some longest paths in

the matching result graph. The dynamic programming

method is used in this paper. The method can search the

longest path between two arbitrary vertexes in the matching

result graph.

These longest paths can determine not only the location of

the video copies but also the time length of the video copies.

Step 5) Output the result of detection. We can get some

discrete paths from the matching result graph; it is thus easy

to detect more than one copy segments by using this

method.

E. Phoenix: A parallel programming model for

accommodating dynamically joining/ leaving resources

This paper proposes Phoenix[4], a programming model for

composing parallel and circulated applications that suit

progressively joining/leaving computer resources. In the

proposed model, nodes engaged with an application see an

expansive and settled virtual node name space.

They convey by means of messages, whose goals are

indicated by virtual node names, as opposed to names bound

to a physical resource. The paper portrays Phoenix API and

show how it permits a straightforward movement of

application states, and also dynamically joining/leaving

nodes as its by-product. It additionally show through a

several application studies that Phoenix model is sufficiently

close to normal message passing, along these lines it is a

general programming model that encourages porting

numerous parallel applications/algorithms to more dynamic

environments.

F. Dryad: Distributed data-parallel programs from

sequential building blocks

Dryad[5] is a general purpose circulated execution engine for

coarse-grain information parallel applications. A Dryad

application joins computational "vertices" with

communication "channels" to frame a dataflow graph. Dryad

runs the application by executing the vertices of this graph

on an arrangement of accessible PCs, communicating as

suitable through flies, TCP pipes, and shared-memory

FIFOs. The vertices gave by the application designer are

very basic and are normally composed as consecutive

projects with no thread creation or locking. Concurrency

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Special Issue - iCreate April - 2018

50 | IJREAM_SP180111 Special Issue on iCreate April -2018 © 2018, IJREAM All Rights Reserved.

arises from Dryad planning vertices to run at the same time

on various PCs, or on different CPU centers inside a PC. The

application can find the size and position of information at

run time, and alter the graph as the calculation advances to

make enough utilization of the accessible resources.

G. The performance of Map-Reduce: An in-depth study

MapReduce[7] has been generally utilized for vast scale

information investigation in the Cloud. The framework is all

around perceived for its flexible versatility and fine-grained

adaptation to internal failure in spite of the fact that its

execution has been noted to be suboptimal in the database

context. As per a current report, Hadoop, an open source

usage of MapReduce, is slower than two best in class parallel

database frameworks in playing out an assortment of

analytical tasks by a factor of 3.1 to 6.5. MapReduce can

accomplish better execution with the allocation of more

figure nodes from the cloud to accelerate calculation.

III. EXISTING SYSTEM

To effectively manage cloud resources, a few Hadoop

execution models have been proposed. In any case, these

models don't consider the overlapping and non-overlapping

phases of the shuffle phase which prompts an inaccurate

estimation of job execution. As of late, various complex

Hadoop execution models are proposed.

Starfish gathers a running Hadoop work profile at a fine

granularity with point by point data for work estimation and

improvement. On the highest point of Starfish, Elasticiser is

proposed for asset provisioning as far as virtual machines.

The HP demonstrate considers both the covering and non-

covering stages and uses straightforward direct relapse for

work estimation. CRESP estimates work execution and

support resource provisioning as far as map and reduce slots.

Limitations:

Collecting the detailed execution profile of a Hadoop job

incurs a high overhead which leads to an overestimated job

execution time.

The HP model also estimates the amount of resources for

jobs with deadline requirements.

Both the HP model and CRESP ignore the impact of the

number of reduce tasks on job performance. The HP model

is restricted to a constant number of reduce tasks, whereas

CRESP only considers a single wave of the reduce phase.

IV. PROBLEM STATEMENT

The capacity to perform scalable and timely investigation on

these unstructured datasets is a high need undertaking for

some enterprises. It has become hard for traditional network

storage and database systems to process these consistently

growing datasets. Map Reduce, initially created by Google,

has turned into a major processing model in help of

information intensive applications. It is an exceedingly

adaptable, blame tolerant and information parallel model that

consequently circulates the information and parallelizes the

calculation over a group of PCs.

V. PROPOSED SYSTEM

Developing the HP model, this paper shows an upgraded HP

model for Hadoop work execution estimation and resource

provisioning. The genuine responsibilities of this paper are

according to the accompanying:

The improved HP work numerically models all the three

center phases of a Hadoop job. The upgraded HP model

show utilizes LWLR strategy to evaluate the execution time

of a Hadoop work with a changed number of lessen errands.

Strikingly, the HP model uses an essential direct relapse

method for work execution estimation which breaking

points to an unfaltering number of diminishing errands. In

light of work execution estimation, the upgraded HP

indicate uses Lagrange Multiplier system to course of action

the measure of advantages for a Hadoop work to complete

inside a given due date. The proposed framework called

Hadoop execution Displaying for Employment

Improvement. In Proposed Framework it exhibit enhanced

HP show for Hadoop work execution estimation and asset

provisioning. The enhanced HP work scientifically models

all the three center phasess of a Hadoop job.

Benfits of proposed system:

The enhanced HP model scientifically models all the three

center periods of a Hadoop work. Conversely, the HP work

does not scientifically demonstrate the non overlapping mix

stage in the primary wave.

The enhanced HP model utilizes Locally Weighted Linear

Regression (LWLR) method to evaluate the execution time

of a Hadoop work with a differed number of reduce tasks.

Conversely, the HP model utilizes a simple linear regression

procedure for work execution estimation which confines to a

steady number of reduce tasks.

In view of job execution estimation, the enhanced HP model

utilizes Langrage Multiplier procedure to provision the

measure of resources for a Hadoop job to finish inside a

given deadline.

VII. SYSTEM ARCHITECTURE

Modeling Map Phase: In this phase, a Hadoop job reads an

input dataset from Hadoop distributed file system (HDFS),

parts the input dataset into information pieces in light of a

predefined size and after that passes the information chunks

to a user-define map function. The guide work forms the

information pieces and delivers a guide yield. The map

output is called intermediate information.

Modeling Reduce Phase: In this phase, an occupation

peruses the arranged middle information as info and goes to

a client characterized lessen work. The lessen work forms the

middle information and produces a last yield. All in all, the

diminish yield is composed over into the HDFS.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Special Issue - iCreate April - 2018

51 | IJREAM_SP180111 Special Issue on iCreate April -2018 © 2018, IJREAM All Rights Reserved.

Modeling Shuffle Phase: In this phase, a Hadoop job brings

the halfway information, sorts it and copies it to at least one

reducers. The rearrange assignments and sort undertakings

are performed at the same time, along these lines, for the

most part consider them as a rearrange stage.

Fig. 7.1 System Architecture

VIII. MATHEMATICAL MODEL

This paper shows the mathematical expressions of the

improved HP work in modelling a Hadoop job which

finishes in multiple waves. The Table defines the variables

used in the improved model.

 Table 8.1 Mathematical Model

Variables Expressions

 The lower bound duration of the map phase in the first

wave (non-overlapping).

 The upper bound duration of the map phase in the first

wave (non-overlapping).

 The number of map tasks that complete in the first

wave of the map phase.

 The number of map tasks that complete in other waves

of the map phase.

 The maximum execution time of a map task.

 The lower bound duration of the shuffle phase in the

first wave (overlapping with the map phase).

 The upper bound duration of the shuffle phase in the

first wave (overlapping with the map phase).

 The average execution time of a shuffle task that

completes in the first wave of the shuffle phase.

 The maximum execution time of a shuffle task that

completes in the first wave of the shuffle phase.

 The lower bound duration of the shuffle phase in other

waves (non-overlapping).

 The upper bound duration of the shuffle phase in other

waves (non-overlapping).

 The average execution time of a shuffle task that

completes in other waves of the shuffle phase.

 The maximum execution time of a shuffle task that

completes in other waves of the shuffle phase.

 The lower bound duration of the reduce phase.

 The upper bound duration of the reduce phase.

 The maximum execution time of a reduce task.

 The lower bound execution time of a Hadoop job.

 The upper bound execution time of a Hadoop job.

 The average execution time of a Hadoop job.

Algorithm: Compute VM Load from data nodes

Input: ith Node input

Output: Idle or Normal Or Overloaded in percent Compute

Load (VM id):

Weight Degree Inputs: The static parameter comprise the

number of CPUs, the CPU dispensation speeds, the

reminiscence size, etc. active parameters are the memory

consumption ratio, the CPU exploitation ratio, the network

bandwidth.

Procedure:

Step 1: Characterize a load limit set: F= {F1, F2. .Fm} with

each Fire present the total number of the consideration.

Step 2: Calculate the load capacity as weight Load Degree

(N) = (∑αi Fi), Where, i= (1,...,m).

Step 3: Ordinary cloud partition degree from the node

consignment degree statics as: Load amount avg =∑ (i=1...n)

LoadDegree (Ni)

Step 4: Three height node position are defined Load Degree

(N) =0 for Inactive.

0 <Load Degree (N) <Load Degree (N) for overfull. Load

Degree (N) high ≤ Load Degree (N) for overloaded.

Step 1: Hold the count current active allocation on each

vm.

publicActiveVmLoadBalancer(DatacenterController dcb)

{

dcb.addCloudSimEventListener(this);

this.vmStatesList = dcb.getVmStatesList();

this.currentAllocationCounts=

Collections.synchronizedMap(new HashMap<Integer,

Integer>());

}

Step 2: Find the vm with least number of allocations and

if all allocations vm are not allocated then allocated the

new ones.

if (currentAllocationCounts.size() < vmStatesList.size()){

for (int availableVmId : vmStatesList.keySet()){

if (!currentAllocationCounts.containsKey(availableVmId)){

vmId = availableVmId;

break;

}}}

else {

int currCount;

 int minCount =Integer.MAX_VALUE;

for (int thisVmId : currentAllocationCounts.keySet()){

currCount=currentAllocationCounts.get(thisVmId);

if (currCount < minCount){

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Special Issue - iCreate April - 2018

52 | IJREAM_SP180111 Special Issue on iCreate April -2018 © 2018, IJREAM All Rights Reserved.

minCount = currCount;

vmId = thisVmId;

 }}}

allocatedVm(vmId);

Step 3: Count the number of data nodes of vm

Step 4 :

For each((score = read each vm node and call to computer

node(k))

Read each node when k == null

Step 5: Create data chunks base on servers load score

Step 6: Save all data on data nodes.

In practice, job tasks in different waves may not complete

exactly at the same time due to varied overhead in disk I/O

operations and network communication. Therefore, the

improved HP model estimates the lower bound and the upper

bound of the execution time for each phase to cover the best-

case and the worst-case scenarios respectively.

The author consider a job that runs in both non-overlapping

and overlapping stages. The lower bound and the upper

bound of the map phase in the first wave which is a non-

overlapping stage can be computed.

In the overlapping stage of a running job, the map phase

overlaps with the shuffle phase. Specifically, the tasks

running in other waves of the map phase run in parallel with

the tasks running in the first wave of the shuffle phase. As

the shuffle phase always completes after the map phase

which means that the shuffle phase takes longer than the map

phase, therefore the author uses the duration of the shuffle

phase in the first wave to compute the lower bound and the

upper bound of the overlapping stage of the job.

As a result, the lower bound and the upper bound of the

execution time of a Hadoop job can be computed by

combining the execution durations of all the three phases.

Finally, the average of equations to estimate the execution

time of a Hadoop job is,

VI. COMPARATIVE STUDY

 Table 6.1 Comparative Study

Sr.

No.

Paper Title Author Name Problem Solution

1. MapReduce:Simpified Data

processing on large Clusters

S. Ghemawat& J.

Dean

large-scale machine learning problems,

clustering problems for the Google News

and Froogle products,

Ordering makes it easy to generate a sorted

output per partition, which is useful when the

output format needs to support efficient

random access for data to be sorted.

2. Mars:AMapReduce Framework on

Graphics Processors

T. Wang, Q. Luo, N.

K. Govindaraju and

B. He, W. Fang

Searching longest path in matching result

graph

Dynamic programming method

3. Phoenix:A Parallel Programming

Model for accommodating

Dynamically joining/leaving

Resources

A. Yonezawa, T.

Endo, K. Kaneda,

and K. Taura

model is weak in supporting joining

leaving nodeslargely unsolved,

andcomplications that arise are simply

exposed to the programmer

It allows parallel applications thatchange the

number of participating nodes at runtime

4. Dryad:Distributed Data Parallel

Program for sequential building

blocks

D. Fetterly, M. Isard,

M. Budiu, Y. Yu and

A. Birrell

long-standing problem to write

efficientparallel and distributed

applications

It handles by scheduling the use ofcomputers

and their CPUs, recovering from

communication

or computer failures, and transporting data

between vertices

5. The Performance of MapReduce:An

In-depth study

D. Jiang, B. C. Ooi,

L. Shi, and S. Wu

Due to large database searching time

complexity is more

Locality secure hashing

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Special Issue - iCreate April - 2018

53 | IJREAM_SP180111 Special Issue on iCreate April -2018 © 2018, IJREAM All Rights Reserved.

IX. CONCLUSION

This paper has introduced an enhanced HP model to

accomplish this objective considering numerous multiple

waves of the shuffle phase of a Hadoop job. The enhanced

HP demonstrate was at first assessed on an in-house Hadoop

clusters and accordingly assessed on the EC2 cloud.

The experimental results showed that the improved HP

model outperforms both Starfish and the HP model in job

execution estimation. Similar to the HP model, the improved

HP model provisions resources for Hadoop jobs with

deadline requirements.

X. RESULTS & DISCUSSIONS

Dataset is given input to the Map Reduce phase.

Fig. 2 Resource Provisioning

Job scheduling is done using map 100% and reduce 100%

Fig. 3 Job Estimation

Fig. 4Resource Provisioning Graph

Above graph displays the scheduling of jobs given to the job

estimation phase.

REFERENCES

[1] J. Dean and S. Ghemawat, ―MapReduce: simplified data

processing on large clusters,‖ Commun. ACM, vol. 51, no. 1,

pp. 107–113, 2008.

[2] R. Lämmel, ―Google’s MapReduce programming model

— Revisited,‖ Sci. Comput. Program. vol. 70, no. 1, pp. 1–

30, 2008.

[3] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T.

Wang, ―Mars: a MapReduce framework on graphics

processors,‖ in Proceedings of the 17th international

conference on Parallel architectures and compilation

techniques - PACT ’08, 2008, p. 260.

[4] K. Taura, T. Endo, K. Kaneda, and A. Yonezawa,

―Phoenix: a parallel programming model for accommodating

dynamically joining/leaving resources,‖ in SIGPLAN Not.,

2003, vol. 38, no. 10, pp. 216–229.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,

―Dryad: distributed data-parallel programs from sequential

building blocks,‖ ACM SIGOPS Oper. Syst. Rev., vol. 41, no.

3, pp. 59–72, Mar. 2007.

[6] ―Apache Hadoop.‖ [Online]. Available:

http://hadoop.apache.org/. [Accessed: 21-Oct-2013].

[7] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, ―The Performance

of MapReduce: An In-depth Study,‖ Proc. VLDB Endow.,

vol. 3, no. 1–2, pp. 472–483, Sep. 2010.

[8] U. Kang, C. E. Tsourakakis, and C. Faloutsos,

―PEGASUS: Mining Peta-scale Graphs,‖ Knowl. Inf.

Syst., vol. 27, no. 2, pp. 303–325, May 2011.

[9] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo,

―PLANET: Massively Parallel Learning of Tree Ensembles

with MapReduce,‖ Proc. VLDB Endow. vol. 2, no. 2, pp.

1426–1437, Aug. 2009.

[10] A. Pavlo, E. Paulson, and A. Rasin, ―A comparison of

approaches to large-scale data analysis,‖ in SIGMOD ’09

Proceedings of the 2009 ACM SIGMOD International

Conference on Management of data, 2009, pp. 165–178.

