On Contra I *b*-Continuity in Intuitionistic Topological Spaces

¹B. KARTHIKA, ²J. SATHIYARAJ, ³A. VADIVEL, ⁴O. UMA MAHESWARI

¹Research Scholar, Department of Mathematics, Government Arts College(Autonomous), Karur.

^{2, 3}Assistant Professor, Department of Mathematics, Government Arts College(Autonomous),

Karur, India.

⁴Assistant Professor, Department of Mathematics, J. J. College of Arts and Science(Autonomous), Pudhukkottai, India.

E-mail: ¹ karthikavcsm95@gmail.com, ²sjsathiyaa@gmail.com, ³avmaths@gmail.com,

⁴ard_uma@yahoo.com.sg,

Abstract. In this paper, some new class of functions, called intuitionistic contra b-continuous, intuitionistic contra birresolute, intuitionistic contra b-homeomorphism are introduced and studied their properties in intuitionistic topological space.

Key Words and Phrases: Intuitionistic contra b-continuous, intuitionistic contra b- irresolute, intuitionistic contra b-homeomorphism.

AMS Subject Classification: 54A99.

I. INTRODUCTION

In 1986, Atanassov [4] introduced the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets. Later in 1996, Coker [6] introduced the concept of intuitionistic set and intuitionistic points. This is a discrete form of intuitionistic fuzzy sets where all the sets are crisp sets. Furthers in 2000, Coker [8] introduced the concept of intuitionistic topological space and investigated basic properties of continuous functions and compactness. Since, homeomorphism plays an important role in topology, Gnanambal Illango and Selvanayaki [10], introduced generalized pre regular closed sets in intuitionistic topological spaces, strong and weak form of IGPRcontinuity, connectedness in intuitionistic topological space and study few properties of Igpr homeomorphism and Igpr*-homeomorphism in intuitionistic topological space. D. Andrijevic[2] introduced and discussed some more properties of semi preopen set in topological space.

In this article, we introduce the concepts of intuitionistic contra *b*-continuous and intuitionistic contra *b* and contra b^* -open(closed) function and investigate some properties of them. Also intuitionistic contra *b*-homeomorphism and contra irresolute functions and some of their basic properties are investigated.

II. PRELIMINARIES

The following definitions and results are essential to proceed further.

Definition 2.1: [6] Let X be a non empty fixed set. An intuitionistic set (briefly. *IS*) A is an object of the form $A = (X, A_1, A_2)$, where A_1 and A_2 are subsets of X satisfying $A_1 \cap A_2 = \emptyset$. The set A_1 is called the set of members of A, while A_2 is called the set of non-members of A.

The family of all IS's in X will be denoted by IS(X). Every crisp set A on a non-empty set X is obviously an intuitionistic set.

Definition 2.2 [6] Let X be a non-empty set, $A = (X, A_1, A_2)$ and $B = (X, B_1, B_2)$ be intuitionistic sets on X, then

1.
$$A \subseteq B$$
 if and only if $A_1 \subseteq B_1$ and
 $B_2 \subseteq A_2$.
2. $A = B$ if and only if $A \subseteq B$ and $B \subseteq A$.
3. $A \subset B$ if and only if
 $A_1 \cup A_2 \supseteq B_1 \cup B_2$.
4. $\overline{A} = (X, A_2, A_1)$.
5. $A \cup B = (X, A_1 \cup B_1, A_2 \cap B_2)$.
6. $A \cap B = (X, A_1 \cap B_1, A_2 \cup B_2)$.
7. $A - B = A \cap \overline{B}$
8. $\widetilde{\phi} = (X, \phi, X)$ and $\widetilde{X} = (X, X, \phi)$

Corollary 2.1 [3] Let A, B, C and A_i be IS 's in X. Then

- 1. $A_i \subseteq B$ for each *i* implies that $\bigcup A_i \subseteq B$.
- 2. $B \subseteq A_i$ for each *i* implies that $B \subseteq \bigcap A_i$.
- 3. $\overline{\bigcup A_i} = \bigcap \overline{A_i} \text{ and } \overline{\bigcap A_i} = \bigcup \overline{A_i}.$ 4. $A \subseteq B \Leftarrow \overline{B} \subseteq \overline{A}.$ 5. $\overline{(\overline{A})} = A, \overline{\phi} = \widetilde{X} \text{ and } \overline{\widetilde{X}} = \phi$

Definition 2.3 [8] An intuitionistic topology (briefly IT) on a non-empty set X is a family τ of IS's in X satisfying the following axioms

- 1. $\tilde{\phi}, \tilde{X} \in \tau$.
- 2. $A \cap B \in \tau$ for any $A, B \in \tau$.
- 3. $A_i \in \tau$ for an arbitrary family in τ .

In this case the pair (X, τ) is called intuitionistic topological space (briefly *ITS*) and the *IS*'s in τ are called the intuitionistic open set in X denoted by $I^{(\tau)}O$ and the complement of an $I^{(\tau)}O$ is called Intuitionistic closed set in X denoted by $I^{(\tau)}C$. The family of all $I^{(\tau)}O$ (resp. $I^{(\tau)}C$) sets in X will be denoted by $I^{(\tau)}O(X)$ (resp. $I^{(\tau)}C(X)$.)

Definition 2.4 [7]Let (X, τ) be an *ITS* and $A \in IS(X)$. Then the intuitionistic interior (resp. intuitionistic closure) of A are defined by $int(A) = \bigcup \{K : K \in I^{(\tau)}O(X) \text{ and } K \subseteq A\}$ (resp. $cl(A) = \bigcap \{K : K \in I^{(\tau)}C(X) \text{ and } A \subseteq K\}$.)

In this study we use $I^{(\tau)}i(A)$ (resp. $I^{(\tau)}c(A)$) instead of int(A) (resp. cl(A)).

Definition 2.5 [8] Let (X, τ) be an *ITS* and an *IS* A in X is said to be

1. intuitionistic regular-open [5] (briefly $I^{(\tau)}RO$) if $A = I^{(\tau)}i(I^{(\tau)}c(A))$ and intuitionistic regular-closed (briefly $I^{(\tau)}RC$) if $I^{(\tau)}c(I^{(\tau)}i(A)) = A$.

2. intuitionistic pre-open [5] (briefly $I^{(\tau)}PO$) if $A \subseteq I^{(\tau)}i(I^{(\tau)}c(A))$ and intuitionistic pre-closed (briefly $I^{(\tau)}PC$) if $I^{(\tau)}c(I^{(\tau)}i(A)) \subseteq A$.

3. intuitionistic semi-open [5] (briefly $I^{(\tau)}SO$) if $A \subseteq I^{(\tau)}c(I^{(\tau)}i(A))$ and intuitionistic semi-closed (briefly $I^{(\tau)}SC$) if $I^{(\tau)}i(I^{(\tau)}c(A)) \subseteq A$.

4. intuitionistic α -open [7] (briefly $I^{(\tau)}\alpha O$)

if $A \subseteq I^{(\tau)}i(I^{(\tau)}c(I^{(\tau)}i(A)))$ and intuitionistic α -closed (briefly $I^{(\tau)}\alpha C$) if $I^{(\tau)}c(I^{(\tau)}i(I^{(\tau)}c(A))) \subseteq A$. 5. intuitionistic β -open [7] (briefly $I^{(\tau)}\beta O$)

if $A \subseteq I^{(\tau)}c(I^{(\tau)}i(I^{(\tau)}c(A)))$ and intuitionistic β closed (briefly $I^{(\tau)}\beta C$) if $I^{(\tau)}i(I^{(\tau)}c(I^{(\tau)}i(A))) \subseteq A$.

6. intuitionistic *b* -open [8] (briefly $I^{(\tau)}bO$) if $A \subseteq I^{(\tau)}i(I^{(\tau)}c(A)) \cup I^{(\tau)}c(I^{(\tau)}i(A))$ and intuitionistic *b* -closed (briefly $I^{(\tau)}bC$) if $I^{(\tau)}i(I^{(\tau)}c(A)) \cap I^{(\tau)}c(I^{(\tau)}i(A)) \subseteq A.$

The family of all $I^{(\tau)}RO$ (resp. $I^{(\tau)}RC$, $I^{(\tau)}PO$, $I^{(\tau)}PC$, $I^{(\tau)}SO$, $I^{(\tau)}SC$, $I^{(\tau)}\alpha O$, $I^{(\tau)}\alpha C$, $I^{(\tau)}\beta O$, $I^{(\tau)}\beta C$, $I^{(\tau)}bO$ and $I^{(\tau)}bC$) sets in X will be denoted by $I^{(\tau)}RO(X)$ (resp. $I^{(\tau)}RC(X)$, $I^{(\tau)}PO(X)$, $I^{(\tau)}PC(X)$, $I^{(\tau)}SO(X)$, $I^{(\tau)}\beta O(X)$, $I^{(\tau)}\beta C(X)$, $I^{(\tau)}\alpha O(X)$, $I^{(\tau)}\alpha C(X)$, $I^{(\tau)}\beta O(X)$, $I^{(\tau)}\beta C(X)$, $I^{(\tau)}bO(X)$ and $I^{(\tau)}bC(X)$.)

Definition 2.6 [8, 11, 13] Let (X, τ) be an *ITS* and *A* be an *IS*(X), then

1. intuitionistic regular-interior (resp. intuitionistic pre- interior, intuitionistic semi-interior, intuitionistic α interior and intuitionistic β -interior) of A is the union of all $I^{(\tau)}RO(X)$ (resp. $I^{(\tau)}PO(X)$, $I^{(\tau)}SO(X), I^{(\tau)}\alpha O(X)$ and $I^{(\tau)}\beta O(X)$) contained in A, and is denoted by $I^{(\tau)}Ri(A)$ (resp. $I^{(\tau)}Pi(A)$, $I^{(\tau)}Si(A), I^{(\tau)}\alpha i(A)$ and $I^{(\tau)}\beta i(A)$.)

$$I^{(\tau)}Ri(A) = \bigcup \{G : G \in I^{(\tau)}RO(X) \text{ and } G \subseteq A\},\$$
$$I^{(\tau)}Pi(A) = \bigcup \{G : G \in I^{(\tau)}PO(X) \text{ and } G \subseteq A\},\$$

$$I^{(\tau)}Si(A) = \bigcup \{ G : G \in I^{(\tau)}SO(X) \text{ and } G \subseteq A \},\$$

$$I^{(\tau)}\alpha i(A) = \bigcup \{G : G \in I^{(\tau)} \alpha O(X) \text{ and } G \subseteq A\},\$$
$$I^{(\tau)}\beta i(A) = \bigcup \{G : G \in I^{(\tau)} \beta O(X) \text{ and } G \subseteq A\}.$$

2. intuitionistic regular-closure (resp. intuitionistic pre-closure, intuitionistic semi-closure, intuitionistic α closure, intuitionistic β -closure) of A is the intersection of all $I^{(\tau)}RC(X)$ (resp. $I^{(\tau)}PC(X)$, $I^{(\tau)}SC(X)$, $I^{(\tau)}\alpha C(X)$, $I^{(\tau)}\beta C(X)$) containing A, and is denoted by $I^{(\tau)}Rc(A)$ (resp. $I^{(\tau)}Pc(A)$, $I^{(\tau)}Sc(A)$,

$$I^{(\tau)}\alpha c(A), I^{(\tau)}\beta c(A).)$$

i.e.
$$I^{(\tau)}Rc(A) = \bigcap \{G: G \in I^{(\tau)}RC(X) \text{ and } G \supseteq A\},$$

$$I^{(\tau)}Pc(A) = \bigcap \{G: G \in I^{(\tau)}PC(X) \text{ and } G \supseteq A\}$$

$$I^{(\tau)}Sc(A) = \bigcap \{G: G \in I^{(\tau)}SC(X) \text{ and } G \supseteq A\},$$

$$I^{(\tau)}\alpha c(A) = \bigcap \{G: G \in I^{(\tau)}\alpha C(X) \text{ and } G \supseteq A\},$$

$$I^{(\tau)}\beta c(A) = \bigcap \{G: G \in I^{(\tau)}\beta C(X) \text{ and } G \supseteq A\}.$$

Definition 2.7[8] Let X be a non empty set and $p \in X$. Then the IS \tilde{p} defined by $\tilde{p} = (X, \{p\}, \{p\}^c)$ is called an intuitionistic point (IP for short) in X. The intuitionistic point \tilde{p} is said to be contained in A = (X, A₁, A₂) (i.e $\tilde{p} \in A$) if and only if $\tilde{p} \in A_1$.

Definition 2.8 [8] Let $f:(X, \tau) \to (Y, \sigma)$ be a function. If $A = (X, A_1, A_2)$ is an intuitionistic set in X, then the image of A under f, denoted by f(A), is an intuitionistic set in Y defined by $f(A) = (Y, f(A_1), f_{-}(A_2))$, where $f_{-}(A_2) = (f(A_2)^c)^c$.

Definition 2.9 [8] Let $f: (X, \tau) \to (Y, \sigma)$ be a function. If $A = (Y, A_1, A_2)$ is an intuitionistic set in Y, then the preimage of A under f, denoted by $f^1(A)$, is an intuitionistic set in X defined by $f^{-1}(A) = (X, f^1(A_1), f^1(A_2))$.

Definition 2.10[6, 8] Let $A, A_i (i \in J)$ be IS's in X, $B, B_j (j \in K)$ IS's in Y and $f: (X, \tau) \to (Y, \sigma)$ be a function. Then

1. $A_1 \subseteq A_2 \Rightarrow f(A_1) \subseteq f(A_2)$ $B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2)$ 2. $A \subseteq f^{-1}(f(A))$ and if f is one to one, 3. then $A = f^{-1}(f(A))$ $f(f^{-1}(B)) \subseteq B$ and if f is onto, then 4. $f(f^{-1}(B)) = B$ $f^{-1}(\cup B_i) = \cup f^{-1}(B_i)$ 5. $f^{-1}(\cap B_i) = \cap f^{-1}(B_i)$ 6. $f(\cup A_i) = \cup f(A_i)$ 7. $f(\cap A_i) \subseteq \cap f(A_i)$ and if f is one to one, 8. then $f(\cap A_i) = \cap f(A_i)$ $f^{-1}(\tilde{Y}) = \tilde{X}$ 9. $f^{-1}(\tilde{\phi}) = \tilde{\phi}$ 10. $f(\tilde{X}) = \tilde{Y}$ if f is onto 11. $f(\tilde{\phi}) = \tilde{\phi}$ 12. 13. If f is onto, then $\overline{f(A)} \subseteq f(\overline{A})$: and if furthermore, f is 1 - 1, we have $\overline{f(A)} \subseteq f(\overline{A})$ $f^{-1}(\bar{B}) = \overline{f^{-1}(B)}$ 14. 15. $B_1 \subset B_2 \Rightarrow f^{-1}(B_1) \subset f^{-1}(B_2)$ **Definition 2.11**[8] Let (X, τ) and (Y, δ) be two

intuitionistic topological spaces and $f: (X, \tau) \rightarrow (Y, \delta)$ be a function. Then f is said to be intuitionistic continuous if and only if the preimage of every intuitionistic openset in Y is intuitionistic open in X.

Definition 2.12[6] A map $f: (X, \tau) \to (X, \sigma)$ is called intuitionistic open(closed) if the image f(A) is intuitionistic open(closed) in *Y* for every intuitionistic open(closed) set in *X*.

III. CONTRA Ib-CONTINUOUS FUNCTIONS

Definition 3.1 Let (X, τ) and (Y, δ) be two *ITS* and $f: (X, \tau) \rightarrow (Y, \delta)$ be a function. Then *f* is said to be intuitionistic *b*-continuous (In short. *Ib*-continuous) if and only if the preimage of every intuitionistic open set in *Y* is intuitionistic *b*-open in *X*.

Definition 3.2 Let (X, τ) and (Y, δ) be two *ITS* and $f: (X, \tau) \rightarrow (Y, \delta)$ be a function. Then *f* is said to be intuitionistic contra *b*-continuous (In short.contra *Ib*-continuous) if only if the preimage of every intuitionistic open set in *Y* is intuitionistic *b*-closed in *X*.

Example 3.1 Let
$$X = \{a, b, c\} = Y$$
,
 $\sigma = \{\tilde{\phi}, \tilde{X}, \phi, (X, \phi, \{b, c\})\}, and$

 $\tau = \{ \tilde{\phi}, Y, \phi, (Y, \phi, \{a\}), (Y, \{b\}, \{c\}), (Y, \{b\}, \phi), \\ (Y, \phi, \{c\}), (Y, \phi, \{a, c\}) \}$

and $f:(X,\tau) \to (Y,\sigma)$ be a function such that f(a) = c, f(b) = a, f(c) = b. Then the function f is contra *Ib*-continuous

Theorem 3.1 Let $f: (X, \tau) \to (Y, \sigma)$ be intuitionistic contra continuous, then *f* is contra *Ib*-continuous.

Proof. Let $A = (X, A_1, A_2)$ be an $I^{(\sigma)}OS$ of Y. Since f is intuitionistic contra continuous, then $f^{-1}(A)$ is intuitionistic closed in X, we know that every intuitionistic closed set is Ib-closed set, then $f^{-1}(A)$ is $I^{(\tau)}b$ -closed in X. Thus f is contra Ib-continuous.

Theorem 3.2 Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping, where *X* and *Y* are *ITS*, then the following are equivalent.

- i. The function *f* is contra *Ib*-continuous.
- ii. The inverse image of intuitionistic closed set of *Y* is $I^{(\tau)}b$ -open set in *X*.
- iii. $f(I^{(\tau)}bint(A)) \subseteq I^{(\sigma)}cl(f(A))$ for intuitionistic set A of X.
- iv. $I^{(\tau)}bint(f^{-1}(B)) \subseteq f^{-1}(I^{(\sigma)}cl(B))$ for each intuitionistic set of *Y*.

Proof. (i) \Rightarrow (ii): Let *A* be intuitionistic closed subset of *Y*, then *Y* - *A* is intuitionistic open in *Y*. Since *f* is *Ib*-continuous, $f^{-1}(Y - A) = X - f^{-1}(A)$, is $I^{(\tau)}b$ -open in *X*, which implies that $f^{-1}(A)$ is $I^{(\tau)}b$ -closed in *X*.

(ii) \Rightarrow (iii): Let *A* be an intuitionistic open set of *X*. The $I^{(\sigma)}cl(f(A))$ is intuitionistic closed in *Y*. By (ii) $f^{-1}(I^{(\sigma)}cl(f(A)))$ is $I^{(\tau)}b$ -open in *X* and

 $f^{-1}(I^{(\sigma)}cl(f(A))) = I^{(\tau)}bint(f^{-1}(I^{(\sigma)}cl(f(A))))$ since $A \subseteq f^{-1}(f(A))$

we have
$$I^{(\tau)}bint(A) \subseteq I^{(\tau)}bint(f^{-1}(f(A)))$$

$$\subseteq I^{(\tau)}bint(f^{-1}(I^{(\sigma)}cl(f(A))))$$

$$= f^{-1}(I^{(\sigma)}cl(f(A)))$$

$$f(I^{(\tau)}bint(A)) \subseteq I^{(\sigma)}cl(f(A)).$$

(iii) \Rightarrow (iv): Let *B* be an intuitionistic open set of *Y*. Then by (iii) we have

$$\begin{split} &f(I^{(\tau)}bint(f^{-1}(B))) \subseteq I^{(\sigma)}cl(f(f^{-1}(B))). \\ &\text{Hence} \qquad I^{(\tau)}bint(f^{-1}(B)) \subseteq f^{-1}(I^{(\sigma)}cl(f(f^{-1}(B)))) \subseteq \\ &f^{-1}(I^{(\sigma)}cl(B)) \end{split}$$

 $I^{(\tau)}bint(f^{-1}(B)) \subseteq f^{-1}(I^{(\sigma)}cl(B)).$

(iv) \Rightarrow (i): Let *B* be an intuitionistic open set of *Y*. Then $B^c = C$ is intuitionistic closed subset in *Y* so that $I^{(\sigma)}cl(C) = C$. Now by(iv)

 $I^{(\tau)}bint(f^{-1}(\mathcal{C})) \subseteq f^{-1}(I^{(\sigma)}cl(\mathcal{C}))$

 $= f^{-1}(C) \text{ is., } C \text{ is intuitionistic closed}$ we have $f^{-1}(C) \supseteq I^{(\tau)}bint(f^{-1}(C))$

$$= (I^{(\tau)}bint(f^{-1}(C^c)))^c.$$

Hence $(f^{-1}(C))^c$ is $I^{(\tau)}b$ -open in X. That is $f^{-1}(C)$ is $I^{(\tau)}b$ -closed. Therefore f is contra *Ib*-continuous.

Theorem 3.3 Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping, where *X* and *Y* are intuitionistic topological spaces, then the followings are equivalent.

- i. The function f is contra Ib-continuous.
- ii. For each subset A of Y, $f^{-1}(I^{(\sigma)}int(A)) \subseteq I^{(\tau)}bcl(f^{-1}(A))$.

Proof. (i) \Rightarrow (ii): Let $A = (X, A_1, A_2)$ be any intuitionistic set of Y, $I^{(\sigma)}int(A)$ is open set in Y and $f^{-1}(I^{(\sigma)}int(A))$ is a $I^{(\tau)}b$ -closed set in X. Since f is contra *Ib*-continuous. As $f^{-1}(I^{(\sigma)}int(A)) \subseteq f^{-1}(A)$

and $f^{-1}(I^{(\sigma)}int(A)) \subseteq I^{(\tau)}bcl(f^{-1}(A)).$

(ii) \Rightarrow (i): Let *A* be any intuitionistic open set of *Y*, so that $I^{(\sigma)}int(A) = A$. By condition $f^{-1}(I^{(\sigma)}int(A)) \subseteq I^{(\tau)}bcl(f^{-1}(A))$

$$\Rightarrow \qquad f^{-1}(A) = f^{-1}(I^{(\sigma)}int(A))$$
$$\subseteq I^{(\tau)}bcl(f^{-1}(A))$$

 $\Rightarrow \qquad f^{-1}(A)\subseteq I^{(\tau)}bcl(f^{-1}(A)).$

Hence $f^{-1}(A)$ is $I^{(\tau)}b$ -closed, where A is intuitionistic open in Y. Therefore f is contra *lb*-continuous.

Theorem 3.4 Let $f: (X, \tau) \to (Y, \sigma)$ be a single valued function, where *X* and *Y* are intuitionistic topological spaces, and then the followings are equivalent.

i. The function *f* is contra *Ib*-continuous.

ii. For each element $p \in X$ and each intuitionistic open set V in Y with $f(\tilde{p}) \in V$, there is a *Ib*-closed set U in X, such that $\tilde{p} \in U$, $f(U) \subseteq V$.

Proof. (i) \Rightarrow (ii): Assume $f: (X, \tau) \rightarrow (Y, \sigma)$ is a single valued contra *lb*-continuous function. Let $f(\tilde{p}) \in V$ and $V \subseteq Y$ an intuitionistic open set, then $\tilde{p} \in f^{-1}(V) \in I^{(\tau)}b$ -closed set X. Since f is contra *lb*-continuous, let $U = f^{-1}(V)$, then $\tilde{p} \in U$ and $f(U) \subseteq V$.

(ii)(i): Let V be an intuitionistic open set in Y and $\tilde{p} \in$

 $f^{-1}(V)$, then $f(\tilde{p}) \in V$, there exists a $U_{\tilde{p}} \in I^{(\tau)}b$ -closed set of X, such that $\tilde{p} \in U_{\tilde{p}}$ and $f(U_{\tilde{p}}) \subseteq V$. Then $\tilde{p} \in U_{\tilde{p}} \subseteq$ $f^{-1}(V)$ and $f^{-1}(V) = \bigcup U_{\tilde{p}}$. Since every intuitionistic contra continuous function is contra *Ib*-continuous function. Therefore, $f^{-1}(V)$ is $I^{(\tau)}b$ -closed set in X. Therefore f is contra *Ib*-continuous function.

IV. CONTRA *Ib*-HOMEOMORPHISMS AND CONTRA *Ib*-irresolute functions

Definition 4.1 A bijection $f: (X, \tau) \to (Y, \sigma)$ is called contra *lb*-homeomorphism if both f and f^{-1} are contra *lb*-continuous.

Example4.1Let
$$X = \{a, b, c\} = Y$$
,

$$\sigma = \{ \tilde{\phi}, X, \phi, (X, \phi, \{ b, c \}) \},\$$

and $f: (X, \tau) \to (Y, \sigma)$ be a function such that f(a) = c, f(b) = a, f(c) = b. Then the function f is contra *Ib*-homeomorphism.

Theorem 4.2 For a bijective contra *Ib*-continuous map $f: (X, \tau) \rightarrow (Y, \sigma)$, the following are equivalent,

- a. f is contra Ib-open
- b. f is contra Ib-homeomorphism
- c. *f* is contra *Ib*-closed.

Proof. (a) \Rightarrow (b): Since f is intuitionistic bijective, contra *Ib*-continuous and contra *Ib*-open map, by definition, f is contra *Ib*-homeomorphism.

(b) \Rightarrow (c): Let f be contra *lb*-homeomorphism. Then f is contra *lb*-open. By ? f is contra *lb*-closed.

(c) \Rightarrow (a): Let (X, τ) and (Y, σ) be any two intuitionistic topological spaces and $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function. Then f is said to be *Ib*-irresolute if the pre-image of every $I^{(\sigma)}b$ -closed set of Y is $I^{(\tau)}b$ -closed in X.

Definition 4.2 Let (X, τ) and (Y, σ) be any two intuitionistic topological spaces and $f: (X, \tau) \to (Y, \sigma)$ be a function. Then f is said to be contra *Ib*-irresolute if the pre-image of every $I^{(\sigma)}b$ -closed set of Y is $I^{(\tau)}b$ -open in X.

Theorem 4.2 Let $f: (X, \tau) \to (Y, \sigma)$ be an intuitionistic contra *b*-continuous and intuitionistic contra *b*-open. Then *f* is contra *Ib*-irresolute functions.

Proof. Let $A = (X, A_1, A_2)$ be any $I^{(\sigma)}b$ -open set. Then $A \subseteq I^{(\sigma)}int(I^{(\sigma)}cl(A)) \cup I^{(\sigma)}cl(I^{(\sigma)}int(A))$, since f is intuitionistic contra b-continuous and intuitionistic contra b-open it follows that

$$\begin{split} f^{-1}(A) &\subseteq f^{-1}(I^{(\tau)}int(I^{(\tau)}cl(A)) \cap I^{(\tau)}cl(I^{(\tau)}int(A))) \\ &\subseteq \\ I^{(\tau)}int(I^{(\tau)}cl(f^{-1}(A))) \cap I^{(\tau)}cl(I^{(\tau)}int(f^{-1}(A))) \\ &\Rightarrow \\ f^{-1}(A) &\subseteq \\ I^{(\tau)}int(I^{(\tau)}cl(f^{-1}(A))) \cap I^{(\tau)}cl(I^{(\tau)}int(f^{-1}(A))). \\ &\text{Therefore} \qquad f^{-1}(A) \qquad \text{is} \end{split}$$

 $I^{(\tau)}int(I^{(\tau)}clf^{-1}(A)) \cap I^{(\tau)}cl(I^{(\tau)}int(f^{-1}(A)))b$ -closed. This shows that f is contra Ib-irresolute functions.

Theorem 4.2 Let $f: (X, \tau) \to (Y, \sigma)$ be a contra *lb*irresolute \leftrightarrow for all intuitionistic set A of Y, $I^{(\tau)}bint(f^{-1}(A)) \subseteq f^{-1}(I^{(\sigma)}bcl(A)).$

Proof. Let f is contra *lb*-irresolute function, now $I^{(\sigma)}bcl(A)$ is an $I^{(\sigma)}b$ -closed set. Since $f^{-1}(A) \subset f^{-1}(I^{(\sigma)}bcl(A))$, it follows from the definition

 $I^{(\tau)}bint(f^{-1}(A)) \subseteq f^{-1}(I^{(\sigma)}bcl(A))$. Conversely suppose that $A = (X, A_1, A_2)$ is $I^{(\sigma)}b$ -closed set in Y, then $I^{(\sigma)}bcl(A) = A$. Now by hypothesis

$$\begin{split} &I^{(\tau)}bint(f^{-1}(A)) \subseteq f^{-1}(I^{(\sigma)}bcl(A)) = f^{-1}(A) \\ &\Rightarrow I^{(\widehat{a}u)}bint(f^{-1}(A)) = f^{-1}(A). \end{split}$$

Thus $f^{-1}(A)$ is $I^{(\tau)}b$ -open set and so f is an contra *Ib*-irresolute functions.

Theorem 4.3 Let $f: (X, \tau) \to (Y, \sigma)$ be a contra *Ib*irresolute \leftrightarrow for all intuitionistic set A of Y, $f(I^{(\tau)}bint(A)) \subseteq I^{(\sigma)}bcl(f(A)).$

Proof. Let f is contra lb-irresolute function, now $f(I^{(\tau)}bint(A))$ is an $I^{(\sigma)}b$ -closed set. By hypothesis $f^{-1}(I^{(\sigma)}bcl(A))$ is an contra $I^{(\tau)}b$ -closed $A \subseteq f^{-1}(I^{(\sigma)}bcl(f(A)))$. That is $f(I^{(\sigma)}bcl(A)) \subseteq I^{(\sigma)}bcl(f(A))$.

Conversely suppose that $A = (X, A_1, A_2)$ is contra *lb*closed set in Y. Now

hypothesis

 $f(I^{(\tau)}bcl(f^{-1}(A))) \subseteq I^{(\sigma)}bcl(f(f^{-1}(A))) = A.$ This implies that $I^{(\tau)}bcl(f^{-1}(A)) \subseteq f^{-1}(A)$ and so, $f^{-1}(A) = I^{(\tau)}bcl(f^{-1}(A)).$

by

by

That is $f^{-1}(A)$ is an contra $I^{(\tau)}b$ -closed set and so f is an contra *Ib*-irresolute functions.

Theorem 4.4 Let $f: (X, \tau) \to (Y, \sigma)$ be a contra *lb*irresolute \leftrightarrow for all intuitionistic set A of Y, $f(I^{(\tau)}bint(A)) \subseteq I^{(\sigma)}bcl(f(A)).$

Proof. Let f is contra Ib-irresolute function, now $f(I^{(\tau)}bint(A))$ is an $I^{(\sigma)}b$ -closed set. By hypothesis $f^{-1}(I^{(\sigma)}bcl(A))$ is an contra $I^{(\tau)}b$ -closed $A \subseteq f^{-1}(I^{(\sigma)}bcl(f(A)))$. That is $f(I^{(\sigma)}bcl(A)) \subseteq I^{(\sigma)}bcl(f(A))$.

Conversely suppose that $A = (X, A_1, A_2)$ is contra *Ib*closed set in Y. Now

hypothesis

 $f(I^{(\tau)}bcl(f^{-1}(A))) \subseteq I^{(\sigma)}bcl(f(f^{-1}(A))) = A.$ This implies that $I^{(\tau)}bcl(f^{-1}(A)) \subseteq f^{-1}(A)$ and so, $f^{-1}(A) = I^{(\tau)}bcl(f^{-1}(A)).$

That is $f^{-1}(A)$ is an contra $I^{(\tau)}b$ -closed set and so f is an contra *Ib*-irresolute functions.

Proposition 4.1 Suppose $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \omega)$ are both contra *lb*-irresolute, then $gof: (X, \tau) \to (Z, \omega)$ is contra *lb*-irresolute function.

Proof. Let $E = (X, E_1, E_2)$ be an $I^{(\omega)}b$ -open in (Z, ω) , since g is contra Ib-irresolute, $g^{-1}(E)$ is an $I^{(\sigma)}b$ -closed in

 (Y, σ) . Since *f* is also contra *lb*-irresolute $f^{-1}(g^{-1}(E)) = (gof)^{-1}(E)$ is an $I^{(\tau)}b$ -open in (X, τ) . Thus (gof) is contra *lb*-irresolute functions.

Theorem 4.6 Suppose $f: (X, \tau) \to (Y, \sigma)$ be an intuitionistic contra *lb*-continuous and intuitionistic contra *lb*-open, then $f^{-1}(I^{(\sigma)}bint(A)) \subseteq I^{(\tau)}bcl(f^{-1}(A))$.

If $f: (X, \tau) \to (Y, \sigma)$ is an *Ib*-continuous function and $f^{-1}(I^{(\sigma)}int(B)) \subseteq (f^{-1}(B))^{-1}$ for each *B* belongs to $I^{(\sigma)}bO(Y)$, then *f* is contra *Ib*-irresolute function. **Proof.** Let *B* belongs to $I^{(\sigma)}bO(Y)$,

$$\begin{split} f^{-1}(B) &\subseteq f^{-1}(I^{(\sigma)}cl(I^{(\sigma)}int(B)) \cap I^{(\sigma)}int(I^{(\sigma)}cl(B))) \\ &\subseteq (I^{(\sigma)}cl(f^{-1}(I^{(\sigma)}int(B)) \cap I^{(\sigma)}int(f^{-1}(I^{(\sigma)}cl(B))) \\ &\subseteq I^{(\sigma)}cl(I^{(\sigma)}int(f^{-1}(B)) \cap I^{(\sigma)}int(I^{(\sigma)}cl(f^{-1}(B))))) \\ f^{-1}(B) &\subseteq \end{split}$$

 $I^{(\sigma)}cl(I^{(\sigma)}int(f^{-1}(B)) \cap I^{(\sigma)}int(I^{(\sigma)}cl(f^{-1}(B))))$ Hence the result.

Proposition 4.2 Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \mu)$ be two functions such that *gof* is contra *Ib**-open. Then the following two statements hold.

- i. If f is contra Ib-irresolute surjection, then g is contra Ib^* -open function.
- ii. If g is contra Ib-irresolute injection, then f is contra Ib^* -open function.

Proof. (i) Let A be any $I^{(\sigma)}b$ -open set in Y, since f is contra *Ib*-irresolute function, $f^{-1}(A)$ is an $I^{(\tau)}b$ -closed set in X. As gof is contra Ib^* -open function and f is surjective, $(gof)^{-1}(f^{-1}(A)) = g(A)$, which is an $I^{(\mu)}b$ -closed set in Z. This implies g is contra Ib^* -open function. (ii). Obvious.

Proposition 4.3 Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \mu)$ be two functions such that *gof* is contra *lb**-closed function. Then the following two statements are hold.

- i. If g is contra Ib-irresolute injection, then f is contra Ib^* -closed function.
- ii. If f is contra Ib-irresolute surjection, then g is contra Ib^* -closed function.

Theorem 4.7 For a bijective map $f: (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent,

- a. $f^{-1}: (X, \tau) \to (Y, \sigma)$ is contra *Ib*irresolute
- b. f is contra Ib^* -open
- c. f is contra Ib^* -closed.

Proof. (a) \Rightarrow (b): Let $A = (X, A_1, A_2)$ be $I^{(\tau)}b$ -open in (X, τ) . By (a), $(f^{-1})^{-1}(A) = f(A)$ is $I^{(\sigma)}b$ -closed in (Y, σ) . So, f is contra Ib^* -open map.

(b) \Rightarrow (c): Let *A* be $I^{(\tau)}b$ -open in (X, τ) . Then $X - A = (X, A_2, A_1)$ is $I^{(\tau)}b$ -closed in *X* and by (b),

$$f(X - A) = f((X, A_2, A_1))$$

= (Y, f(A_2), f(A_1))
= (Y, f(A_2), Y - f(X - A_1)) is I^(\sigma)b-

closed in Y.

So
$$(Y, Y - f(X - A_1), f(A_2))$$
 is $I^{(\sigma)}b$ -open in Y.

Since

nce

$$(Y, Y - f(X - A_1), f(A_2))$$

 $= (Y, f(A_1), f(A_2))'$
 $Y - f(X - A_1) = A_1,$

f(A) is $I^{(\sigma)}b$ -closed in (Y, σ) and so, f is an contra Ib^* -closed map.

(c) \Rightarrow (a): Let *A* be contra $I^{(\tau)}b$ -closed in (X, τ) . By (c), f(A) is contra $I^{(\sigma)}b$ -closed in (Y, σ) . But $f(A) = (f^{-1})^{-1}(A)$. Therefore, f^{-1} is contra *Ib*-irresolute.

Let $X = \{a, b, c\} = Y, \tau = \{\phi, \tilde{\phi}, \tilde{X}, (X, \{b\}, \{c\}), (X, \{b\}, \phi), (X, \phi, \{c\}), (X, \phi, \{a, c\})\}.$ $\sigma = \{\phi, \tilde{\phi}, \tilde{X}, (Y, \phi, \{b, c\})\}.$ Define $f: (X, \tau) \to (Y, a)$ by f(a) = b, f(b) = c, f(c) = a then f and f^{-1} are contra *Ib*-irresolute. So f is contra *Ib*-homeomorphism.

V. **BIBLIOGRAPHY**

- [1] M. E. Abd EI-Monsef, S. N. EI-Deeb and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1) (1983), 77-90.
- [2] D. Andrijevic, Some properties of the topology of α sets, Mat. Vensnik, 36 (1984), 1-10.
- [3] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
- [4] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1) (1986), 87-96.

- [5] S. Bayhan and D. Coker, On separation axioms in intuitionistic topological spaces, Int. J. Math. Math. Sci., 27(10) (2001), 621-630.
- [6] D. Coker, A note on intuitionistic sets and intuitionistic points, Turkish J. Math., 20(3) (1996), 343-351.
- [7] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and Systems 88(1) (1997), 81-89.
- [8] D. Coker, An introduction to intuitionistic topological spaces, BUSEFAL, 81 (2000), 51-56
- [9] Gnanambal Ilango and A. Singaravelan, On intuitionistic β–continuous functions, IOSR Journal of Mathematics, 12(6) (2016), 8-12.
- [10] Gnanambal Ilango and S. Selvanayaki, Generalized preregular closed Sets in intuitionistic topological spaces, Int. J. Math. 5(4) (2014), 30-36.
- [11] B. Palaniswamy and K. Varadharajan, On I α -open set and I α -open set in intuitionistic topological spaces, Maejo Int. Journal of Science and Technology, 10(2) (2016), 187-196.
- [12] A. Singaravelan and Gnanambal Ilango, Intuitionistic β -irresolute functions, Journal of Global Research in Mathematical Archives, 4(11) (2017), 91-96.
- [13] L. A. Zadeh, Fuzzy Sets, Information and control, 8 (1986), 338-353.

For Research in Engineering Appli