Superior Eccentric Domination in Some Triangular Snake Graphs

M. Bhanumathi, Principal, Government Arts College for Women, Sivagangai-630562,Tamil Nadu, India. bhanu_ksp@yahoo.com
R.Meenal Abirami, Research Scholar, Government Arts College for Women(Autonomous), Pudukkottai-622001, Tamil Nadu, India. meegeeabirami@gmail.com

Abstract

In 2017 we define superior eccentric domination in graphs. A superior dominating set \mathbf{S} of vertices of \mathbf{G} is called a superior eccentric dominating set if every vertex of $V(G)-S$ has some superior eccentric vertex in S. A superior eccentric dominating set of \mathbf{G} of minimum cardinality is a minimum superior eccentric dominating set and its cardinality is called the superior eccentric domination number and is denoted by $\gamma_{\text {sed }}(\mathbf{G})$. In this paper we initiate the study of superior eccentric dominating sets in triangular snake graphs, alternate triangular snake graphs, double triangular snake graphs, double alternate triangular snake graphs.

Keywords - Domination, eccentricity, Superior distance, Superior eccentric vertex, superior dominating set, superior eccentric dominating set.

Mathematics subject classification(2010): 05C12, 05C69.

I. INTRODUCTION

Let G be a finite, simple, undirected (a, b) graph with vertex set $\mathrm{V}(\mathrm{G})$ and edge set $\mathrm{E}(\mathrm{G}),|\mathrm{V}(\mathrm{G})|=\mathrm{a},|\mathrm{E}(\mathrm{G})|=\mathrm{b}$. For graph theoretic terminology refer Harary [3], Buckley and Harary [1]. In 2010, Janakiraman, Bhanumathi and Muthammai defined eccentric domination in graphs [5]. K. M Kathiresan and G.Marimuthu introduced the superior domination in graphs and superior distance in graphs [5,6].

Definition 1.1: A set $\mathrm{D} \subseteq \mathrm{V}$ is said to be a dominating set in G , if every vertex in $\mathrm{V}-\mathrm{D}$ is adjacent to some vertex in D. The minimum cardinality of a dominating set is called the domination number and is denoted by $\gamma(\mathrm{G})$. For two vertices u and v in a graph G, the distance from u to v is denoted by $d(u, v)$ and defined as the length of a shortest $u-v$ path in graph G. Let G be a connected graph and v be a vertex of G. The eccentricity $e(v)$ of v is the distance to a vertex farthest from v. Thus, $e(v)=\max \{d(u, v): u \in V\}$. A set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is an eccentric dominating set if D is a dominating set of G and for every $v \in V-D$, there exist at least one eccentric vertex of v in D. The minimum cardinality of an eccentric dominating set is called the eccentric domination number and is denoted by $\gamma_{\mathrm{ed}}(\mathrm{G})$.
Definition 1.2[7]: For distinct vertices u and v of a nontrivial connected graph G, let $D_{u, v}=N(u) \cup N(v)$. Define a $D_{u, v}$ - walk as a $u-v$ walk in G that contains every vertex of $D_{u, v}$.
Definition 1.3[7]: The superior distance $d_{D}(u, v)$ from u to v is the length of a shortest $D_{u, v}$ walk. For each vertex $u \in$ $V(G)$, define $d_{D}(u)=\min \left\{d_{D}(u, v): v \in V(G)-\{u\}\right\}$. A
vertex $v(\neq u)$ is called a superior neighbor of u if $d_{D}(u, v)=$ $\mathrm{d}_{\mathrm{D}}(\mathrm{u})$.

Definition 1.4[6]: A vertex u is said to superior dominate a vertex v if v is a superior neighbor of u. A set S of vertices of G is called a superior dominating set if every vertex of $\mathrm{V}(\mathrm{G})-\mathrm{S}$ is superior dominated by some vertex in S .

Definition 1.5[6]: A superior dominating set of G of minimum cardinality is a minimum superior dominating set and its cardinality is called the superior domination number of G and is denoted by $\gamma_{\mathrm{sd}}(\mathrm{G})$.
Definition 1.6[7]: The superior eccentricity of v is $e_{D}(v)=$ $\max \left\{d_{D}(u, v): u \in V(G)\right\}$. A vertex v of a graph G is said to be a superior eccentric vertex of a vertex u if $d_{D}(u, v)=$ $e_{D}(u)$. A vertex u is superior eccentric vertex of G if it is a superior eccentric vertex of some vertex v.

Definition 1.7[2]: A superior dominating set S of vertices of G is called a superior eccentric dominating set if every vertex of $V(G)-S$ has some superior eccentric vertex in S.

SUPERIOR ECCENTRIC DOMINATION IN SOME GRAPHS:

In this section, we find the superior eccentric domination number of some triangular snake graphs.

II. Triangular Snake Graph

The Triangular Snake Graph T_{n} is obtained from the path P_{n} by replacing each edge of the path by a triangle C_{3}. The minimum cardinality of a superior eccentric domination in triangular snake graph is $\gamma_{\text {sed }}\left(T_{n}\right)$.

Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ be the vertices of the underlying path in a triangular snake graph and let $\mathrm{v}_{\mathrm{i}, \mathrm{i}+1}, i=1,2,3, \ldots, n-1$ be the vertex which is joined to v_{i} and v_{i+1} in the triangular snake graph. Then

Superior distance $d_{D}\left(\mathrm{v}_{1}, \mathrm{v}_{12}\right)=2$,
Superior distance $d_{D}\left(v_{12}, v_{1}\right)=2$,
Superior distance $d_{D}\left(v_{1}, v_{2}\right)=5$,
Superior distance $d_{D}\left(v_{1}, v_{3}\right)=7$,
Superior distance $d_{D}\left(v_{1}, v_{4}\right)=8$,
Superior distance $d_{D}\left(v_{i}, v_{i+1}\right)=8$ for $1<i<n-1$,
Superior distance $d_{D}\left(v_{i}, v_{i, i+1}\right)=d_{D}\left(v_{i}, v_{i+1, i}\right)=5$,
Superior distance $d_{D}\left(v_{i, i+1}, v_{i+1, i+2}\right)=4$
Superior distance $d_{D}\left(v_{1}, v_{n}\right)=2+d\left(v_{2}, v_{n-1}\right)+2=2+(n-3)$
$+2=\mathrm{n}+1$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{12}, \mathrm{v}_{\mathrm{n}}\right)=\mathrm{n}+1$,
Superior distance $d_{D}\left(v_{1}, v_{n-1}, n\right)=n+1$,
Superior distance $d_{D}\left(v_{12}, v_{n-1, n}\right)=n+1$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}-1}\right)=2+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-2}\right)+5=2+(\mathrm{n}-$ 4) $+5=n+3$,

Superior distance $d_{D}\left(v_{12}, v_{n-1}\right)=n+3$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=3+2+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{j}-1}\right)+5=10+(\mathrm{j}-\mathrm{i}-$ 2) $=8+(\mathrm{j}-\mathrm{i})$ for $\mathrm{i}>2, \mathrm{j}<\mathrm{n}-1$,

Superior distance $d_{D}\left(v_{i}, v_{n}\right)=5+d\left(v_{i+1}, v_{n-1}\right)+2=7+(n-$ $1-\mathrm{i}-1)=5+(\mathrm{n}-\mathrm{i})$,
Superior distance $d_{D}\left(v_{i}, v_{i, i+1}\right)=d_{D}\left(v_{i}, v_{i+1, i}\right)=5$,
Superior distance $d_{D}\left(v_{i, i+1}, v_{i+1, i+2}\right)=4$.

Let $S=\left\{v_{1}, v_{2}, v_{3,4}, v_{6,7}\right.$, \qquad $\left., v_{n-3, n-2}, v_{n-1}, v_{n}\right\} . S$ is the superior eccentric dominating set of the triangular snake graph. S is also minimum with this property and $|\mathrm{S}|=$ $\left\lceil\frac{n+9}{3}\right\rceil$. If n is a multiple of $3, \gamma_{\text {sed }}\left(\mathrm{T}_{\mathrm{n}}\right)=\frac{n+9}{3}$. If n is not a multiple of $3, \gamma_{\text {sed }}\left(T_{n}\right)=\left\lceil\frac{n+9}{3}\right\rceil$.

Example:

If $\mathrm{n}=7$

Let $S=\left\{v_{1}, v_{2}, v_{3,4}, v_{5,6}, v_{6}, v_{7}\right\}, V-S=\left\{v_{3}, v_{4}, v_{12}, v_{23}, v_{45}\right.$, $\left.\mathrm{v}_{5}\right\}$. S is a minimum superior eccentric dominating set of the triangular snake graph. Therefore, $\gamma_{\text {sed }}\left(\mathrm{T}_{\mathrm{n}}\right)=\left\lceil\frac{n+9}{3}\right\rceil$.

Alternate Triangular Snake Graph:

An Alternate Triangular snake $\mathrm{A}\left(\mathrm{T}_{\mathrm{n}}\right)$ is obtained from a path $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ by joining v_{i} and $\mathrm{v}_{\mathrm{i}+1}$ (alternatively) to new vertex v_{i+1}. That is every alternate edge of a path is replaced by C_{3}. The minimum cardinality of a superior eccentric domination in alternate triangular snake graph is $\gamma_{\text {sed }}\left(A T_{n}\right)$.

When n is even, two types is alternate triangular snake graphs arise.
(i) \mathbf{n} is even (type $\mathbf{1)}$

Superior distance $d_{D}\left(v_{1}, v_{2}\right)=2$,
Superior distance $d_{D}\left(\mathrm{v}_{12}, \mathrm{v}_{1}\right)=2$,
Superior distance $d_{D}\left(v_{1}, v_{n}\right)=2+d\left(v_{2}, v_{n-1}\right)+2=2+n-3+2$ = $\mathrm{n}+1$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}-1, \mathrm{n}}\right)=\mathrm{n}+1$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{12}, \mathrm{v}_{\mathrm{n}}\right)=\mathrm{n}+1$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{12}, \mathrm{v}_{\mathrm{n}-1, \mathrm{n}}\right)=\mathrm{n}+1$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}-1}\right)=2+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+3=2+\mathrm{n}-3$ $+3=n+2$,
Superior distance $d_{D}\left(v_{12}, v_{n-1}\right)=n+2$,
Superior distance $d_{D}\left(v_{12}, v_{n-1}\right)=n+2$,
Superior distance $d_{D}\left(v_{1}, v_{4}\right)=7$.
Superior distance $d_{D}\left(v_{i}, v_{i+1}\right)=6$ (i is even),
Superior distance $d_{D}\left(v_{i}, v_{i+1}\right)=5(i$ is odd) for $i>2$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=4+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{j}}\right)+3=7+(\mathrm{j}-\mathrm{i}-1)$ $=6+\mathrm{j}-\mathrm{i}$,
Superior distance $d_{D}\left(v_{i}, v_{j}\right)=3+d\left(v_{i}, v_{j}\right)+3=j-i+6$, (for i is even, j is odd),
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=4+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{j}-1}\right)+4=8+(\mathrm{j}-1-$ $\mathrm{i}-1)=6+\mathrm{j}-\mathrm{i}$, (for i is odd, j is even).
Superior distance $d_{D}\left(v_{i}, v_{j}\right)=3+d\left(v_{i}, v_{j-1}\right)+4=7+(j-1-$
i) $=6+(j-i)$

Superior
$d\left(v_{i}, v_{i+2}\right)+1=3+2+1=6$,
Superior distance $d_{D}\left(v_{i}, v_{i, i+1}\right)=4$ when i is odd,
Superior distance $d_{D}\left(v_{i}, v_{j, ~ j+1}\right)=2+d\left(v_{i}, v_{j}\right)+2=4+d\left(v_{i}\right.$, $\left.\mathrm{v}_{\mathrm{j}}\right)=4+\mathrm{j}-\mathrm{i}($ for i is odd, j is odd),
Superior distance $d_{D}\left(v_{i}, v_{j, j+1}\right)=3+d\left(v_{i}, v_{j}\right)+2=5+(j-$ i) (for i is even, j is odd),

Superior distance $d_{D}\left(\mathrm{v}_{\mathrm{i}, \mathrm{i}+1}, \mathrm{v}_{\mathrm{j}, \mathrm{j}+1}\right)=1+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}+1}\right)+1=2+(\mathrm{j}$ $+1-\mathrm{i})=\mathrm{j}-\mathrm{i}+3$ (for i and j are odd).
$\mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{34}, \mathrm{v}_{57}, \mathrm{v}_{78}, \ldots ., \mathrm{v}_{\mathrm{n}-3, \mathrm{n}-2}, \mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}\right\} . \mathrm{S}$ is the superior eccentric dominating set of the alternate triangular snake graph. S is also minimum with this property

Therefore, $\gamma_{\text {sed }}\left(\mathrm{AT}_{\mathrm{n}}\right)=\left(\frac{n}{2}-2\right)+4=\frac{n+4}{2}$
(ii) \mathbf{n} is even (type 2)

Superior distance $d_{D}\left(v_{1}, v_{2}\right)=4$,
Superior distance $d_{D}\left(v_{1}, v_{23}\right)=3$,
Superior distance $d_{D}\left(v_{2}, v_{n}\right)=4+d\left(v_{3}, v_{n}\right)=4+n-3=$ $\mathrm{n}+1$,
Superior distance $d_{D}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)=4+\mathrm{d}\left(\mathrm{v}_{3}, \mathrm{v}_{\mathrm{n}-2}\right)+4=8+(\mathrm{n}-$ 5) $=n+3$,

Superior distance $d_{D}\left(v_{1}, v_{n}\right)=n-1$,
Superior distance $d_{D}\left(v_{23}, v_{n}\right)=1+d\left(v_{2}, v_{n}\right)=1+n-2+3=$ $n+2$,
Superior distance $d_{D}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=3+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+1+1=5+\mathrm{j}+1$ $-\mathrm{i}=6+(\mathrm{j}-\mathrm{i})$ (for i is odd, j is odd),
Superior distance $d_{D}\left(v_{i}, v_{j}\right)=3+d\left(v_{i}, v_{j}\right)+3=6+(j-$ $i)$ (for j is odd, i is even),
Superior distance $d_{D}\left(v_{i}, v_{j}\right)=3+d\left(v_{i}, v_{j}\right)+3=6+(j-i)($ for i is odd, j is even),
Superior distance $d_{D}\left(v_{m}, m+1, v_{j}\right)=1+d\left(v_{m}, v_{j}\right)+3=4+(j-$ m). (j is odd),

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{m}, \mathrm{m}+1}, \mathrm{v}_{\mathrm{j}}\right)=2+\mathrm{d}\left(\mathrm{v}_{\mathrm{m}+1}, \mathrm{v}_{\mathrm{j}}\right)+3=5+\mathrm{j}$ $-\mathrm{m}-1=4+(\mathrm{j}-\mathrm{m})(\mathrm{j}$ is even $)$.
Hence v_{2} and v_{n-1} are superior eccentric vertices of G. $S=$ $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{23}, \mathrm{v}_{45}, \ldots . . \mathrm{v}_{\mathrm{n}-2, \mathrm{n}-1}, \mathrm{v}_{\mathrm{n}=1}\right\}$.
S is the superior eccentric dominating set of the alternate triangular snake graph. S is also minimum with this property. Therefore, $\gamma_{\text {sed }}\left(\mathrm{AT}_{\mathrm{n}}\right)=\frac{3 n-2}{2}$

(iii) \mathbf{n} is odd

Superior distance $d_{D}\left(v_{1}, v_{2}\right)=4$,
Superior distance $d_{D}\left(v_{2}, v_{3}\right)=6$,
Superior distance $d_{D}\left(v_{23}, v_{2}\right)=4$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right)=1+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+2=3+\mathrm{n}-3$
= n ,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}}\right)=3+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}-1}\right)+2=5+\mathrm{n}-\mathrm{i}$ $-1=\mathrm{n}-\mathrm{i}+4$ ($\mathrm{i}<1 \& \mathrm{i}$ is odd)

Superior distance $d_{D}\left(v_{i}, v_{n}\right)=4+d\left(v_{i+1}, v_{n-1}\right)+2=4+n-$ $1-\mathrm{i}-1=\mathrm{n}-\mathrm{i}+4(\mathrm{i}<1 \& \mathrm{i}$ is even)
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=1+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}-1}\right)+3=4+\mathrm{j}-\mathrm{i}-$ $1=3+\mathrm{j}-\mathrm{i}(\mathrm{i} \geq 2, \mathrm{j} \leq \mathrm{n}-1)$,
Superior distance $d_{D}\left(v_{23}, v_{n-1}\right)=2+d\left(v_{3}, v_{n-1}\right)+3=5+n$ $-1-3=n+1$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}}\right)=4+\mathrm{d}\left(\mathrm{v}_{3}, \mathrm{v}_{\mathrm{n}-1}\right)+2=4+\mathrm{n}-$ $1-3+2=n+2$,
Superior distance $d_{D}\left(v_{23}, v_{n}\right)=2+d\left(v_{3}, v_{n-1}\right)+2=4+n-$ $1-3=n$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{i}}\right)=\mathrm{d}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{i}}\right)+3=\mathrm{i}-1+3=\mathrm{i}+$ 2(i is even),
Superior distance $d_{D}=d\left(v_{1}, v_{i-1}\right)+2=i-1-1+2=i(i$ is even),
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}-1}\right)=\mathrm{d}\left(\mathrm{v}_{\mathrm{l}}, \mathrm{v}_{\mathrm{n}-1}\right)+3=\mathrm{n}-1-1+$ $3=n+1$,
Superior distance $d_{D}\left(v_{i}, v_{n-1}\right)=2+2+d\left(v_{i+1}, v_{n-1}\right)+3=$ $4+\mathrm{n}-1-\mathrm{i}-1+3=\mathrm{n}-\mathrm{i}+5(1<\mathrm{i}, \mathrm{i}$ is even $)$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}-1}\right)=3+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}-1}\right)+3=6+\mathrm{n}-$ $1-\mathrm{i}=\mathrm{n}-\mathrm{i}+5(1<\mathrm{i}, \mathrm{i}$ is odd $)$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{i}}\right)=4+\mathrm{d}\left(\mathrm{v}_{3}, \mathrm{v}_{\mathrm{i}}\right)+3=7+\mathrm{i}-3=\mathrm{i}$ $+4(\mathrm{i}$ is even),
Superior distance $d_{D}\left(\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{i}}\right)=4+\mathrm{d}\left(\mathrm{v}_{3}, \mathrm{v}_{\mathrm{i}-1}\right)+3=7+\mathrm{i}-1\right.$ $-3=\mathrm{i}+3$.

Hence v_{2} and v_{n-1} are superior eccentric vertices of G. $S=$ $\left\{\mathrm{v}_{2}, \mathrm{v}_{23}, \mathrm{v}_{45}, \ldots, \mathrm{v}_{\mathrm{n}-3, \mathrm{n}-2}, \mathrm{v}_{\mathrm{n}-1}\right\}$.
S is the superior eccentric dominating set of the alternate triangular snake graph. S is also minimum with this property. Therefore, $\gamma_{\text {sed }}\left(\mathrm{AT}_{\mathrm{n}}\right)=\frac{n+1}{2}$.

III. Double Triangular snake Graph

A double triangular snake graph DT_{n} consist of two triangular snakes that have a common path. That is, a double triangular snake graph is obtained from a path v_{1}, $v_{2}, \ldots \ldots, v_{n}$ by joining v_{i} and v_{i+1} to a new vertex $v_{i+1}(1 \leq i$ $\leq \mathrm{n}-1)$ and to a new vertex $\mathrm{v}_{\mathrm{i}+1}(1 \leq \mathrm{i} \leq \mathrm{n}-1)$. The minimum cardinality of a superior eccentric domination in Double triangular Snake Graph is $\gamma_{\text {sed }}\left(D T_{n}\right)$.

Superior distance $d_{D}\left(\mathrm{v}_{1}, \mathrm{v}_{12}\right)=3$,
Superior distance $d_{D}\left(v_{1}, v^{\prime}{ }_{12}\right)=3$,
Superior distance $d_{D}\left(\mathrm{v}_{2}, \mathrm{v}_{23}\right)=6$,
Superior distance $d_{D}\left(v_{2}, v_{3}\right)=12$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}}\right)=4+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{n}}\right)+4=8+\mathrm{n}-\mathrm{i}$ $-1=7+n-i$,

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}-1}\right)=4+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}-2}\right)+8=12+\mathrm{n}-$ $2-\mathrm{i}=10+\mathrm{n}-\mathrm{i}$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{12}, \mathrm{v}_{\mathrm{n}}\right)=2+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+2=4+\mathrm{n}-3$ = $\mathrm{n}+1$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}-1, \mathrm{n}}\right)=5+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+2=7+\mathrm{n}$ $-3=4+n$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{12}, \mathrm{v}_{\mathrm{n}-1, \mathrm{n}}\right)=2+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+2=4+\mathrm{n}$ $-3=n+1$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}-1}\right)=5+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-2}\right)+8=\mathrm{n}-4$ $+8+5=n+9$,
Superior distance $d_{D}\left(v_{i j}, v_{i}\right)=7$,
Superior distance $d_{D}\left(v_{i j}, v_{j}\right)=7$,
Superior distance $d_{D}\left(v_{i}, v_{i+1}\right)=12$,
Superior distance $d_{D}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=4+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}-1}\right)+8=12+(\mathrm{j}-$ $1-\mathrm{i})=11+\mathrm{j}-1$, (when $\mathrm{i}>2, \mathrm{j}<\mathrm{n}-1)$
Superior distance $d_{D}\left(v_{i}, v_{j}\right)=4+d\left(v_{i+1}, v_{j}\right)+8=12+(j-$ $1-\mathrm{i})=11+\mathrm{j}-\mathrm{i}($ for i and j is even),
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=4+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{j}}\right)+8=12+(\mathrm{j}-\mathrm{i}$ $-1)=11+\mathrm{j}-\mathrm{i}($ for i and j is odd),
Superior distance $d_{D}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=4+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}-1}\right)+8=11+\mathrm{j}-$ i (for i is even, j is odd),

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=4+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{j}-1}\right)+8=12+(\mathrm{j}$ $-1-\mathrm{i}-1)=12+\mathrm{j}-\mathrm{i}-2=10+(\mathrm{j}-\mathrm{i})$ (for i is odd, j is even),

Hence v_{1} and v_{n} are the superior eccentric vertices of other vertices.
$\mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{12}, \mathrm{v}^{\prime}{ }_{12}, \mathrm{v}^{\prime}{ }_{23}, \ldots, \mathrm{v}_{\mathrm{n}-2, \mathrm{n}-1}, \mathrm{v}_{\mathrm{n}-2, \mathrm{n}-1, \ldots,} \mathrm{v}_{\mathrm{n}-1, \mathrm{n}}\right.$, $\left.\mathrm{v}_{\mathrm{n}}\right\}$. S is the superior eccentric dominating set of the double triangular snake graph. S is also minimum with this property. Therefore, $\gamma_{\text {sed }}\left(D T_{n}\right)=2(\mathrm{n}-1)$.

IV. Double Alternate Triangular Snake Graph

A Double Alternate Triangular Snake Graph $\mathrm{DA}\left(\mathrm{T}_{\mathrm{n}}\right)$ consists of two alternate triangular snake graph that have a common path. That is, a double alternate triangular snake graph is obtained from a path $u_{1}, u_{2}, \ldots ., u_{n}$ by joining u_{i} and u_{i+1} (alternatively) to two new vertices v_{i} and w_{i}. The minimum cardinality of a superior eccentric domination in double alternate triangular snake graph is $\gamma_{s e d}\left(D A T_{n}\right)$.

When n is even, two types are alternate triangular snake graphs arise.

(i) n is even (type 1)

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{12}\right)=3$,
Superior distance $d_{D}\left(v_{1}, v_{2}\right)=6$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)=9$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{v}_{12}\right)=5$,
Superior distance $d_{D}\left(v_{i}, v_{i}+1\right)=5$,
Superior distance $d_{D}\left(\mathrm{v}_{21}, \mathrm{v}_{1}\right)=3$,

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right)=5+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+5=\mathrm{n}+7$,
Superior distance $d_{D}\left(v_{12}, v_{n}\right)=n+7$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}-1, \mathrm{n}}\right)=\mathrm{n}+7$,
Superior distance $d_{D}\left(v_{12}, v_{n-1, n}\right)=n+7$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}-1}\right)=5+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+4=\mathrm{n}+$ 6 ,
Superior distance $d_{D}\left(v_{12}, v_{n-1}\right)=n+6$,
Superior distance $d_{D}\left(v_{1}, v_{3}\right)=10$,
Superior distance $d_{D}\left(v_{1}, v_{4}\right)=12$,
Superior distance $d_{D}\left(v_{i}, v_{i+1}\right)=8($ for $\mathrm{i}>2)$ (when i is odd),
Superior distance $d_{D}\left(v_{i}, v_{i}+1\right)=9$ (for $\mathrm{i}>2$) (when i is even),
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=6+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{j}}\right)+4=10+(\mathrm{j}-\mathrm{i}$ $-1)=9+(\mathrm{j}-\mathrm{i})($ for i and j are odd),
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=5+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}-\mathrm{i}}\right)+5=10+\mathrm{j}-\mathrm{i}$ $-1=9+\mathrm{j}-\mathrm{i}$ (for i is even and j is odd),
Superior distance $d_{D}\left(v_{i}, v_{j}\right)=6+d\left(v_{i+1}, v_{j+1}\right)+6=12+($ $j-1-i-1)=10+j-i($ for i and j are even),
Superior distance $d_{D}\left(v_{i}, v_{j}\right)=5+d\left(v_{i}, v_{j-i}\right)+5($ for i is odd and j is even).

Hence v_{1} and v_{n} are the superior eccentric vertices of other vertices. $\mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \ldots, \mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}\right\} . \mathrm{S}$ is the superior eccentric dominating set of the double alternate triangular snake graph. S is also minimum with this property. Therefore, $\gamma_{\text {sed }}\left(D A T_{n}\right)=\frac{n}{2}+2$.
(ii) \mathbf{n} is even (type 2)

Superior distance $d_{D}\left(v_{1}, v_{2}\right)=5$,
Superior distance $d_{D}\left(v_{1}, v_{23}\right)=4$,
Superior distance $d_{D}\left(v_{1}, v_{n}\right)=n-1$,
Superior distance $d_{D}\left(v_{1}, v_{n-1}\right)=d\left(v_{1}, v_{n-2}\right)+6=n-3+6$
$=n+3$,

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{23}, \mathrm{v}_{\mathrm{n}}\right)=1+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}}\right)=1+\mathrm{n}-2=\mathrm{n}$ - 1 ,

Superior distance $d_{D}\left(v_{2}, v_{n}\right)=6+d\left(v_{3}, v_{n}\right)=6+n-3=n$ +3 ,
Superior distance $d_{D}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)=6+\mathrm{d}\left(\mathrm{v}_{3}, \mathrm{v}_{\mathrm{n}-2}\right)+6=12+$ $\mathrm{n}-2-3=\mathrm{n}+7$, when $\mathrm{i} \geq 2, \mathrm{j} \leq \mathrm{n}-1$
Superior distance $d_{D}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=4+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}+1}\right)+4=8+\mathrm{j}+1$ $-\mathrm{i}=9+\mathrm{j}-\mathrm{i}$ (for i and j are odd),
Superior distance $d_{D}\left(v_{i}, v_{j}\right)=4+d\left(v_{i}, v_{j}\right)+4=8+j-i($ for i is even, j is odd),

Superior distance $d_{D}\left(v_{i}, v_{j}\right)=4+d\left(v_{i}, v_{j}\right)+4=8+j-i($ for i is odd, j is even), when m is even, j is odd if $\mathrm{j}=\mathrm{m}+1$

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{m}, \mathrm{m}+1}, \mathrm{v}_{\mathrm{j}}\right)=1+\mathrm{d}\left(\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{j}-1}\right)+6=7+$ $\mathrm{j}-\mathrm{m}-1=6+\mathrm{j}-\mathrm{m}(\mathrm{j}$ is odd $)$,

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{m}, \mathrm{m}+1}, \mathrm{v}_{\mathrm{j}}\right)=1+\mathrm{d}\left(\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{j}-1}\right)+5=5+$ $\mathrm{j}-\mathrm{m}$ (for j is even).

Hence $\left\{\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right\}$ are the superior eccentric vertices of G. S $=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8}\right.$, \qquad $\left.\mathrm{v}_{\mathrm{n}-4}, \mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}\right\}$ are the superior eccentric dominating set of the double alternate triangular snake graph. S is also minimum with this property.

Therefore, $\gamma_{\text {sed }}\left(D A T_{n}\right)=\frac{n}{2}+1$.

(iii) \mathbf{n} is odd

Superior distance $d_{D}\left(v_{1}, v_{2}\right)=5$,
Superior distance $d_{D}\left(v_{1}, v_{23}\right)=3$,
Superior distance $d_{D}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}-1}\right)+4=4+\mathrm{n}-1-1$ $=n+2$,

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}-1}\right)=\mathrm{d}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}-1}\right)+4=\mathrm{n}-2+4$ $=n+2$,

Superior distance $d_{D}\left(v_{23}, v_{n-1}\right)=2+d\left(v_{3}, v_{n-1}\right)+4=6+n$ $-1-3=n+2$,

Superior distance $d_{D}\left(v_{23}, v_{n}\right)=2+d\left(v_{3}, v_{n-1}\right)+4=n-4+$ $6=n+2$,

Superior distance $d_{D}\left(v_{2}, v_{n}\right)=5+d\left(v_{3}, v_{n-1}\right)+4=9+n+$ Eno $1-3=n+5$,

Superior distance $d_{D}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}}\right)=4+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}-1}\right)+4=\mathrm{n}-\mathrm{i}+$ 7($\mathrm{i}<1, \mathrm{i}$ is odd)

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}}\right)=5+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{n}}\right)+4=9+\mathrm{n}-\mathrm{i}$ $-1=8+n-\mathrm{i}(\mathrm{i}<1 \mathrm{i}$ is even $)$,

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=4+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+4=8+\mathrm{j}-\mathrm{i}(\mathrm{i} \geq$ $2, \mathrm{j} \leq 2$)(for i is odd, j is even),

Superior distance $d_{D}\left(v_{i}, v_{j}\right)=4+d\left(v_{i}, v_{j-1}\right)+4=8+j-i-$ $1=7+\mathrm{j}-\mathrm{i}($ for $\mathrm{i} \geq 2, \mathrm{j} \leq 2)(\mathrm{i}$ is odd, j is odd),

Superior distance $d_{D}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=5+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{j}-1}\right)+4=9+\mathrm{j}-$ $1-\mathrm{i}-1=7+\mathrm{j}-\mathrm{i}(\mathrm{i} \geq 2, \mathrm{j} \leq 2)$ (whenw
i is even, j is odd),
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=5+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{j}}\right)+4=9+\mathrm{j}-\mathrm{i}-$ $1(\mathrm{i} \geq 2, \mathrm{j} \leq 2)$ (when i is even, j is even),

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}-1}\right)=4+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}-1}\right)+4=8+\mathrm{n}-$ $\mathrm{i}-1=7+\mathrm{n}-\mathrm{i}($ for $1<\mathrm{i}, \mathrm{i}$ is odd $)$,

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}-1}\right)=6+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{n}-1}\right)+4=10+$ $\mathrm{n}-\mathrm{i}-1-1=8+\mathrm{n}-\mathrm{i}($ for $1<\mathrm{i}, \mathrm{i}$ is odd),

Superior distance $d_{D}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{i}}\right)=6+\mathrm{d}\left(\mathrm{v}_{3}, \mathrm{v}_{\mathrm{i}}\right)+4=10+\mathrm{i}-3=$ $7+i($ for $i \geq 2, i$ is even),

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{i}}\right)=6+\mathrm{d}\left(\mathrm{v}_{3}, \mathrm{v}_{\mathrm{i}-1}\right)+4=10+\mathrm{i}-1$ $-3=6+i($ for $i \geq 2, i$ is odd),

Hence v_{2} and v_{n-1} are superior eccentric vertices of G. $S=\{$ $\left.\mathrm{v}_{2}, \mathrm{v}_{23}, \mathrm{v}_{45}, \ldots, \mathrm{v}_{\mathrm{n}-3, \mathrm{n}-2}, \mathrm{v}_{\mathrm{n}-1}\right\}$.
S is the superior eccentric dominating set of the alternate triangular snake graph. S is also minimum with this property. Therefore, $\gamma_{\text {sed }}\left(D A T_{n}\right)=\frac{n+1}{2}$.

REFERENCES

[1] F. Buckley and F. Harary, distance in graphs, Addison - Wesley, Reading 1990.
[2] E.J Cockayne, S.T Hedetniemi, 1977, Towards a theory of domination in graphs networks, pp 247-261.
[3] V. R.Kulli, Theory of Domination in Graphs, Vishwa international publication, Gulbarga, India 2010.
[4] T.W. Haynes, S.T.Hedetniemi and P.J slater, Fundamentals of domination in graphs, Marcel Dekkar, Newyork.
[5] T. N. Janakiraman, M. Bhanumathi and S. Muthammai, Eccentric Domination in Graphs, International Journal of Engineering Science, Advanced computing and Biotechnology vol. 1, No. 2, April- June 2010, pp. 55-70.
[6] KM. Kathiresan and G. Marimuthu, Superior Domination in Graphs, Jul 2008 Utilitas Mathematica.
[7] KM. Kathiresan and G. Marimuthu, Superior Distance in Graphs, Journal of combinatorial mathematics and combinatorial computing, May 2007.
[8] M.Bhanumathi and R.Meenal Abirami, Superior Eccentric Domination in Graphs, International Journal of Pure and Applied Mathematics, Dec 2017.

