\mathbf{P}_{4} - Decomposition in Boolean Function Graph B(G, L(G), NINC) of a graph

S. Muthammai
Principal(Retd),_Alagappa Government Arts college, Karaikudi, Tamil Nadu, India. muthammai.sivakami@gmail.com, S. Dhanalakshmi
Government Arts College for Women (Autonomous), Pudukkottai, Tamil Nadu, India. dhanalakshmi8108@gmail.com

Abstract

For any graph G, let $V(G)$ and $E(G)$ denote the vertex set and edge set of G respectively. The Boolean function graph $B(G, L(G), N I N C)$ of G is a graph with vertex set $V(G) \cup E(G)$ and two vertices in $B(G, L(G)$, NINC) are adjacent if and only if they correspond to two adjacent vertices of G, two adjacent edges of G or to a vertex and an edge not incident to it in G. For brevity, this graph is denoted by $B_{1}(G)$. In this paper, P_{4}-decomposition of Boolean Function Graph $B(G, L(G)$, NINC) of some standard graphs and corona graphs are obtained.

Keywords: Boolean Function graph, Edge Domination Number, Decomposition

I. Introduction

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set respectively. A graph with p vertices and q edges is denoted by $\mathrm{G}(\mathrm{p}, \mathrm{q})$. A subset $\mathrm{F} \subseteq \mathrm{E}(\mathrm{G})$ is called an edge dominating set of G, if every edge not in F is adjacent to some edge in F . The edge domination number $\gamma^{\prime}(\mathrm{G})$ of G is the minimum cardinality taken over all edge dominating sets of G. The corona $G_{1} O G_{2}$ of two graphs G_{1} and G_{2} is defined as the graph obtained by taking one copy of G_{1} (which has p_{1} vertices) and p_{1} copies of G_{2}, and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertex of in the $i^{\text {th }}$ copy of G_{2}. For any graph $\mathrm{G}, \mathrm{GoK}_{1}$ is denoted by G^{+}.

A decomposition of a graph G is a family of edge-disjoint subgraphs $\left\{\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{k}}\right\}$ such that $\mathrm{E}(\mathrm{G})=\mathrm{E}\left(\mathrm{G}_{1}\right) \cup \mathrm{E}\left(\mathrm{G}_{2}\right)$ $\cup \ldots \cup E\left(G_{k}\right)$. If each G_{i} is isomorphic to H, for some subgraph H of G , then the decomposition is called a H decomposition of G . In particular, a P_{4}-decomposition of a graph G is a partition of the edge set of G into paths of length 3. In this case, G is said to be P_{4}-decomposable. Several authors studied various types of decomposition by imposing conditions on G_{i} in the decomposition. Heinrich, Liu and $\mathrm{Yu}[3]$ proved that a connected 4-regular graph admits a P_{4}-decomposition if and only if $|\mathrm{E}(\mathrm{G})| \equiv 0(\bmod 3)$. Sunil Kumar[10] proved that a complete r- partite graph is P_{4}-decomposable if and only if its size is a multiple of 3 . P.Chithra devi and J. Paulraj Joseph [1] gave a necessary and sufficient condition for the decomposition of the total graph of standard graphs and corona of graphs into paths on three edges. Janakiraman et al., introduced the concept of Boolean function graphs [4-6]. For a real $x,\lfloor x\rfloor$ denotes
the greatest integer less than or equal to x . For any graph G, let $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$ denote the vertex set and edge set of G respectively. The Boolean function graph $\mathrm{B}(\mathrm{G}, \mathrm{L}(\mathrm{G})$, NINC) of G is a graph with vertex set $V(G) \cup E(G)$ and two vertices in $\mathrm{B}(\mathrm{G}, \mathrm{L}(\mathrm{G})$, NINC) are adjacent if and only if they correspond to two adjacent vertices of G, two adjacent edges of G or to a vertex and an edge not incident to it in G . For brevity, this graph is denoted by $\mathrm{B}_{1}(\mathrm{G})$.

In this paper, P_{4} decomposition of Boolean Function Graph $B(G, L(G)$, NINC) of some standard graphs are obtained.

II. Prior Results

Observation 2.1. [4]

Let G be a graph with p vertices and q edges.

1. G and $L(G)$ are induced subgraphs of $B_{1}(G)$.
2. Number of vertices in $B_{1}(G)$ is $p+q$ and if $d_{i}=\operatorname{deg}_{G}\left(v_{i}\right)$, $\mathrm{v}_{\mathrm{i}} \in \mathrm{V}(\mathrm{G})$, then the number of edges in $\mathrm{B}_{1}(\mathrm{G})$ is $\mathrm{q}(\mathrm{p}-2)+$ $1 / 2 \sum_{1 \leq i \leq p} d_{i}^{2}$.
3. The degree of a vertex of G in $B_{1}(G)$ is q and the degree of a vertex e^{\prime} of $\mathrm{L}(\mathrm{G})$ in $\mathrm{B}_{1}(\mathrm{G})$ is $\operatorname{deg}_{\mathrm{L}(\mathrm{G})}\left(\mathrm{e}^{\prime}\right)+\mathrm{p}-2$. Also if $d^{*}\left(e^{\prime}\right)$ is the degree of a vertex e^{\prime} of $L(G)$ in $B_{1}(G)$, then $0 \leq$ $\mathrm{d}^{*}\left(\mathrm{e}^{\prime}\right) \leq \mathrm{p}+\mathrm{q}-3$. The lower bound is attained, if $\mathrm{G} \cong \mathrm{K}_{2}$ and the upper bound is attained, if $G \cong K_{1, n}$, for $n \geq 2$.

Theorem 2.2 [4]. $\mathrm{B}_{1}(\mathrm{G})$ is disconnected if and only if G is one of the following graphs: $n \mathrm{~K}_{1}, \mathrm{~K}_{2}, 2 \mathrm{~K}_{2}$ and $\mathrm{K}_{2} \cup \mathrm{nK}_{1}$, for $\mathrm{n} \geq 1$.

Theorem 2.3. [7]. $\gamma^{\prime}\left(\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}\right)\right)=\mathrm{n}-1, \gamma^{\prime}\left(\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}\right)\right)=\mathrm{n}-1, \mathrm{n} \geq$ 3.

Theorem 2.4. [7]. $\gamma^{\prime}\left(\mathrm{B}_{1}\left(\mathrm{~K}_{1, \mathrm{n}}\right)\right)=(\mathrm{n}+4) / 3, \mathrm{n} \geq 2$.
Theorem 2.5. [8]. $\gamma^{\prime}\left(\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}{ }^{+}\right)\right)=\left\lfloor\frac{3 \mathrm{n}}{2}\right\rfloor, \mathrm{n} \geq 2$.
Theorem 2.6. [8]. $\gamma^{\prime}\left(\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right)\right)=\left\lceil\frac{3 \mathrm{n}}{2}\right\rceil, \mathrm{n} \geq 3$.
Theorem 2.7. [8]. $\gamma^{\prime}\left(\mathrm{B}_{1}\left(\mathrm{~K}_{1, \mathrm{n}}{ }^{+}\right)\right)=\mathrm{n}+2, \mathrm{n} \geq 2$.

III. Main Results

In the following, P_{4} - decomposition of $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}\right), \mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}\right)$, $\mathrm{B}_{1}\left(\mathrm{~K}_{1, \mathrm{n}}\right)$ and corona graphs are found.

Theorem 3.1

(i) For $\mathrm{n} \geq 6$ and $\mathrm{n} \equiv 0(\bmod 3)$, the graph $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}\right)$ $-2 \mathrm{~K}_{2}$ is P_{4-} decomposable .
(ii) For $\mathrm{n} \geq 7$ and $\mathrm{n} \equiv 1(\bmod 3)$, the graph $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}\right)$ $-(\mathrm{n}+1) \mathrm{K}_{2}$ is P_{4-} decomposable.
(iii) For $\mathrm{n} \geq 8$ and $\mathrm{n} \equiv 2(\bmod 3)$, the graph $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}\right)-$ $2 \mathrm{nK}_{2}$ is P_{4-} decomposable.

Proof:

$$
\text { Let } V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \text { and } e_{i}=\left(v_{i},\right.
$$ $\left.v_{i+1}\right), i=1,2, \ldots, n-1$, be the edges of P_{n}. Then $v_{1}, v_{2}, \ldots, v_{n}$, $e_{1}, e_{2}, \ldots, e_{n-1} \in V\left(B_{1}\left(P_{n}\right)\right) . B_{1}\left(P_{n}\right)$ has $2 n-1$ vertices and $n^{2}-$ $\mathrm{n}-1$ edges. It is to be noted that, in all the sets defined below the suffix i in v_{i} is integer modulo n, and j in e_{j} is integer modulo $n-1, v_{0}=v_{n}$ and $e_{0}=e_{n-1}$.

Let $\mathrm{F}=\bigcup_{\mathrm{i}=1}^{\mathrm{n}-1} \mathrm{~F}_{\mathrm{i}}$, where $\mathrm{F}_{1}=\left\{\left(\mathrm{v}_{1}, \mathrm{e}_{\mathrm{i}}\right), \mathrm{i}=2,3, \ldots, \mathrm{n}-1\right\}$ and
$F_{i}=\left\{\left(v_{i}, v_{j}\right), 1 \leq j \leq n-1\right.$ and $\left.j \neq i-1, i\right\}, i=2,3, \ldots, n-2 . F_{n-}$ ${ }_{1}=\left\{\left(v_{n}, e_{j}\right), j=1,2, \ldots, n-2\right\}$.
$\mathrm{E}\left(\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}\right)\right)=\mathrm{E}\left(\mathrm{P}_{\mathrm{n}}\right) \cup \mathrm{E}\left(\mathrm{L}\left(\mathrm{P}_{\mathrm{n}}\right)\right) \cup \mathrm{F}=\mathrm{E}\left(\mathrm{P}_{\mathrm{n}}\right) \cup \mathrm{E}\left(\mathrm{P}_{\mathrm{n}-1}\right) \cup \mathrm{F}$.
Case 1. $\mathrm{n} \equiv 0(\bmod 3)$.
Then the edge set of $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}\right)$ can be decomposed into $\left(\left(n^{2}-n-3\right) / 3\right) P_{4}$ and $2 K_{2}$. The edge set of $2 K_{2}$ is given by the set $\left\{\left(v_{n-1}, v_{n}\right),\left(v_{1}, e_{n-1}\right)\right\}$. The edge sets of $\left(\left(n^{2}-n-\right.\right.$ 3)/3) P_{4} are given by the edge sets $A^{(1)}, A^{(2)}, A^{(3)}$ and $A^{(4)}$, where $A^{(1)}=U_{i=1}^{n-2} A_{i}^{(1)}$ and $A_{i}^{(1)}=\left\{\left(v_{i}, v_{i+1}\right),\left(v_{i+1}, e_{i+2}\right),\left(e_{i+2}\right.\right.$, $\left.\left.v_{i+4}\right)\right\}, A^{(2)}=\bigcup_{i=1}^{n-2} A_{i}^{(2)}$, where $A_{i}^{(2)}=\left\{\left(v_{n}, e_{i}\right),\left(e_{i}, e_{i+1}\right)\right.$, $\left.\left(\mathrm{e}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{i}+4}\right)\right\}$,
$A^{(3)}=U_{i=1}^{n-1}\left(U_{j=1}^{(n-6) / 3} A_{j, i}^{(3)}\right)$, where $A_{j, i}^{(3)}=\left\{\left(e_{i+2 j,} v_{i}\right),\left(v_{i}\right.\right.$, $\left.\left.e_{i+2 j+1}\right),\left(e_{i+2 j+1}, v_{i+3 j+4}\right)\right\}$ and
$A^{(4)}=\left\{\left(\mathrm{v}_{1}, \mathrm{e}_{2}\right),\left(\mathrm{e}_{2}, \mathrm{v}_{4}\right),\left(\mathrm{v}_{4}, \mathrm{e}_{1}\right)\right\}$. Here, $\left\langle\mathrm{A}^{(1)}\right\rangle \cong(\mathrm{n}-2) \mathrm{P}_{4},<$ $\mathrm{A}^{(2)}>\cong(\mathrm{n}-2) \mathrm{P}_{4}$,
$\left\langle\mathrm{A}^{(3)}\right\rangle \cong((\mathrm{n}-1)((\mathrm{n}-6)) / 3) \mathrm{P}_{4}$ and $\left\langle\mathrm{A}^{(4)}\right\rangle \cong \mathrm{P}_{4}$. Therefore, $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}\right)-2 \mathrm{~K}_{2}$ is P_{4-} decomposable.
Case 2. $n \equiv 1(\bmod 3)$
Then the edge set of $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}\right)$ can be decomposed into $\left(\left(n^{2}-2 n-2\right) / 3\right) P_{4}$ and $(n+1) K_{2}$. The edge set of $(n+1) K_{2}$ is given by the set $\left.\left.\left\{\left(\mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}\right),\left(\mathrm{v}_{1}, \mathrm{e}_{\mathrm{n}-1}\right)\right\} \cup\left(\bigcup_{i=1}^{n-1} \mathrm{v}_{\mathrm{i},}, \mathrm{e}_{\mathrm{i}+2}\right)\right\}\right)$.

The edge sets of $\left(\left(n^{2}-2 n-2\right) / 3\right) \mathrm{P}_{4}$ are given by the edge sets $A^{(1)}, A^{(2)}$, and $A^{(4)}$, as in Case1, and the set
$A^{(5)}=U_{i=1}^{n-1}\left(U_{j=1}^{(n-7) / 3} A_{j, i}^{(5)}\right)$, where $A_{j, i}^{(5)}=\left\{\left(e_{i+2 j+2,}, v_{i}\right),\left(v_{i}\right.\right.$, $\left.\left.\mathrm{e}_{i+2 j+3}\right),\left(\mathrm{e}_{\mathrm{i}+2 \mathrm{j}+3}, \mathrm{v}_{\mathrm{i}+3 \mathrm{j}+6}\right)\right\}$,
$\left\langle\mathrm{A}^{(5)}\right\rangle \cong((n-1)((\mathrm{n}-7)) / 3) \mathrm{P}_{4}$. Therefore, $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}\right)-(\mathrm{n}+1) \mathrm{K}_{2}$ is P_{4-} decomposable.
Case 3. $\mathrm{n} \equiv 2(\bmod 3)$
Then the edge set of $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}\right)$ can be decomposed $\operatorname{into}\left(\left(n^{2}-3 n-1\right) / 3\right) P_{4}$ and $2 n K_{2}$. The edge set of $2 n K_{2}$ is given by the set $\left\{\left(\mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}\right),\left(\mathrm{v}_{1}, \mathrm{e}_{\mathrm{n}-1}\right)\right\} \cup\left(\bigcup_{i=1}^{n-1}\left\{\left(\mathrm{v}_{\mathrm{i}}, \mathrm{e}_{\mathrm{i}+2}\right),\left(\mathrm{v}_{\mathrm{i}}\right.\right.\right.$, $\left.\left.e_{i+3}\right)\right\}$). The edge sets of $\left(\left(n^{2}-3 n-1\right) / 3\right) P_{4}$ are given by the edge sets $\mathrm{A}^{(1)}, \mathrm{A}^{(2)}$, and $\mathrm{A}^{(4)}$, as in Case 1 , and the set $A^{(6)}=U_{i=1}^{n-1}\left(U_{j=1}^{(n-8) / 3} A_{j, i}^{(6)}\right)$ where $A_{j, i}^{(6)}=\left\{\left(e_{i+2 j+2, ~} v_{i}\right),\left(v_{i}\right.\right.$, $\left.\left.\mathrm{e}_{i+2 j+3}\right),\left(\mathrm{e}_{\mathrm{i}+2 \mathrm{j}+3}, \mathrm{v}_{\mathrm{i}+3 \mathrm{j}+6}\right)\right\}$,
$\left\langle\mathrm{A}^{(6)}\right\rangle \cong((\mathrm{n}-1)((\mathrm{n}-8)) / 3) \mathrm{P}_{4}$. Therefore, $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}\right)-2 \mathrm{nK}_{2}$ is P_{4} - decomposable.

Theorem 3.2

(i) For $\mathrm{n} \geq 3$ and $\mathrm{n} \equiv 0(\bmod 3)$, the graph $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}\right)$ is P_{4-} decomposable.
(ii) For $n \geq 4$ and $n \equiv 1(\bmod 3)$, the graph $B_{1}\left(C_{n}\right)$ $-\mathrm{nK}_{2}$ is P_{4-} decomposable.
(iii) For $n \geq 5$ and $n \equiv 2(\bmod 3)$, the graph $B_{1}\left(C_{n}\right)$ $-2 \mathrm{nK}_{2}$ is P_{4} decomposable.

Proof: Let $\mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ and $\mathrm{e}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$, $i=1,2, \ldots, n-1, e_{n}=\left(v_{n}, v_{1}\right)$ be the edges of C_{n}. Then v_{1}, $v_{2}, \ldots, v_{n}, e_{1}, e_{2}, \ldots, e_{n} \in V\left(B_{1}\left(C_{n}\right)\right) . B_{1}\left(C_{n}\right)$ has $2 n$ vertices and n^{2} edges. In all the sets, suffices are integers modulo $n, v_{0}=v_{n}$ and $e_{0}=e_{n}$.

Let $\mathrm{F}_{1}=\left\{\left(\mathrm{v}_{1}, \mathrm{e}_{\mathrm{j}}\right), \mathrm{j}=2,3, \ldots, \mathrm{n}-1\right\}$ and $\mathrm{F}_{\mathrm{i}}=\left\{\left(\mathrm{v}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right), 1 \leq \mathrm{j}\right.$ $\leq \mathrm{n}$ and $\mathrm{j} \neq \mathrm{i}, \mathrm{i}-1\}, 2 \leq \mathrm{i} \leq \mathrm{n}$.
$\mathrm{E}\left(\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}\right)\right)=\mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right) \cup \mathrm{E}\left(\mathrm{L}\left(\mathrm{C}_{\mathrm{n}}\right)\right) \cup \mathrm{F}=\mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right) \cup \mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right) \cup$ $\mathrm{F}=\mathrm{E}\left(2 \mathrm{C}_{\mathrm{n}}\right) \cup \mathrm{F}$

Case 1. $\mathrm{n} \equiv 0(\bmod 3)$.
Then the edge set of $B_{1}\left(C_{n}\right)$ can be decomposed into $\left(n^{2} / 3\right)$ P_{4}. The edge sets of $\left(n^{2} / 3\right) P_{4}$ are given by the edge sets $B^{(1)}$ and $B^{(2)}$, where $B^{(1)}=U_{i=1}^{n} B_{i}^{(1)}$ and $B_{i}^{(1)}=\left\{\left(v_{i,} v_{i+1}\right)\right.$, $\left.\left(\mathrm{v}_{\mathrm{i}+1}, \mathrm{e}_{\mathrm{i}+2}\right),\left(\mathrm{e}_{\mathrm{i}+2}, \mathrm{e}_{\mathrm{i}+3}\right)\right\}, \mathrm{B}^{(2)}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{U}_{\mathrm{j}=1}^{(\mathrm{n}-3) / 3} \mathrm{~B}_{\mathrm{j}, \mathrm{i}}^{(2)}\right)$, where $B_{j, i}^{(2)}=\left\{\left(v_{i}, e_{i+j+1}\right),\left(e_{i+j+1}, v_{i+3 j+1}\right),\left(v_{i+3 j+1}, e_{i+j}\right)\right\}$.

Here $\left\langle\mathrm{B}^{(1)}\right\rangle \cong \mathrm{nP}_{4},\left\langle\mathrm{~B}^{(2)}\right\rangle \cong \mathrm{n}((\mathrm{n}-3) / 3) \mathrm{P}_{4}$. Hence, $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}\right)$ is P_{4-} decomposable.

Conversely, suppose that $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}\right)$ is P_{4-} decomposable. Then $\left|\mathrm{E}\left(\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}\right)\right)\right| \equiv 0(\bmod 3)$, which implies $\mathrm{n}^{2} \equiv 0(\bmod 3)$ and hence $\mathrm{n} \equiv 0(\bmod 3)$.

Case 2. $\mathrm{n} \equiv 1(\bmod 3)$
Then the edge set of $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}\right)$ can be decomposed into ($\left(\mathrm{n}^{2}\right.$ $-n) / 3) P_{4}$ and $n K_{2}$. The edge set of $n K_{2}$ is given by $\left\{\left(v_{i}\right.\right.$,
$\left.\left.\mathrm{e}_{\mathrm{i}+2}\right), \mathrm{i}=1,2, \ldots, \mathrm{n}\right\}$. The edge sets of $\left(\left(\mathrm{n}^{2}-\mathrm{n}\right) / 3\right) \mathrm{P}_{4}$ are given by the sets $\mathrm{B}^{(1)}$ as in Case1 and $\mathrm{B}^{(3)}=$ $U_{i=1}^{n}\left(U_{j=1}^{(n-4) / 3} B_{j, i}^{(3)}\right)$, where $B_{j, i}^{(3)}=\left\{\left(v_{i,} \quad e_{i+2 j+1}\right), \quad\left(e_{i+2 j+1}\right.\right.$, $\left.\left.\mathrm{v}_{\mathrm{i}+4 \mathrm{j}+1}\right),\left(\mathrm{v}_{\mathrm{i}+4 \mathrm{j}+1}, \mathrm{e}_{\mathrm{i}+\mathrm{j}+1}\right)\right\}$. Here, $\left\langle\mathrm{B}^{(3)}\right\rangle \cong \mathrm{n}((\mathrm{n}-4) / 3) \mathrm{P}_{4}$. Hence, $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}\right)-\mathrm{nK}_{2}$ is P_{4-} decomposable.

Case 3. $n \equiv 2(\bmod 3)$
Then the edge set of $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}\right)$ can be decomposed into $\left(\left(n^{2}-2 n\right) / 3\right) P_{4}$ and $2 n K_{2}$. The edge set of $2 n K_{2}$ is given by the set of edges $\left\{\left(v_{i}, e_{i+2}\right),\left(v_{i}, e_{i+3}\right), i=1,2, \ldots, n\right\}$. The edge set $\left(\left(\mathrm{n}^{2}-\mathrm{n}\right) / 3\right) \mathrm{P}_{4}$ is given by the set $\mathrm{B}^{(1)}$ as in Case 1 and $\mathrm{B}^{(4)}$ $=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{U}_{\mathrm{j}=1}^{(\mathrm{n}-5) / 3} \mathrm{~B}_{\mathrm{j}, \mathrm{i}}^{(3)}\right)$ and $\mathrm{B}_{\mathrm{j}, \mathrm{i}}^{(3)}$ is as in Case 2.
Here , $\left\langle\mathrm{B}^{(4)}\right\rangle \cong \mathrm{n}((\mathrm{n}-5) / 3) \mathrm{P}_{4}$. Hence, $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}\right)-2 \mathrm{nK}_{2}$ is $\mathrm{P}_{4}-$ decomposable.

Theorem 3.3

For $n \geq 4$, the graph $B_{1}\left(K_{1, n}\right)-n K_{2}$ is P_{4} decomposable.

Proof: Let $V\left(K_{1, n}\right)=\left\{v, v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $e_{i}=(v$, $\left.v_{i}\right), i=1,2, \ldots, n$ be the edges of $K_{1, n}$. Then v, v_{1}, v_{2}, \ldots, $v_{n}, e_{1}, e_{2}, \ldots, e_{n} \in V\left(B_{1}\left(K_{1, n}\right)\right) . B_{1}\left(K_{1, n}\right)$ has $2 n+1$ vertices and
$(\mathrm{n}(3 \mathrm{n}-1)) / 2)$ edges. In all the sets defined below, the suffices are integers modulo $n, v_{o}=v_{n}$ and $e_{o}=e_{n}$. Let $F=$ $\bigcup_{i=1}^{n} F_{i}$, where $F_{i}=\left\{\left(v_{i}, e_{j}\right), 1 \leq j \leq n\right.$ and $\left.j \neq i\right\}$.
$\mathrm{E}\left(\mathrm{B}_{1}\left(\mathrm{~K}_{1, n}\right)\right)=\mathrm{E}\left(\mathrm{K}_{1, \mathrm{n}}\right) \cup \mathrm{E}\left(\mathrm{L}\left(\mathrm{K}_{1, \mathrm{n}}\right)\right) \cup \mathrm{F}=\mathrm{E}\left(\mathrm{K}_{1, \mathrm{n}}\right) \cup \mathrm{E}\left(\mathrm{K}_{\mathrm{n}}\right)$ $\cup \mathrm{F}$.

Case 1. $\mathrm{n} \equiv 0(\bmod 3)$
Then the edge set of $\mathrm{B}_{1}\left(\mathrm{~K}_{1},{ }_{n}\right)$ can be decomposed into $\left(\left(\mathrm{n}^{2}-\mathrm{n}\right) / 2\right) \mathrm{P}_{4}$ and nK_{2}. The edge set of $n K_{2}$ is given by the set $\left\{\left(v_{i}, e_{i+n-1}\right), i=1,2, \ldots, n\right\}$. Let $D^{(1)}=$ $\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}^{(1)}$, where
$D_{i}^{(1)}=\left\{\left(v_{1} \quad v_{i}\right), \quad\left(v_{i}, \quad e_{i+1}\right), \quad\left(e_{i+1}, \quad e_{i+2}\right)\right\} \quad$ and $\quad D^{(2)}$ $=U_{i=1}^{n}\left(U_{j=1}^{(n-3) / 3} D_{j, i}^{(2)}\right)$ and $D_{j, i}^{(2)}=\left\{\left(v_{i,} e_{i+j+1}\right),\left(e_{i+j+1}, v_{i+3 j+1}\right)\right.$, $\left.\left(\mathrm{v}_{\mathrm{i}+3 \mathrm{j}+1}, \mathrm{e}_{\mathrm{i}+\mathrm{j}}\right)\right\}$. Here, $\left\langle\mathrm{D}^{(1)}\right\rangle \cong \mathrm{nP}_{4},\left\langle\mathrm{D}^{(2)}\right\rangle \cong \mathrm{n}((\mathrm{n}-3) / 3) \mathrm{P}_{4}$.

Subcase 1.1. $n \equiv 0(\bmod 3), n \geq 9$ and n is odd.
The edge set of $\left(\left(n^{2}-n\right) / 2\right) P_{4}$ is given by the set $\mathrm{D}^{(1)} \cup \mathrm{D}^{(2)} \cup \mathrm{D}^{(3)}$, where
$D^{(3)}=U_{i=1}^{n}\left(U_{j=1}^{(n-3) / 6} D_{j, i}^{(3)}\right)$ and $D_{j, i}^{(3)}=\left\{\left(e_{i, ~}, e_{i+2 j}\right),\left(e_{i+2 j}\right.\right.$, $\left.\left.\mathrm{e}_{\mathrm{i}+5 \mathrm{j}+1}\right),\left(\mathrm{e}_{\mathrm{i}+5 \mathrm{j}+1}, \mathrm{e}_{\mathrm{i}+\mathrm{j}+2}\right)\right\}, \quad<\mathrm{D}^{(3)}>\cong \mathrm{n}((\mathrm{n}-3) / 6)$ P_{4}.
Subcase 1.2. $n \equiv 0(\bmod 3), n \geq 6$ and n is even.
The edge set of $\left(\left(n^{2}-n\right) / 2\right) P_{4}$ is given by the set $\mathrm{D}^{(1)} \cup \mathrm{D}^{(2)} \cup \mathrm{D}^{(4)} \cup \mathrm{D}^{(5)}$, where
$D^{(4)}=U_{i=1}^{n}\left(U_{j=1}^{(n-6) / 6} D_{j, i}^{(4)}\right)$, where $\quad D_{j, i}^{(4)}=\left\{\left(e_{i}, e_{i+3 j+1}\right)\right.$, $\left.\left(e_{i+3 j+1}, e_{i+5 j+1}\right),\left(e_{i+5 j+1}, e_{i+j+2}\right)\right\}$ and
$D^{(5)}=U_{i=1}^{n / 2} D_{i}^{(5)}$, where $D_{i}^{(5)}=\left\{\left(e_{i}, e_{n / 2+i-1}\right),\left(e_{n / 2+i-1}, e_{n+i-1}\right)\right.$, $\left.\left(\mathrm{e}_{\mathrm{n}+\mathrm{i}-1}, \mathrm{e}_{\mathrm{n} / 2+2-\mathrm{i}}\right)\right\}$,
$\left\langle\mathrm{D}^{(4)}\right\rangle \cong \mathrm{n}((\mathrm{n}-6) / 6) \mathrm{P}_{4},\left\langle\mathrm{D}^{(5)}\right\rangle \cong(\mathrm{n} / 2) \mathrm{P}_{4}$. Therefore, $\mathrm{B}_{1}\left(\mathrm{~K}_{1, \mathrm{n}}\right)-\mathrm{nK}_{2}$ is P_{4-} decomposable .
Case 2. $\mathrm{n} \equiv 1,2(\bmod 3), \mathrm{n} \geq 4$
Then the edge set of $\mathrm{B}_{1}\left(\mathrm{~K}_{1, \mathrm{n}}\right)$ can be decomposed into $\left(\left(\mathrm{n}^{2}-\mathrm{n}\right) / 2\right) \mathrm{P}_{4}$ and nK_{2} 's.
Subcase $2.1 \mathrm{n} \equiv 1,2(\bmod 3), \mathrm{n} \geq 5$ and n is odd.
The edge sets of $\left(\left(n^{2}-n\right) / 2\right) P_{4}$ are given by the set $\mathrm{D}^{(1)} \cup \mathrm{D}^{(6)}$, where
$D^{(6)}=\bigcup_{i=1}^{n}\left(U_{j=1}^{(n-3) / 2} D_{j, i}^{(6)}\right)$, where $D_{j, i}^{(6)}=\left\{\left(e_{i+2 j, ~}, v_{i}\right.\right.$), ($\left.\left.\mathrm{v}_{\mathrm{i}}, \mathrm{e}_{\mathrm{i}+2 \mathrm{j}+1}\right),\left(\mathrm{e}_{\mathrm{i}+2 \mathrm{j}+1}, \mathrm{e}_{\mathrm{i}+\mathrm{j}}\right)\right\}$,
$\left\langle\mathrm{D}^{(6)}\right\rangle \cong \mathrm{n}((\mathrm{n}-3) / 2) \mathrm{P}_{4}$.
Subcase $2.2 \mathrm{n} \equiv 1,2(\bmod 3), \mathrm{n} \geq 8$ and n is even.
The edge sets of $\left(\left(\mathrm{n}^{2}-\mathrm{n}\right) / 2\right) \mathrm{P}_{4}$ are given by the set
$\mathrm{D}^{(1)} \cup \mathrm{D}^{(7)} \cup \mathrm{D}^{(8)}$, where $\quad \mathrm{D}^{(7)}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{U}_{\mathrm{j}=1}^{(\mathrm{n}-4) / 2} \mathrm{D}_{\mathrm{j}, \mathrm{i}}^{(7)}\right)$
, where $D_{j, i}^{(7)}=\left\{\left(e_{i+2 j}, v_{i}\right),\left(v_{i,}, e_{i+2 j+1}\right),\left(e_{i+2 j+1}, e_{i+j}\right)\right\}$ and $D^{(8)}=U_{i=1}^{n / 2} D_{i}^{(8)}$, where $D_{i}^{(8)}=\left\{\left(v_{i}, e_{i+n-2}\right),\left(e_{i+n-2}, e_{n 2-1}\right),\left(e_{n}\right.\right.$ $\left.\left.{ }_{2-1}, \mathrm{v}_{\mathrm{n} / 2+1}\right)\right\},\left\langle\mathrm{D}^{(7)}\right\rangle \cong \mathrm{n}((\mathrm{n}-4) / 2) \mathrm{P}_{4}$,
$\left\langle\mathrm{D}^{(8)}\right\rangle \cong(\mathrm{n} / 2) \mathrm{P}_{4}$. Therefore, $\mathrm{B}_{1}\left(\mathrm{~K}_{1, n}\right)-\mathrm{nK}_{2}$ is $\mathrm{P}_{4}-$ decomposable.

In the following, P_{4} - decomposition of Boolean function graph of corona of P_{n}, C_{n} and $K_{1, n}$ are found.

Theorem 3.4

(i) For $\mathrm{n} \geq 6$ and $\mathrm{n} \equiv 0(\bmod 3)$, the graph $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}{ }^{+}\right)-(3 \mathrm{n}-$ 3) K_{2} is P_{4-} decomposable.
(ii) For $\mathrm{n} \geq 4$ and $\mathrm{n} \equiv 1(\bmod 3)$, the graph $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}{ }^{+}\right)-$ ($\mathrm{n}+2$) K_{2} is P_{4-} decomposable .
(iii) For $\mathrm{n} \geq 4$ and $\mathrm{n} \equiv 2(\bmod 3)$, the graph $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}{ }^{+}\right)-$ $(2 \mathrm{n}+1) \mathrm{K}_{2}$ is P_{4-} decomposable .

Proof: Let $V\left(P_{n}{ }^{+}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ where $v_{1}, v_{2}, \ldots, v_{n}$ are the vertices of P_{n} and $u_{1}, u_{2}, \ldots, u_{n}$ are the pendant vertices of $P_{n}{ }^{+}$and $e_{i}=\left(v_{i}, v_{i+1}\right), i=1,2, \ldots, n-$ 1and $f_{i}=\left(v_{i}, u_{i}\right), i=1,2, \ldots, n$ be the edges of $P_{n}{ }^{+}$. Then $v_{1,}$, $v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}, e_{1}, e_{2}, \ldots, e_{n-1}, f_{1}, f_{2}, \ldots, f_{n}$ $\in V\left(B_{1}\left(P_{n}^{+}\right)\right) . P_{n}^{+}$and $L\left(P_{n}^{+}\right)$are induced subgraphs of $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}{ }^{+}\right), \mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}^{+}\right)$has $4 \mathrm{n}-1$ vertices and $4 \mathrm{n}^{2}-\mathrm{n}-3$ edges. In all the sets, the suffices i in v_{i} and j in e_{j} are integers modulo n and $n-1$ respectively, and suffices k in f_{k}, u_{k}, v_{k} are integers modulo $n, f_{0}=f_{n}, u_{0}=u_{n}, v_{0}=v_{n}, e_{0}=e_{n-1}$.

Let $F_{k}=\left\{\left(v_{i}, e_{j}\right) /\right.$ for all $i, 1 \leq i \leq n, j \equiv(i+k)(\bmod (n-1))$ and $\left.\mathrm{e}_{0}=\mathrm{e}_{\mathrm{n}-1}\right\}$ and $\mathrm{F}=\bigcup_{\mathrm{k}=1}^{\mathrm{n}-3} \mathrm{~F}_{\mathrm{k}}$.

Let $\mathrm{H}_{\mathrm{i}}=\left\{\left(\mathrm{v}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right)\left(\mathrm{u}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right), \mathrm{j}=1,2, \ldots, \mathrm{n}, \mathrm{j} \neq \mathrm{i}\right\}$ and $\mathrm{H}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{H}_{\mathrm{i}}$ and $|\mathrm{H}|=2 \mathrm{n}(\mathrm{n}-1)$.

Let $\mathrm{J}_{\mathrm{k}}=\left\{\left(\mathrm{u}_{\mathrm{k}}, \mathrm{e}_{\mathrm{j}}\right) /\right.$ for all $\left.\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{n}-1\right\}, \mathrm{J}=\mathrm{U}_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{J}_{\mathrm{k}}$ and $|\mathrm{J}|=$ $\mathrm{n}(\mathrm{n}-1)$.
$\mathrm{E}\left(\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}{ }^{+}\right)\right)=\mathrm{E}\left(\mathrm{P}_{\mathrm{n}}{ }^{+}\right) \cup \mathrm{E}\left(\mathrm{L}\left(\mathrm{P}_{\mathrm{n}}{ }^{+}\right)\right) \cup(\mathrm{F} \cup \mathrm{H} \cup \mathrm{J})$.

Case 1. $\mathrm{n} \equiv 0(\bmod 3)$.
Then the edge set of $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}{ }^{+}\right)$can be decomposed into $\left(\left(4 \mathrm{n}^{2}-\right.\right.$ $4 n) / 3) P_{4}$ and $(3 n-3) K_{2}$. The edge set of $(3 n-3) K_{2}$ is given by the $\operatorname{set}\left\{\left(u_{1}, f_{n}\right),\left(v_{1}, f_{n}\right),\left(v_{1}, e_{n-1}\right) \cup\left\{\left(v_{n}, e_{i}\right), i=1,2, \ldots, n-2\right\} \cup\right.$ $\left\{\left(e_{i}, e_{i+1}\right), i=1,2, \ldots, n-2\right\} \cup\left\{\left(e_{i}, f_{i}\right), i=2,3, \ldots, n-1\right\}$. The edge sets of $\left(\left(4 n^{2}-4 n\right) / 3\right) P_{4}$ are given by the edge sets $M^{(1)}$, $\mathrm{M}^{(2)}, \mathrm{M}^{(3)}$ and $\mathrm{M}^{(4)}$, where $\mathrm{M}^{(1)}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}-1} \mathrm{M}_{\mathrm{i}}^{(1)}$, where $\mathrm{M}_{\mathrm{i}}^{(1)}$ $=\left\{\left(v_{i}, v_{i+1}\right),\left(v_{i+1}, f_{i}\right),\left(f_{i}, \quad u_{i+1}\right)\right\}, M^{(2)}=U_{i=1}^{n} M_{i}^{(2)}$, where $M_{i}^{(2)}=\left\{\left(\mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{e}_{\mathrm{i}}\right),\left(\mathrm{e}_{\mathrm{i}}, \mathrm{f}_{\mathrm{i}+1}\right)\right\}$ and
$M^{(3)}=U_{i=1}^{n}\left(U_{j=1}^{(n-2)} M_{j, i}^{(3)}\right)$, where $M_{j, i}^{(3)}=\left\{\left(v_{i,}, f_{i+j}\right),\left(f_{i+j}, u_{i}\right)\right.$, $\left.\left(\mathrm{u}_{\mathrm{i}}, \mathrm{e}_{\mathrm{i}+\mathrm{j}}\right)\right\}$ and
$M^{(4)}=U_{i=1}^{n}\left(U_{j=1}^{(n-3) / 3} M_{j, i}^{(4)}\right)$, where $M_{j, i}^{(4)}=\left\{\left(e_{i+3 j-2,} v_{i}\right),\left(v_{i}\right.\right.$, $\left.\left.e_{i+j}\right),\left(e_{i+j}, v_{i+1}\right)\right\}$.

Here, $\left\langle\mathrm{M}^{(1)}\right\rangle \cong(\mathrm{n}-1) \mathrm{P}_{4},\left\langle\mathrm{M}^{(2)}\right\rangle \cong \mathrm{nP}_{4},\left\langle\mathrm{M}^{(3)}\right\rangle \cong \mathrm{n}(\mathrm{n}-$ 2) P_{4} and $\left\langle\mathrm{M}^{(4)}\right\rangle \cong(\mathrm{n}-1)((\mathrm{n}-3) / 3) \mathrm{P}_{4}$. Therefore, $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}{ }^{+}\right)-$ $(3 n-3) K_{2}$ is P_{4-} decomposable.

Case 2. $n \equiv 1(\bmod 3)$.

Then the edge set of $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}{ }^{+}\right)$can be decomposed into $\left(\left(4 n^{2}-2 n-5\right) / 3\right) P_{4}$ and $(n+2) K_{2}$. The edge set of $(n+2) K_{2}$ is given by the set $\left\{\left(u_{1}, f_{n}\right),\left(v_{1}, f_{n}\right),\left(v_{1}, e_{n-1}\right),\left(v_{(n+5) / 3}, e_{1}\right)\right\}$ $\cup\left(\cup_{i=2}^{n-1}\left\{\left(\mathrm{e}_{\mathrm{i}}, \mathrm{f}_{\mathrm{i}}\right)\right\}\right)$. The edge sets of $\left(\left(4 \mathrm{n}^{2}-2 \mathrm{n}-5\right) / 3\right) \mathrm{P}_{4}$ are given by the edge set $\mathrm{M}^{(1)}, \mathrm{M}^{(2)}$ and $\mathrm{M}^{(3)}$ as in case 1 , and the set $\mathrm{M}^{(5)}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}-1}\left(\mathrm{U}_{\mathrm{j}=1}^{(\mathrm{n}-4) / 3} \mathrm{M}_{\mathrm{j}, \mathrm{i}}^{(5)}\right)$ and $\mathrm{M}_{\mathrm{j}, \mathrm{i}}^{(5)}=\left\{\left(\mathrm{e}_{\mathrm{i}+2 \mathrm{j}+1}, \mathrm{v}_{\mathrm{i}}\right)\right.$, $\left.\left(v_{i}, e_{i+2 j}\right),\left(e_{i+2 j}, v_{i+3 j+1}\right)\right\}$.

Here, $\left\langle\mathrm{M}^{(5)}\right\rangle \cong(\mathrm{n}-1)((\mathrm{n}-4) / 3) \mathrm{P}_{4}$. Hence, $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}{ }^{+}\right)-$ $(\mathrm{n}+2) \mathrm{K}_{2}$ is P_{4-} decomposable.

Case 3. $n \equiv 2(\bmod 3)$.

Then the edge set of $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}{ }^{+}\right)$can be decomposed into $\left(\left(4 n^{2}-3 n-4\right) / 3\right) P_{4}$ and $(2 n+1) K_{2}$. The edge set of $(2 n+1) K_{2}$ is given by $\left\{\left(u_{1}, f_{n}\right),\left(v_{1}, f_{n}\right),\left(v_{1}, e_{n-1}\right),\left(v_{(n+4) / 3}, e_{1}\right)\right\}$ $\cup\left(\cup_{i=2}^{n-1}\left\{\left(e_{i}, f_{i}\right)\right) \cup\left(\cup_{i=1}^{n-1}\left\{\left(v_{i}, e_{i+1}\right)\right)\right.\right.$. The edge sets $\left(\left(4 n^{2}-\right.\right.$ $3 n-4) / 3) P_{4}$ are given by the edge set $M^{(1)}, M^{(2)}$ and $M^{(3)}$ as in case1, and the set $\mathrm{M}^{(6)}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}-1}\left(\mathrm{U}_{\mathrm{j}=1}^{(\mathrm{n}-5) / 3} \mathrm{M}_{\mathrm{j}, \mathrm{i}}^{(6)}\right)$, where $M_{j, i}^{(6)}=\left\{\left(e_{i+2 j,}, v_{i}\right),\left(v_{i}, e_{i+2 j+1}\right),\left(e_{i+2 j+1}, v_{i+3 j+2}\right)\right\}$ and $M^{(7)}=\left\{\left(v_{n}\right.\right.$, $\left.\left.e_{i}\right),\left(e_{i}, e_{i+1}\right),\left(e_{i+1}, v_{i+(n+4) / 3}\right)\right\}$. Here, $\left\langle M^{(6)}>\cong(n-1)((n-\right.$ 5)/3) P_{4},
$\left\langle\mathrm{M}^{(7)}\right\rangle \cong(\mathrm{n}-2) \mathrm{P}_{4}$. Hence, $\mathrm{B}_{1}\left(\mathrm{P}_{\mathrm{n}}{ }^{+}\right)-(2 \mathrm{n}+1) \mathrm{K}_{2}$ is P_{4} decomposable.

Theorem 3.5

(i) For $\mathrm{n} \geq 6$ and $\mathrm{n} \equiv 0(\bmod 3)$, the graph $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right)-\mathrm{nK}_{2}$ is P_{4-} decomposable.
(ii) For $\mathrm{n} \geq 4$ and $\mathrm{n} \equiv 1(\bmod 3)$, the graph $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right)-2 \mathrm{nK}_{2}$ is P_{4-} decomposable .
(iii) For $n \geq 5$ and $n \equiv 2(\bmod 3)$, the graph $B_{1}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right)$is P_{4} decomposable.

Proof: Let $V\left(C_{n}{ }^{+}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ where $v_{1}, v_{2}, \ldots, v_{n}$ are the vertices of C_{n} and $u_{1}, u_{2}, \ldots, u_{n}$ are the pendant vertices of $\mathrm{C}_{\mathrm{n}}{ }^{+}$and $\mathrm{e}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right), \mathrm{i}=1,2, \ldots, \mathrm{n}-1$, $e_{n}=\left(v_{n}, v_{1}\right)$ and $f_{i}=\left(v_{i}, u_{i}\right), i=1,2, \ldots, n$ be the edges of C_{n} ${ }^{+}$. Then $v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}, e_{1}, e_{2}, \ldots, e_{n}, f_{1}, f_{2}, \ldots, f_{n}$, $\in \mathrm{V}\left(\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}^{+}\right)\right) . \mathrm{C}_{\mathrm{n}}^{+}$and $\mathrm{L}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right)$are induced subgraphs of $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right) . \mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right)$has 2 n vertices and $4 \mathrm{n}^{2}+\mathrm{n}$ edges. In all the sets, the suffices i in v_{i}, u_{i}, e_{i} and f_{i} are integers modulo $\mathrm{n}, \mathrm{v}_{0}=\mathrm{v}_{\mathrm{n}}, \mathrm{u}_{0}=\mathrm{u}_{\mathrm{n}}, \mathrm{e}_{0}=\mathrm{e}_{\mathrm{n}}$ and $\mathrm{f}_{0}=\mathrm{f}_{\mathrm{n}}$.
Let $F_{i}=\left\{\left(v_{i}, e_{i+j}\right) / 1 \leq j \leq n-2\right\}$ and $F=U_{i=1}^{n} F_{i} .|F|=n(n-$ 2).

Let $\mathrm{H}_{\mathrm{i}}=\left\{\left(\mathrm{v}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right)\left(\mathrm{u}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right) / 1 \leq \mathrm{j} \leq \mathrm{n}, \mathrm{j} \neq \mathrm{i}\right\}$ and $\mathrm{H}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{H}_{\mathrm{i}}$ and $|\mathrm{H}|=2 \mathrm{n}(\mathrm{n}-1)$.

Let $\mathrm{J}_{\mathrm{k}}=\left\{\left(\mathrm{u}_{\mathrm{k}}, \mathrm{e}_{\mathrm{j}}\right) / \quad 1 \leq \mathrm{j} \leq \mathrm{n}\right\}, \mathrm{J}=\mathrm{U}_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{J}_{\mathrm{k}}$ and $|\mathrm{J}|=\mathrm{n}^{2}$.
$\mathrm{E}\left(\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right)\right)=\mathrm{E}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right) \cup \mathrm{E}\left(\mathrm{L}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right)\right) \cup(\mathrm{F} \cup \mathrm{H} \cup \mathrm{J})$.
Let $N^{(1)}=\bigcup_{i=1}^{n} N_{i}^{(1)}$, where $N_{i}^{(1)}=\left\{\left(v_{i}, v_{i+1}\right),\left(v_{i+1}, e_{i+2}\right)\right.$, $\left(\mathrm{e}_{\mathrm{i}+2}, \mathrm{f}_{\mathrm{i}+2}\right)$ and
$N^{(2)}=U_{i=1}^{n} N_{i}^{(2)}$, where $N_{i}^{(2)}=\left\{\left(v_{i}, u_{i}\right),\left(u_{i}, e_{i}\right),\left(e_{i}, f_{i+1}\right)\right\}$,
$\left.N^{(3)}=U_{i=1}^{n} U_{j=1}^{(n-1)} N_{j, i}^{(3)}\right)$, where $N_{j, i}^{(3)}=\left\{\left(v_{i,}, f_{i+j}\right),\left(f_{i+j}, u_{i}\right),\left(u_{i}\right.\right.$, $\left.\left.\mathrm{e}_{\mathrm{i}+\mathrm{j}-1}\right)\right\}$.

Case 1. $\mathrm{n} \equiv 0(\bmod 3), \mathrm{n} \geq 6$.
The edge set of $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}^{+}\right)$can be decomposed into $\left(4 n^{2}\right) / 3 P_{4}$ and $n K_{2}$. The edge sets of $n K_{2}$ is given by the set $\left\{\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{i}+1}\right)\right\}, \mathrm{i}=1,2,3, \ldots, \mathrm{n}, \mathrm{e}_{\mathrm{n}+1}=\mathrm{e}_{1}$. The edge set of $\left(4 \mathrm{n}^{2}\right) / 3 \mathrm{P}_{4}{ }^{\prime} \mathrm{S}$ are given by the edge sets $\mathrm{N}^{(1)}, \mathrm{N}^{(2)}, \mathrm{N}^{(3)}$ and $\mathrm{N}^{(4)}$, where $\mathrm{N}^{(4)}=\bigcup_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{U}_{\mathrm{j}=1}^{(\mathrm{n}-3) / 3} \mathrm{~N}_{\mathrm{j}, \mathrm{i}}^{(4)}\right)$ and $\mathrm{N}_{\mathrm{j}, \mathrm{i}}^{(4)}=\bigcup_{j=1}^{n}\left(\mathrm{v}_{\mathrm{i}}\right.$, $\left.\left.e_{i+j+1}\right),\left(e_{i+i+1}, v_{i+3 j+1}\right),\left(v_{i+3 j+1}, e_{i+j}\right)\right\}$. Here, $\left\langle N^{(1)}\right\rangle \cong \mathrm{nP}_{4},\langle$ $\left.\mathrm{N}^{(2)}\right\rangle \cong \mathrm{nP}_{4},\left\langle\mathrm{~N}^{(3)}\right\rangle \cong \mathrm{n}(\mathrm{n}-1) \mathrm{P}_{4}$ and $\left\langle\mathrm{N}^{(4)}\right\rangle \cong \mathrm{n}((\mathrm{n}-3) / 3)$ P_{4}. Therefore, $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right)-\mathrm{nK} \mathrm{K}_{2}$ is P_{4-} decomposable.

Case 2. $\mathrm{n} \equiv 1(\bmod 3), \mathrm{n} \geq 7$.
The edge set of $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right)$can be decomposed $\operatorname{into}\left(\left(4 n^{2}-n\right) / 3\right) P_{4}$ and $2 n K_{2}$. The edge set of $2 n K_{2}$ is given by $\bigcup_{i=1}^{n}\left\{\left(\mathrm{v}_{\mathrm{i}}, \mathrm{e}_{\mathrm{i}+2}\right),\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{i}+1}\right)\right\}$. The edge sets of $\left(\left(4 \mathrm{n}^{2}-\mathrm{n}\right) / 3\right) \mathrm{P}_{4}$ are given by the edge sets $\mathrm{N}^{(1)}, \mathrm{N}^{(2)}, \mathrm{N}^{(3)}$ and $\mathrm{N}^{(5)}$ where $\mathrm{N}^{(5)}$ $=U_{i=1}^{n}\left(U_{j=1}^{(n-4) / 3} N_{j, i}^{(5)}\right)$ and $N_{j, i}^{(5)}=\left\{\left(v_{i}, e_{i+j+1}\right),\left(e_{i+j+1}, v_{i+3 j+1}\right)\right.$, $\left.\left(\mathrm{v}_{\mathrm{i}+3 \mathrm{j}+1}, \mathrm{e}_{\mathrm{i}+\mathrm{j}}\right)\right\}$. Here, $\left\langle\mathrm{N}^{(1)}\right\rangle \cong \mathrm{nP}_{4},\left\langle\mathrm{~N}^{(2)}\right\rangle \cong \mathrm{nP}_{4},\left\langle\mathrm{~N}^{(3)}\right\rangle \cong$ $\mathrm{n}(\mathrm{n}-1) \mathrm{P}_{4}$ and
$\left\langle\mathrm{N}^{(5)}\right\rangle \cong \mathrm{n}((\mathrm{n}-4) / 3) \mathrm{P}_{4}$. Therefore, $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right)-2 \mathrm{nK}_{2}$ is $\mathrm{P}_{4}-$ decomposable.

Case 3. $n \equiv 2(\bmod 3), n \geq 5$
The edge set of $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right)$can be decomposed into($\left(4 \mathrm{n}^{2}+\right.$ n)/3) P_{4} whose edge sets are given by the sets $N^{(1)}, N^{(2)}, N^{(3)}$, $\mathrm{N}^{(6)}$ and $\mathrm{N}^{(7)}$, where $\mathrm{N}^{(6)}=\bigcup_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{U}_{\mathrm{j}=1}^{(\mathrm{n}-5) / 3} \mathrm{~N}_{\mathrm{j}, \mathrm{i}}^{(6)}\right)$ and
$N_{j, i}^{(6)}=\left\{\left(v_{i}, e_{i+j+2}\right),\left(e_{i+j+2}, v_{i+3 j+3}\right),\left(v_{i+3 j+3}, e_{i+j+1}\right)\right\}$, and $N^{(7)}$ $=\bigcup_{i=1}^{n} N_{i}^{(7)}$, and
$N_{i}^{(7)}=\left\{\left(v_{i}, e_{i+2}\right),\left(e_{i+2}, e_{i+1}\right),\left(e_{i+1, v i+3}\right)\right\}$. Here, $\left\langle N^{(1)}\right\rangle \cong n P_{4}$, $\left\langle\mathrm{N}^{(2)}\right\rangle \cong \mathrm{nP}_{4},\left\langle\mathrm{~N}^{(3)}\right\rangle \cong \mathrm{n}(\mathrm{n}-1) \mathrm{P}_{4},\left\langle\mathrm{~N}^{(6)}\right\rangle \cong(\mathrm{n}((\mathrm{n}-5)) / 3) \mathrm{P}_{4}$ and $\left\langle\mathrm{N}^{(7)}\right\rangle \cong \mathrm{n} \mathrm{P}_{4}$. Therefore, $\mathrm{B}_{1}\left(\mathrm{C}_{\mathrm{n}}{ }^{+}\right)$is P_{4} decomposable.

Theorem 3.6

For $\mathrm{n} \geq 3$, the graph $\mathrm{B}_{1}\left(\mathrm{~K}_{1, \mathrm{n}}{ }^{+}\right)-(\mathrm{n}+1) \mathrm{K}_{2}$ is P_{4-} decomposable.

Proof: Let $V\left(K_{1, n}{ }^{+}\right)=\left\{v, v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right.$, $\left.u_{n+1}\right\}$, where v is the central vertex and $<\left\{v, v_{1}, v_{2}, \ldots\right.$, $\left.v_{n}\right\}>\cong K_{1, n}$ and $u_{1}, u_{2}, \ldots, u_{n}, u_{n+1}$ are the pendant vertices of $K_{1, n}{ }^{+}$and $e_{i}=\left(v, v_{i}\right), i=1,2, \ldots, n$ and $f_{i}=\left(v_{i}, u_{i}\right), i=1,2$, \ldots, n, be the edges of $K_{1, n}{ }^{+}$. Then $v, v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}$, $\ldots, u_{n} u_{n+1}, f_{1}, f_{2}, \ldots, f_{n}, e_{1}, e_{2}, \ldots, e_{n-1}, e_{n} \in V\left(B_{1}\left(K_{1, n}{ }^{+}\right)\right) . K_{1, n}{ }^{+}$ and $\mathrm{L}\left(\mathrm{K}_{1, \mathrm{n}}{ }^{+}\right)$are induced subgraphs of $\mathrm{B}_{1}\left(\mathrm{~K}_{1, \mathrm{n}}{ }^{+}\right)$has $4 \mathrm{n}+3$ vertices and $1 / 2\left(9 n^{2}+11 n+2\right)$ edges. In all the sets, the suffices i in $v_{i}, u_{i}, \quad e_{i}$ and f_{i} are integers modulo $n, v_{0}=v_{n}$, $\mathrm{u}_{0}=\mathrm{u}_{\mathrm{n}}, \mathrm{e}_{0}=\mathrm{e}_{\mathrm{n}}$ and $\mathrm{f}_{0}=\mathrm{f}_{\mathrm{n}}$.

Let $\mathrm{F}_{\mathrm{i}}=\left\{\left(\mathrm{v}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right),\left(\mathrm{v}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right),\left(\mathrm{u}_{\mathrm{i},} \mathrm{f}_{\mathrm{j}}\right) / 1 \leq \mathrm{j} \leq \mathrm{n}\right.$ and $\left.\mathrm{j} \neq \mathrm{i}\right\} . \mathrm{F}=$ $\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{F}_{\mathrm{i}},|\mathrm{F}|=3 \mathrm{n}(\mathrm{n}-1)$

Let $\mathrm{H}_{\mathrm{k}}=\left\{\left(\mathrm{u}_{\mathrm{k}}, \mathrm{e}_{\mathrm{j}}\right) / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}, \mathrm{H}=\mathrm{U}_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{H}_{\mathrm{k}}$ and $|\mathrm{H}|=\mathrm{n}^{2}$. Let $\mathrm{J}=\left\{\left(\mathrm{v}, \mathrm{f}_{\mathrm{j}}\right) / \mathrm{l} \leq \mathrm{j} \leq \mathrm{n}\right\}$.

Let $L=\left\{\left(\mathrm{v}_{\mathrm{i}}, \mathrm{e}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{e}\right),\left(\mathrm{u}, \mathrm{e}_{\mathrm{i}}\right),\left(\mathrm{u}, \mathrm{f}_{\mathrm{i}}\right) / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
$\mathrm{E}\left(\mathrm{B}_{1}\left(\mathrm{~K}_{1, \mathrm{n}}{ }^{+}\right)\right)=\mathrm{E}\left(\mathrm{K}_{1, \mathrm{n}}{ }^{+}\right) \cup \mathrm{E}\left(\mathrm{L}\left(\mathrm{K}_{1, \mathrm{n}}{ }^{+}\right)\right) \cup(\mathrm{F} \cup \mathrm{H} \cup \mathrm{J} \cup \mathrm{L})$.
Let $Q^{(1)}=U_{i=1}^{n} Q_{i}^{(1)}$, where $Q_{i}^{(1)}=\left\{\left(v, v_{i}\right),\left(v_{i}, f_{i}\right),\left(f_{i}\right.\right.$, $\mathrm{v}_{\mathrm{i}+1}$ \}and
$Q^{(2)}=\bigcup_{i=1}^{n+1} Q_{i}^{(2)}$, where $Q_{i}^{(2)}=\left\{\left(v, u_{i}\right),\left(u_{i}, e_{i}\right),\left(e_{i}, f_{i+2}\right)\right\}$ and
$Q^{(3)}=U_{i=1}^{n} Q_{i}^{(3)}$, where $Q_{i}^{(3)}=\left\{\left(v, f_{i+1}\right),\left(f_{i+1}, u_{i}\right),\left(u_{i}, e_{i+1}\right)\right\}$
$Q^{(4)}=\bigcup_{i=1}^{n}\left(U_{j=1}^{(n-2)} Q_{j, i}^{(4)}\right)$, where $Q_{j, i}^{(4)}=\left\{\left(v_{i}, f_{i+j+1}\right),\left(f_{i+j+1}, u_{i}\right)\right.$, $\left.\left(u_{i}, e_{i+j+1}\right)\right\}$.

Here, $\left\langle\mathrm{Q}^{(1)}\right\rangle \cong \mathrm{nP}_{4},\left\langle\mathrm{Q}^{(2)}\right\rangle \cong(\mathrm{n}+1) \mathrm{P}_{4},\left\langle\mathrm{Q}^{(3)}\right\rangle \cong \mathrm{nP}_{4}$ and \langle $\mathrm{Q}^{(4)}>\cong \mathrm{n}(\mathrm{n}-2) \mathrm{P}_{4}$.

Case 1. $\mathrm{n} \equiv 0(\bmod 3)$.

Then the edge set of $\mathrm{B}_{1}\left(\mathrm{~K}_{1, \mathrm{n}}{ }^{+}\right)$can be decomposed into $(3 n(n+1) / 2) P_{4}$ and $(n+1) K_{2}$. The edge sets of $(n+1) K_{2}$ is given by $\left(\bigcup_{i=1}^{n-1}\left(e_{i+1}, f_{i}\right)\right) \cup\left\{\left(u_{1}, f_{n}\right),\left(v_{1}, f_{n}\right)\right\}$.

Subcase 1.1. $\mathrm{n} \equiv 0(\bmod 3)$ and n is odd, $\mathrm{n} \geq 3$.
The edges sets of $(3 n(n+1) / 2) P_{4}$ are given by the set $Q^{(1)} \cup$ $\mathrm{Q}^{(2)} \cup \mathrm{Q}^{(3)} \cup \mathrm{Q}^{(4)} \cup \mathrm{Q}^{(5)} \cup \mathrm{Q}^{(6)}$,
where $\mathrm{Q}^{(5)}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{U}_{\mathrm{j}=1}^{(\mathrm{n}-1) / 2} \mathrm{Q}_{\mathrm{j}, \mathrm{i}}^{(5)}\right)$, where $\mathrm{Q}_{\mathrm{j}, \mathrm{i}}^{(5)}=\bigcup_{i=1}^{n}\{($ $\left.\left.e_{i+2 j-1}, v_{i}\right),\left(v_{i}, e_{i+2 j}\right),\left(e_{i+2 j}, v_{i}\right)\right\}$,
$\left\langle\mathrm{Q}^{(5)}\right\rangle \cong \mathrm{n}((\mathrm{n}-1) / 2) \mathrm{P}_{4}$ and $\mathrm{Q}^{(6)}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}-1} \mathrm{Q}_{\mathrm{i}}^{(6)}$, where $\mathrm{Q}_{\mathrm{i}}^{(6)}=$ $\left\{\left(\mathrm{e}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{n}+1}\right),\left(\mathrm{v}_{\mathrm{n}+1}, \mathrm{f}_{\mathrm{i}}\right),\left(\mathrm{f}_{\mathrm{i},} \mathrm{v}_{\mathrm{i}+1}\right)\right\}$,
$\left\langle\mathrm{Q}^{(6)}\right\rangle \cong(\mathrm{n}-1) \mathrm{P}_{4}$
Subcase 1.2. $\mathrm{n} \equiv 0(\bmod 3), \mathrm{n} \geq 6$ and n is even.
The edge sets of $(3 n(n+1) / 2) P_{4}$'s are given by the set $Q^{(1)} \cup$ $\mathrm{Q}^{(2)} \cup \mathrm{Q}^{(3)} \cup \mathrm{Q}^{(4)} \cup \mathrm{Q}^{(7)} \cup \mathrm{Q}^{(8)} \cup \mathrm{Q}^{(9)} \cup \mathrm{Q}^{(10)}$ where $\mathrm{Q}^{(7)}$ $=U_{i=1}^{n}\left(U_{j=1}^{(n-4) / 4} Q_{j, i}^{(7)}\right)$, where $Q_{j, i}^{(7)}=\left\{\left(e_{i+2 j-1}, v_{i}\right),\left(v_{i}, e_{i+2 j}\right)\right.$, $\left.\left(\mathrm{e}_{\mathrm{i}+2 \mathrm{j},} \mathrm{e}_{\mathrm{i}+\mathrm{j}-1}\right)\right\}$,
$Q^{(8)}=U_{i=1}^{n / 2} Q_{i}^{(8)}$, where $Q_{i}^{(8)}=\left\{\left(v_{i}, e_{i+5}\right),\left(e_{i+5}, e_{i+2}\right),\left(e_{i+2}\right.\right.$, $\mathrm{v}_{\mathrm{i}+3}$) $\}$,
$Q^{(9)}=\bigcup_{i=1}^{n-1} Q_{i}^{(9)}$, where $Q_{i}^{(9)}=\left\{\left(e_{i+1}, u_{n+1}\right),\left(u_{n+1}, f_{i}\right),\left(f_{i}\right.\right.$, $\left.\left.\mathrm{v}_{\mathrm{i}+1}\right)\right\}$,
$Q^{(10)}=U_{i=1}^{n} Q_{i}^{(10)}$, where $Q_{i}^{(10)}=\left\{\left(e_{i+(n-3)}, v_{i}\right),\left(v_{i}, e_{i+(n-2)}\right)\right.$, $\left.\left(\mathrm{e}_{\mathrm{i}+(\mathrm{n}-2)}, \mathrm{e}_{\mathrm{i}+(\mathrm{n}-1)}\right)\right\}$,

Here, $\left\langle\mathrm{Q}^{(7)}\right\rangle \cong \mathrm{n}((\mathrm{n}-4) / 4) \mathrm{P}_{4},\left\langle\mathrm{Q}^{(8)}\right\rangle \cong(\mathrm{n} / 2) \mathrm{P}_{4},\left\langle\mathrm{Q}^{(9)}\right\rangle \cong$ $(\mathrm{n}-1) \mathrm{P}_{4},\left\langle\mathrm{Q}^{(10)}\right\rangle \cong \mathrm{nP}_{4}$.

Therefore, $\mathrm{B}_{1}\left(\mathrm{~K}_{1, \mathrm{n}}{ }^{+}\right)-(\mathrm{n}+1) \mathrm{K}_{2}$ is P_{4-} decomposable .
Case 2. $\mathrm{n} \equiv 1(\bmod 3)$.
Then the edge set of $\mathrm{B}_{1}\left(\mathrm{~K}_{1, \mathrm{n}}{ }^{+}\right)$can be decomposed into $(3 n(n+1) / 2) P_{4}$ and $(n+1) K_{2}$.
The edge set of $(n+1) K_{2}$'s is given by $\left(\left\{\bigcup_{i=1}^{n-1}\left(e_{i+1}, f_{i}\right)\right)\right.$ $\left.\cup\left\{\left(\mathrm{u}_{1}, \mathrm{f}_{\mathrm{n}}\right),\left(\mathrm{v}_{1,} \mathrm{f}_{\mathrm{n}}\right)\right\}\right\}$.
Let $Q^{(11)}=\bigcup_{i=1}^{n-1} Q_{i}^{(11)}$, where $Q_{i}^{(11)}=\left\{\left(e_{i+1}, u_{n+1}\right),\left(u_{n+1}\right.\right.$, $\left.\left.\mathrm{f}_{\mathrm{i}}\right),\left(\mathrm{f}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)\right\},<\mathrm{Q}^{(11)}>\cong(\mathrm{n}-1) \mathrm{P}_{4}$.

Subcase 2.1. $\mathrm{n} \equiv 1(\bmod 3)$ and n is odd, $\mathrm{n} \geq 7$.
The edge set of $(3 n(n+1) / 2) P_{4}$ are given by the set $\mathrm{Q}^{(1)} \cup \mathrm{Q}^{(2)} \cup \mathrm{Q}^{(3)} \cup \mathrm{Q}^{(4)} \cup \mathrm{Q}^{(11)} \cup \mathrm{Q}^{(12)} \quad$ where $\mathrm{Q}^{(12)}$
$=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{U}_{\mathrm{j}=1}^{(\mathrm{n}-1) / 2} \mathrm{Q}_{\mathrm{j}, \mathrm{i}}^{(12)}\right)$, where $\mathrm{Q}_{\mathrm{j}, \mathrm{i}}^{(12)}=\left\{\left(\mathrm{e}_{\mathrm{i}+2 \mathrm{j}-1}, \mathrm{v}_{\mathrm{i}}\right)\right.$, $\left(\mathrm{v}_{\mathrm{i}}\right.$,
$\left.\left.e_{i+2 j}\right),\left(e_{i+2 j}, e_{i}\right)\right\}$,
$\left\langle\mathrm{Q}^{(12)}\right\rangle \cong \mathrm{n}((\mathrm{n}-1) / 2) \mathrm{P}_{4}$
Subcase 2.2. $\mathrm{n} \equiv 1(\bmod 3), \mathrm{n} \geq 10$ and n is even.
The edge set of $P_{4}{ }^{\prime}$ s are given by the set $Q^{(1)} \cup Q^{(2)} \cup Q^{(4)}$ $\cup \mathrm{Q}^{(11)} \cup \mathrm{Q}^{(13)} \cup \mathrm{Q}^{(14)} \cup \mathrm{Q}^{(15)}$
where $\mathrm{Q}^{(13)}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{U}_{\mathrm{j}=1}^{(\mathrm{n}-4) / 2} \mathrm{Q}_{\mathrm{j}, \mathrm{i}}^{(13)}\right)$, where $\mathrm{Q}_{\mathrm{j}, \mathrm{i}}^{(13)}=\left\{\left(\mathrm{e}_{\mathrm{i}+2 \mathrm{j}-1}\right.\right.$, $\left.\left.v_{i}\right),\left(v_{i}, e_{i+2 j}\right),\left(e_{i+2 j}, e_{i+j-1}\right)\right\}$,
$Q^{(14)}=U_{i=1}^{n / 2} Q_{i}^{(14)}$, where $Q_{i}^{(14)}=\left\{\left(v_{i}, e_{i+5}\right),\left(e_{i+5}, e_{i+2}\right)\right.$, $\left.\left(e_{i+2}, v_{i+3}\right)\right\}, Q^{(15)}=U_{i=1}^{n} Q_{i}^{(15)}$, where $Q_{i}^{(15)}=\left\{\left(e_{i+(n-3)}, v_{i}\right)\right.$, $\left.\left(v_{i}, e_{i+(n-2)}\right),\left(e_{i+(n-2)}, e_{i+(n-1)}\right)\right\}$. Here, $\left\langle Q^{(13)}\right\rangle \cong n((n-4) / 2) P_{4}$,
$\left\langle\mathrm{Q}^{(14)}\right\rangle \cong(\mathrm{n} / 2) \mathrm{P}_{4},\left\langle\mathrm{Q}^{(15)}\right\rangle \cong \mathrm{nP}_{4}$. Therefore, $\mathrm{B}_{1}\left(\mathrm{~K}_{1, \mathrm{n}}{ }^{+}\right)-$ $(\mathrm{n}+1) \mathrm{K}_{2}$ is P_{4-} decomposable .

Case 3. $n \equiv 2(\bmod 3)$.
Then the edge set of $\mathrm{B}_{1}\left(\mathrm{~K}_{1, \mathrm{n}}{ }^{+}\right)$can be decomposed into $(3 n(n+1) / 2) \mathrm{P}_{4}$ and $(\mathrm{n}+1) \mathrm{K}_{2}$'s. The edge set of $(\mathrm{n}+1) \mathrm{K}_{2}$'s is given by $\left(\bigcup_{i=1}^{n-1}\left(e_{i+1}, f_{i}\right)\right) \cup\left\{\left(u_{1}, f_{n}\right),\left(v_{1}, f_{n}\right)\right\}$.

Subcase 3.1. $\mathrm{n} \equiv 2(\bmod 3)$ and n is $\operatorname{odd}, \mathrm{n} \geq 5$.
The edge set of $(3 n(n+1) / 2) P_{4}$ are given by the set $\mathrm{Q}^{(1)} \cup \mathrm{Q}^{(2)} \cup \mathrm{Q}^{(3)} \cup \mathrm{Q}^{(4)} \cup \mathrm{Q}^{(11)} \cup \mathrm{Q}^{(12)}, \quad$ where $\mathrm{Q}^{(12)}$ $=U_{i=1}^{n}\left(U_{j=1}^{(n-1) / 2} Q_{j, i}^{(12)}\right)$, where $Q_{j, i}^{(12)}=\left\{\left(e_{i+2 j-1}, v_{i}\right),\left(v_{i}\right.\right.$, $\left.\left.\mathrm{e}_{\mathrm{i}+2 \mathrm{j}}\right),\left(\mathrm{e}_{\mathrm{i}+2 \mathrm{j}}, \mathrm{e}_{\mathrm{i}}\right)\right\}$,
$\left\langle\mathrm{Q}^{(12)}\right\rangle \cong \mathrm{n}((\mathrm{n}-1) / 2) \mathrm{P}_{4}$

Subcase 3.2. $n \equiv 2(\bmod 3), n \geq 8$ and n is even.
The edge set of P_{4} are given by the $\operatorname{set} Q^{(1)} \cup Q^{(2)} \cup$ $Q^{(4)} \cup Q^{(11)} \cup Q^{(13)} \cup Q^{(14)} \cup Q^{(15)}$ search in ©arch in where $Q^{(13)}=\bigcup_{i=1}^{n}\left(U_{j=1}^{(n-4) / 2} Q_{j, i}^{(13)}\right)$, where $Q_{j, i}^{(13)}=\left\{\left(e_{i+2 j} \quad\right.\right.$ [10] C.Sunil Kumar, On P4- Decomposition of Graphs, $\left.\left.{ }_{1,}, v_{i}\right),\left(v_{i}, e_{i+2 j}\right),\left(e_{i+2 j}, e_{i+j}\right)\right\}$,
$Q^{(14)}=U_{i=1}^{n / 2} Q_{i}^{(14)}$, where $Q_{i}^{(14)}=\left\{\left(v_{i}, e_{i+5}\right),\left(e_{i+5}, e_{i+2}\right)\right.$, $\left.\left(e_{i+2}, v_{i+3}\right)\right\}$ and $Q^{(15)}=\bigcup_{i=1}^{n} Q_{i}^{(15)}$, where $Q_{i}^{(15)}=\left\{\left(e_{i+(n-3)}\right)\right.$, $\left.\left.v_{i}\right),\left(v_{i}, e_{i+(n-2)}\right),\left(e_{i+(n-2)}, e_{i+(n-1)}\right)\right\},\left\langle Q^{(13)}>\cong n((n-4) / 2) P_{4}\right.$, $\left\langle\mathrm{Q}^{(14)}\right\rangle \cong(\mathrm{n} / 2) \mathrm{P}_{4}$,
$\left\langle\mathrm{Q}^{(15)}\right\rangle \cong \mathrm{nP}_{4}$. Therefore, $\mathrm{B}_{1}\left(\mathrm{~K}_{1, \mathrm{n}}{ }^{+}\right)-(\mathrm{n}+1) \mathrm{K}_{2}$ is $\mathrm{P}_{4}-$ decomposable.

IV. CONCLUSION

In this paper, P_{4}-Decomposition of Boolean Function Graph $B(G, L(G)$, NINC) of path, cycle, stars and corona graphs are obtained.

References

[1] P.Chithra Devi and J. Paulraj Joseph, P4Decomposition of Total Graphs, Journal of Discrete Mathematical Sciences \& Cryptography ,Vol. 17(2014), No. 5 \& 6, pp.473-498.
[2] Harary F, Graph Theory, Addison- Wesley Reading Mass., 1969.
[3] K. Heinrich, J. Liu and M.Yu, P4- Decomposition of regular Graphs, Journal of Graph Theory, Vol.31(2), pp: 135-143, 1999.
[4] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, Domination Numbers on the Boolean Function Graph of a Graph, Mathematica Bohemica, 130(2005), No.2, 135-151.
[5]T.N.Janakiraman, S. Muthammai, M. Bhanumathi, Domination Numbers on the Complement of the Boolean Function Graph of a Graph, Mathematica Bohemica, 130(2005), No.3, pp. 247-263.
[6] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, On the Boolean Function Graph of a Graph and on its Complement, Mathematica Bohemica, 130(2005), No.2, pp. 113-134.
[7] S.Muthammai and S.Dhanalakshmi, Edge Domination in Boolean Function Graph B(G, L(G), NINC) of a Graph, IJIRSET Journal, Vol. 4, Issue 12,December 2015, pp. 12346 - 12350.
[8] S.Muthammai and S.Dhanalakshmi, Edge Domination in Boolean Function Graph $\mathrm{B}(\mathrm{G}, \mathrm{L}(\mathrm{G})$, NINC) of Corona of Some Standard Graphs, Global Journal of Pure and Applied Mathematics, Vol. 13, Issue 1, 2017, pp. 152-155.
[9] S.Muthammai and S.Dhanalakshmi, Connected and total edge Domination in Boolean Function Graph B(G, L(G), NINC) of a graph, International Journal of Engineering, Science and Mathematics, Vol. 6, Issue 6,Oct 2017,ISSN: 2320 - 0294. Taiwanese Journal of Mathematics, Vol.7, No.4, pp: 657-664, 2003.

